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sychology Department and Vanderbilt Vision Research Center, V

lthough visual imagery and visual working memory are
oth defined by the ability to actively represent and
anipulate visual information, it is not known whether
ey rely on common mechanisms. A recent study by
lbers and colleagues directly investigates this issue,
nding evidence of common internal representations in
arly visual areas.

ognitive psychologists love to come up with new terms to
escribe specialized mental processes or constructs. Exam-
les abound, from priming to subitizing, metacognition to
indblindness. Because thought processes cannot be di-
ctly seen or touched, this inferential approach is essen-
al to our field’s advancement, but sometimes it can lead to
e baffling emergence of parallel literatures, akin to
ivided universes that reflect one another, but scarcely
teract.
One such example might be found in the parallel re-
arch domains of mental imagery and visual working
emory. Mental imagery refers to the ability to access or
activate perceptual information from memory, as well as
e ability to dynamically manipulate this information for
e purposes of planning, reasoning, inference, or flights of
ncy [1]. In the visual–spatial domain, it can be used to
ring to mind the countenance of a close friend, to plan the
acking of a car trunk, or to surmise what it might be like to
de alongside a beam of light. In the 1970s, cognitive
sychologists set upon the task of developing objective
easures to infer subjective acts of imagery, by quantifying
e time required to mentally rotate an object or to zoom
cross an island using the mind’s internal eye [2,3]. Curi-
usly, at around the same time, researchers were redefining
e concept of visual short-term memory as something more
an just a passive temporary store. Baddeley proposed a
odel of ‘working memory’, which consisted of a central
xecutive and two subsidiary stores that allowed for the
ctive maintenance and manipulation of phonological
formation and visual-spatial information [4].
Although imagery and visual working memory both

epend on the ability to actively represent and manipulate
isual information, the resulting research has somehow
la
morresponding author: Tong, F. (frank.tong@vanderbilt.edu).
derbilt University, Nashville, TN 37240, USA

iverged into two separate literatures that rarely reference
ne another. Because of the different behavioral measures
nd tasks used in these two domains, it has proven chal-
nging to establish direct links across these subfields.
owever, a possible bridge has emerged as a result of
cent advances in multivariate pattern analysis of func-
onal MRI data [5] and its successful application to decode
e contents of visual working memory in early visual
reas [6,7].
Building on a visual working memory paradigm by
arrison and Tong [6], a recent neuroimaging study by
lbers et al. [8] provides compelling new evidence that
orking memory and imagery rely on common visual
presentations. Participants were presented with orient-
d gratings at one of three possible orientations (158, 758, or
158) and provided with a central cue indicating whether
e relevant grating should be maintained as is or mentally
tated clockwise or counterclockwise by 608 or 1208. (To
void potential stimulus confounds, two of the three possi-
le orientations were presented sequentially at the begin-
ing of a trial, and a subsequent cue indicated whether the
rst or second grating was the task-relevant stimulus.)
fter a 10s delay period, a test grating was presented,
tated slightly clockwise or counterclockwise relative to
e orientation to be maintained, and the observer had to
ake a forced-choice discrimination judgment. Partici-
ants were somewhat more accurate on working memory
ials than on trials requiring the additional step of mental
tation, suggesting the accrual of some error from per-
rming these mental acrobatics.
The authors analyzed the data of each participant by
aining a linear classifier on activity patterns from early
isual areas V1–V3, and then using the classifier to decode
hich of the three possible orientations was being inter-
ally maintained on separate test runs. Here, decoding
ccuracy provides an index of the amount of item-specific
formation contained in the cortical activity patterns.
Activity patterns in areas V1–V3 led to reliable decoding

ot only for orientations maintained in working memory
4% accuracy; chance level 33%), but also for orientations
sulting from mental rotation (46% accuracy). Of particu-
r importance, training on activity patterns from working
emory trials proved just as effective at predicting the
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represented stimulus on mental rotation trials (45% accu
racy), implying that the internal visual representation wa
very similar across imagery and working memory. Furthe
experiments showed that stimulus-driven responses to
unattended gratings could also predict the orientation
represented during working memory and imagery. These
findings concur with the proposal that imagery and work
ing memory rely on similar neural representations as those
used for perception [1,6].

By analyzing performance across individual fMRI time
points (collected every 2s), the authors characterized the
temporal unfolding of these mental representations. On
working memory trials, information about the maintained
orientation emerged fairly quickly, within 4s after the star
of the delay period, and this orientation preference wa
maintained throughout the delay period. On mental rota
tion trials, activity patterns were initially biased in favor o
the orientation that was seen and cued, as was eviden
early in the delay period at time point 4s. However, by a
time of 8s, these activity patterns were now biased in favo
-
t
-

l
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links between the subfields of imagery and visual working
memory. Although working memory is believed to suppor
both the maintenance and manipulation of visual informa
tion, most behavioral studies have focused exclusively on
the maintenance component [11]. By investigating the
dynamic components of visual working memory, or alter
natively what might be called imagery, we may come to
better understand the more generative aspects of human
vision and imagination.
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Communication and interaction with the environment are
fundamental needs in everyday life. Physically disabled
individuals often lack these capabilities, which results in
exclusion from social activities and can affect their auton
omy. Brain–Computer Interface (BCI) technologies have
been developed with the aim to assist individuals to over
come these issues. BCIs translate brain activity directly
into messages without the need for motor action [1]. Non
invasive BCIs use the scalp-recorded electroencephalo
gram (EEG) as the input signal. For communication, user
either focus their attention on external cues that generate
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