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Pratte MS, Ling S, Swisher JD, Tong F. How attention extracts
objects from noise. J Neurophysiol 110: 1346–1356, 2013. First
published June 26, 2013; doi:10.1152/jn.00127.2013.—The visual
system is remarkably proficient at extracting relevant object informa-
tion from noisy, cluttered environments. Although attention is known
to enhance sensory processing, the mechanisms by which attention
extracts relevant information from noise are not well understood.
According to the perceptual template model, attention may act to
amplify responses to all visual input, or it may act as a noise filter,
dampening responses to irrelevant visual noise. Amplification allows
for improved performance in the absence of visual noise, whereas a
noise-filtering mechanism can only improve performance if the target
stimulus appears in noise. Here, we used fMRI to investigate how
attention modulates cortical responses to objects at multiple levels of
the visual pathway. Participants viewed images of faces, houses,
chairs, and shoes, presented in various levels of visual noise. We used
multivoxel pattern analysis to predict the viewed object category, for
attended and unattended stimuli, from cortical activity patterns in
individual visual areas. Early visual areas, V1 and V2, exhibited a
benefit of attention only at high levels of visual noise, suggesting that
attention operates via a noise-filtering mechanism at these early sites.
By contrast, attention led to enhanced processing of noise-free images
(i.e., amplification) only in higher visual areas, including area V4,
fusiform face area, mid-Fusiform area, and the lateral occipital cortex.
Together, these results suggest that attention improves people’s ability
to discriminate objects by de-noising visual input in early visual areas
and amplifying this noise-reduced signal at higher stages of visual
processing.

selective attention; equivalent noise; decoding; noise reduction; pri-
mary visual cortex; functional magnetic resonance imaging

TO IDENTIFY OBJECTS in real world settings, the visual system
must extract relevant information in the presence of visual
clutter or noise. Attention underlies our ability to selectively
process sensory information (for reviews see Carrasco 2011;
Desimone and Duncan 1995; Maunsell and Treue 2006; Reyn-
olds and Chelazzi 2004). However, the mechanisms by which
attention separates task-relevant information from irrelevant
noise remains unclear.

There are two mechanisms by which attention can improve
sensory processing: amplification and noise filtering. An am-
plification mechanism boosts all visual input, simultaneously
increasing the sensory gain of both the relevant signal and any
irrelevant noise at the attended location (sometimes referred to
as signal enhancement). A noise-filtering mechanism selec-
tively reduces responses to the noise component of the visual
input while preserving the relevant signal (sometimes referred
to as external noise reduction). These attentional processes
have been formally specified within the perceptual template
model, proposed by Lu and Dosher (1998), to characterize

human psychophysical performance (see also Dosher and Lu
2000b). According to this model, perceptual performance may
be limited by the level of external noise (e.g., white noise)
present in the stimulus, or by the level of internal noise present
in the visual system. For conditions in which the relevant
signal is embedded in levels of external noise that considerably
exceed the visual system’s level of internal noise, only a
noise-filtering mechanism will be capable of improving the
processing of that signal. Only noise filtering is effective in this
regime, since an amplification mechanism would increase
responses to both the signal and the external noise, yielding no
net gain in the signal-to-noise ratio (SNR). By contrast, for
situations in which the level of external noise is lower than the
visual system’s level of internal noise, a nonselective amplifi-
cation of the input will effectively increase the SNR of pro-
cessing in the visual system. Such amplification will increase
the visual system’s response to both signal and noise, but as
long as the amplified noise level remains below the level of
internal noise, then the benefits of amplifying the relevant
signal will outweigh the costs of amplifying the external noise
component. Thus, an amplification mechanism can enhance per-
formance when external noise falls to low or negligible levels,
whereas a noise-filtering mechanism can only enhance perfor-
mance when the relevant signal to be processed is embedded in
substantial external noise.

Noise-filtering and amplification mechanisms can be as-
sessed behaviorally by measuring whether attention enhances
an observer’s ability to perceive a stimulus in the presence of
varying levels of external noise. If attention improves behav-
ioral performance at low noise levels, such effects must arise
from amplification (see Fig. 1). Conversely, attentional benefits
that occur only at high noise levels would imply a noise-
filtering mechanism. By manipulating both external noise and
attention, studies of behavioral performance have found that
attention sometimes acts as a noise filter (Dosher and Lu
2000b; Lu and Dosher 2000; Lu et al. 2002; Smith et al. 2004),
sometimes as an amplifier (Carrasco et al. 2000; Lu and Dosher
1998, 2000; Lu et al. 2000; Morrone et al. 2002), and some-
times as both (Ling et al. 2009).

The goal of the present study was to determine whether
attention leads to amplification or noise filtering at various
stages of processing in the visual hierarchy, using fMRI and
multivoxel pattern classification (Tong and Pratte 2012). Par-
ticipants viewed line-drawn images of objects belonging to one of
four categories (faces, houses, chairs, and shoes, see Fig. 2A). The
objects were presented with varying levels of visual noise and
were either attended to or ignored. Cortical activity patterns
within individual visual areas were analyzed by training a
multivoxel pattern classifier to discriminate object category,
separately for each noise level and attention condition. Classi-
fication performance served as a measure of the amount of
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object-discriminating information present within the activity
patterns for each visual area and condition. Such discriminat-
ing information could arise from selectivity to the local low-
level features present in the images, or to higher-level object
properties (Kietzmann et al. 2012; Kriegeskorte et al. 2008;
Naselaris et al. 2009). Regardless of whether a visual area is
sensitive to low-level features or complex object properties,
this classification approach allowed us to compare performance

across attended and unattended conditions within a visual area,
and thereby to evaluate whether the effects of amplification or
noise filtering are evident in a given cortical visual area.
Whereas an amplification mechanism should lead to improved
discrimination of objects presented in the absence of visual
noise, a noise-filtering mechanism can only lead to improved
performance for the target objects embedded in substantial
levels of noise. The perceptual template model provides
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Fig. 1. Predictions of the perceptual template model. Performance is plotted as a function of external noise for attended (solid curves) and unattended (dashed
curves) conditions. Performance could be a behavioral measure or the accuracy of fMRI pattern classification. A: pure amplification is evidenced by an attentional
benefit at low noise levels, but no effect at high noise. B: pure noise filtering is evidenced by an attentional benefit at high levels of noise, but no effect at low
noise levels. C: if both amplification and noise-filtering effects are present, then attention is expected to increase performance accuracy across all noise levels.
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Fig. 2. Experimental stimuli and cortical regions of interest. A: stimuli consisted of images of shoes, chairs, faces, and houses. The left column shows images
with zero noise, the middle and right columns show the same images with 50% and 75% noise, respectively. The objects were still identifiable in the highest
noise condition. B: a flattened representation of the right occipital lobe for 1 participant. The activity map shows significant BOLD activity in the visual localizer
experiment. VO, ventral occipital cortex; LO, lateral occipital cortex; FFA, fusiform face area; mFus, mid-Fusiform area.
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straightforward quantitative predictions regarding how ampli-
fication and noise filtering should affect classification perfor-
mance, based on fundamental principles of signal detection
theory. Although this systems-level model does not specify
which of several possible neural mechanisms might underlie a
complex process such as noise filtering, its application to
neural data can prove useful by allowing one to distinguish
whether a given brain area exhibits the predicted effects of
amplification, noise filtering, or both processes.

We hypothesized that the visual system acts as a signal-
processing stream in which the initial sensory input undergoes
active noise filtering at an early processing stage, and this
noise-filtered signal is subsequently amplified at higher stages
of processing. Such an organization would ensure that the
system is capable of increasing the SNR of visual processing
under both low- and high-noise conditions. Specifically, we
predicted that attention would enhance processing in early
visual areas only when objects were presented in high levels of
visual noise, implying an early-stage noise-filtering mecha-
nism, whereas attention would enhance object processing in
high-level visual areas even in the absence of noise, as a result
of amplification.

By applying the perceptual template model to the classifi-
cation performance of individual visual areas, we can quantify
the extent to which attention leads to effects of noise filtering
and amplification at successive levels of the human visual
pathway. An important consideration is that the response
properties of any visual area will reflect processing that has
occurred at prior stages as well as the processes that occur in
that area proper. Here, we focused on how the effects of
amplification and noise filtering change across the visual hier-
archy to gain insight into the stages at which these processes
likely emerge.

MATERIALS AND METHODS

Participants. Six healthy adult volunteers (4 males) aged 22–39,
with normal or corrected-to-normal vision, participated in the exper-
iment. All participants gave informed written consent. The study was
approved by the Vanderbilt University Institutional Review Board.

Apparatus. The stimuli were generated using Matlab and the
Psychophysics Toolbox (Brainard 1997; Pelli 1997). Stimuli were
displayed on a rear-projection screen using a luminance-calibrated
Eiki LC-X60 LCD projector with a Navitar zoom lens. Participants
used a custom bite-bar system to minimize head movements.

Scanning was performed using a Philips 3-Tesla Intera Achieva
MRI scanner with an eight-channel head coil, located at the Vander-
bilt University Institute for Imaging Science. We used standard
gradient-echo echoplanar T2*-weighted imaging to acquire whole
brain functional images (TR 2,000 ms; TE 30 ms; 35 slices with no
gap; 64 � 64 in-plane resolution; 3-mm isotropic voxels; 1.5�
SENSE acceleration).

Stimuli and design. The main experiment consisted of 18 functional
runs. Observers were instructed to maintain fixation on a central
fixation bull’s eye (1° diameter) where sequences of letters appeared
(0.8° diameter), while line drawings of faces, houses, shoes, or chairs
(spanning 12° of visual angle) were concurrently presented. Each
object set consisted of 16 different line drawings of objects from that
category. The images within each category were more similar to one
another than to images in other categories (e.g., image category could
be classified based on the pixel values of the images), and these
category differences can thereby allow for high classification perfor-
mance in early visual areas. The images were embedded in noise by
randomly changing 0%, 50%, or 75% of the pixels to black or white

(with equal probability) in the 0, 0.5, and 0.75 noise conditions,
respectively (Fig. 2A). In behavioral pilot studies, we confirmed that
the line-drawn objects could still be perceived at the highest level of
visual noise.

Each experimental run consisted of 16 consecutive stimulus blocks
that lasted 14 s each, with a 16-s fixation-rest period at the beginning
and end of the run. For each stimulus block, the objects were either
attended or unattended. Each block was preceded by 1 s of fixation,
followed by a 1-s cue indicating whether participants should attend to
the objects or to the central letters. Following this instruction, 14
randomly selected images from a given category and noise level were
presented for 600 ms each, separated by a 400-ms interstimulus
interval, while central letters were presented at a rate of 5 items per
second. In the unattended blocks, participants performed a letter
discrimination task and had to report whenever a “J” or “K” appeared
in the temporal sequence of letters by pressing a corresponding key on
a button box (target frequency, 10%; average hit rate, 90%). In the
attended blocks, participants performed a one-back object-matching
task, and had to make a button-press whenever the same image was
shown consecutively (20% of all image presentations). Average hit
rate for this task was 91% and did not vary as a function of external
noise level [F(2, 5) � 0.92, P � 0.43].

Stimulus category and task were counterbalanced within each run
such that each combination of task and category occurred twice per
run. The attention condition alternated between the one-back task and
the letter discrimination task across successive blocks, with each run
beginning with the one-back task. Critically, stimulus parameters
were identical across attention conditions; only the instructions
changed. Noise level was varied across runs, and each session began
with zero noise followed by 0.50 and 0.75.

The experimental session also included two functional localizer
runs used to identify voxels that responded to the region occupied by
the stimuli. For the localizer runs, images were randomly selected
from all possible categories and noise levels and were presented in
stimulus blocks of 12 s, separated by 12 s of fixation (no letters were
presented at fixation). Standard linear modeling procedures were used
to quantify the extent to which each voxel responded to the images
during the localizer, providing a measure of the extent to which each
voxel responded to the stimulus region regardless of image category.

fMRI preprocessing. Functional images were simultaneously mo-
tion-corrected and aligned to the mean of the eighth run using FSL’s
MCFLIRT (Jenkinson et al. 2002) and high-pass filtered (50-s cutoff)
to remove slow drifts in the MRI signal. Images were then aligned to
the surface using Freesurfer’s boundary-based registration (Greve and
Fischl 2009).

Regions of interest. Each participant took part in a separate scan-
ning session for functional mapping of each region of interest.
Retinotopic visual areas V1, V2, V3, V3A, V3B, and V4 were defined
on the flattened cortical surface using standard polar retinotopic
mapping procedures (Engel et al. 1997; Sereno et al. 1995). To define
category-selective object areas, in two additional runs, images of
faces, houses, objects, and visually scrambled objects were presented
in 12-s blocks separated by 12 s of fixation. Voxels that responded
more to faces than objects were visualized on the cortical surface to
define the fusiform face area (Kanwisher et al. 1997), and voxels
responding more to objects than faces were used to define the
mid-fusiform gyrus (Grill-Spector 2003). Voxels on the ventral and
lateral cortical surfaces that responded to the experimental localizer,
but did not fall within any of these retinotopic or category-selective
regions, were labeled as ventral occipital cortex and lateral occipital
cortex, respectively (Fig. 2B).

Pattern classification analysis. Linear support vector machines
(SVM) (Boser et al. 1992; Haynes and Rees 2006; Kamitani and Tong
2005; Norman et al. 2006; Tong and Pratte 2012; Vapnik 1998) were
used to classify the viewed object category. The classifiers were
trained and tested separately for each visual area, noise level, atten-
tional condition, and participant. The 120 voxels that responded most
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strongly to the experimental localizer within each visual area were
used as features for classification; results were highly similar across a
range of choices for number of voxels included. Responses of each
voxel for each block were obtained by temporally averaging the
BOLD signal from 6 s after the presentation of the first image (to
account for hemodynamic lag) up to and including the fMRI volume
that was acquired at the end of the 14-s stimulus block. A leave-one-
run-out cross-validation procedure was used to evaluate the amount of
object-discriminating information that could be decoded from activity
patterns in each visual area. Specifically, a four-class SVM was
trained on blocks from all but one run and used to predict the object
category of blocks in the left-out test run. Classification accuracy was
obtained by averaging performance accuracy across all test runs.
Accuracy from the four-choice classifier was converted to d= units
(Ingleby 1973) so that the formal perceptual template model (pre-
sented below) could be applied. Results were qualitatively similar
when multiclass classification accuracy was considered rather than d=.

Perceptual template model. By measuring the effects of attention on
classification performance across noise conditions, the influence of am-
plification and noise filtering can be formally assessed within a cortical
region. The signature of amplification is an attentional benefit for pro-
cessing stimuli in the absence of external noise, and the signature of
external noise filtering is an attentional benefit for processing stimuli
embedded in high levels of external noise. In principle, one can simply
evaluate performance in the presence of no noise and in high noise to
determine the role of these attentional mechanisms (Dosher and Lu
2000a). In our study, we also included an intermediate noise-level
condition, which allowed us to fit the fMRI classification data from each
visual area with a variant of the perceptual template model (Lu and
Dosher 1998). Fitting this model to the fMRI data provided formal
estimates of amplification and noise reduction in each visual area, and
allowed us to measure how well the formal model is able to characterize
the effects of attention on fMRI classification performance.

Our application of this model quantifies how classification perfor-
mance changes as a function of external noise (NE) and attention (k),
within a visual area. For the unattended condition (k � 0), the model
included parameters for internal noise (NI), a scale term (�), and a
non-linearity term (�). The attended condition (k � 1) was defined by
these same values, modified by amplification (aAMP) and noise filter-
ing (aNF) parameters:

d ' (NE, k) �
� � �aAMP�k�

��NE � (aAMP)k

�aNF�k �2�

� NI
2

Noise filtering improves discriminability by attenuating the impact of
the external noise by a scale factor. Amplification improves discrim-

inability by increasing the gain of the stimulus, but it also increases
the gain of the noise. Figure 1 shows predicted d= values plotted as a
function of external noise level for a model with reasonable parameter
values. In this study, the model was separately fit to the data from each
visual area and participant by minimizing squared error. For each
visual area, the non-linearity parameter was fixed across participants
to aid in parameter identification; all other parameters were free to
vary across participants.

RESULTS

Analysis of mean BOLD amplitude. We first examined the
effects of external noise and attention on the overall amplitude
of the BOLD signal across visual areas (Fig. 3). The statistical
significance of these effects was assessed using a repeated-
measures ANOVA with visual area, noise condition, and at-
tention condition serving as separate factors. In early visual
areas V1 and V2, the addition of external noise increased the
BOLD response, as was expected given the higher contrast
energy of the noisy images. Higher visual areas, however,
exhibited the opposite pattern of results. The addition of noise
tended to reduce the mean BOLD response in higher areas,
presumably because these areas are comparatively insensitive
to the amount of stimulus energy but are more sensitive to the
loss of coherent contours and other object-related information
that accompanies the addition of noise. This crossover inter-
action effect between noise level and visual area was statisti-
cally significant [F(16, 80) � 8.8, P � 0.001], suggesting that
embedding objects in visual noise modulates the overall BOLD
response in qualitatively different ways in low- and high-level
visual areas.

Directing attention to the objects led to a marked increase in
mean BOLD activity across all visual areas [main effect of
attention: F(1, 5) � 47.1, P � 0.001], as has previously been
shown (Beauchamp et al. 1997; Chawla et al. 1999; Gandhi et al.
1999; Somers et al. 1999). This attentional effect was greater in
retinotopic visual areas than in higher visual areas [attention by
area interaction: F(8, 40) � 10.0, P � 0.001]. This pattern of
results may simply reflect the fact that the visual localizer ex-
cluded the fovea in retinotopic areas, but may not have done so in
higher-level areas, resulting in smaller than expected effects of
attentional modulation in higher areas.

Critically, the magnitude of the attentional effect did not depend
on noise level [attention by noise interaction: F(2, 10) � 1.46, P �
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0.28]. Thus, mean BOLD activity did not prove useful for
discerning how attention might act to overcome the effects of
external noise, as the magnitude of attentional modulation
was comparable across noise levels. These findings can be
contrasted with the much more informative results we ob-
tained through pattern classification analysis, described
below.

Multivoxel pattern classification. We applied multivoxel
pattern classification to the activity patterns in each region of
interest, to identify the object category that was viewed on each
14-s stimulus block. This analysis allowed us to assess the
reliability of cortical activity patterns across attended and
unattended conditions, and to evaluate the impact of external
visual noise on the reliability of the activity patterns evoked by
the distinct sets of object stimuli (i.e., faces, houses, chairs, and
shoes). It should be emphasized that the object-selective infor-
mation found in these activity patterns could arise from sensi-
tivity to local low-level features, as would predominate in early
visual areas, or from sensitivity to higher-order shape and
object properties, as has been found in high-level visual areas
(Kietzmann et al. 2012; Kriegeskorte et al. 2008; Naselaris et
al. 2009). Our analyses focused on changes in classification
performance within each visual area, to determine the impact
of attention on the reliability of visual processing in that region
across different levels of external visual noise.

Figure 4, A and B, shows pattern classification performance
for the unattended and attended conditions, respectively. We
first highlight the effects of external noise on classification
performance. Whereas the addition of external noise led to
increases in mean BOLD amplitude in early visual areas,
increasing the amount of external noise led to clear decreases
in classification performance across all visual areas for both
attended and unattended objects [main effect of noise: F(2, 10) �
121.8, P � 0.001]. This dissociation in the pattern of results
highlights the fact that, unlike mean BOLD amplitude, pattern
classification accuracy provides a measure of the amount of
object-discriminating information available in the activity pat-
terns of a visual area for a given experimental condition. The
disruptive effect of external noise was substantial in early areas
and more modest in high-level areas [noise by area interaction:
F(16, 80) � 15.4, P � 0.001]. This trend in the data was most
clear when comparing classification accuracy across the no-
noise and medium-noise conditions. In early visual areas V1,
V2, and V3, moderate external noise led to a large drop in

classification accuracy, relative to the noise-free condition, by
�1.0 d= unit. In contrast, higher visual areas exhibited virtually
no difference between the no-noise and medium-noise condi-
tions. Only at the highest level of noise did we observe
impaired processing of object information in these high-level
areas. The greater sensitivity of early visual areas to external
noise likely reflects the fact that the visual representations in
these areas are based on low-level visual properties, such as
local contrast and orientation, which may be more easily
disrupted by the addition of visual noise. The weaker effects of
noise in higher-level visual areas is consistent with their
sensitivity to complex object properties, which would allow for
integration of visual information over larger portions of the
visual field.

What impact does attention have on the neural representa-
tion of objects in noise? A comparison of Fig. 4, A and B,
reveals that attending to the objects generally increased clas-
sification performance [main effect of attention: F(1, 5) �
178.2, P � 0.001], and that these attentional benefits were
greater in high-level areas than in low-level areas [attention by
area interaction: F(8, 40) � 3.6, P � 0.05]. Attention also
attenuated the deleterious effects of noise across all visual
areas [noise by attention interaction: F(2, 10) � 4.2, P � 0.05],
leading to greater improvements in classification performance
for noisy than for noise-free conditions. These results indicate
that attention can help to overcome external noise and enhance
the representation of object-specific feature information in both
low- and high-level visual areas.

Of critical interest was whether the attentional effects ob-
served in each visual area were due to amplification, noise
filtering, or a combination of both mechanisms. Recall that an
amplification mechanism will produce attentional benefits at
low noise levels, whereas a noise-filtering mechanism will
produce benefits only at high noise levels. To highlight the
differential impact of these two mechanisms, we calculated the
extent to which attention enhanced object-discrimination per-
formance for each visual area, separately for high-noise images
and no-noise images. In the presence of high external noise,
attention improved classification performance in all visual
areas of interest (Fig. 5A). Thus, attentional benefits of noise
filtering were evident throughout the cortical visual pathway,
with modulatory effects emerging as early as V1.

In contrast, we found no effect of attentional enhancement in
early visual areas (V1 and V2) during the viewing of noise-free
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objects, or even for objects in moderate levels of noise. As can
be seen in Fig. 5B, attention enhanced classification perfor-
mance for noise-free images only in higher visual areas. These
results are consistent with the proposal that amplification is
absent in early visual areas, and only emerges at higher stages
of visual processing. However, the claim of a lack of atten-
tional effects in early areas warrants careful inspection, as the
conclusions are based on a failure to reject the null hypothesis.
To determine whether the null hypothesis is likely to be true,
we used a Bayesian technique akin to the t-test (Rouder et al.
2009) to evaluate the likelihood that there is no attentional
effect in early areas for noiseless images. This method provides
the Bayes factor, which reflects how much more likely the null
hypothesis is to be true than the alternative hypothesis of the
existence of an effect. Bayes factors of 3.0 or greater are
typically interpreted as “substantial” evidence for the null
hypothesis (Jeffreys 1961). For area V1, the Bayes factor was
3.5, implying that the null hypothesis of no amplification was
3.5 times more likely than the alternative of amplification
being present. For V2, the null was 3.0 times more likely than
the alternative, again suggesting a lack of amplification in early
visual areas.

Although this Bayesian analysis mitigates statistical prob-
lems associated with accepting the null, it might be argued that
our failure to observe a benefit of attention for noise-free
images was caused by a ceiling effect. For example, classifi-
cation accuracy of noise-free images for V1 was �92%, for

both attended and unattended conditions. However, a ceiling
effect is unlikely to account for our results, as we also found no
evidence for attentional enhancement of classification perfor-
mance in V1 or V2 for objects presented in medium levels of
noise. Again, Bayes factors for V1 and V2 were 2.5 and 3.0 in
favor of the null hypothesis, respectively, even though classi-
fication accuracies for these medium-noise conditions were
well below ceiling.

To further quantify the extent to which these attentional
mechanisms could account for classification performance in
each visual area, we fitted the perceptual template model to the
fMRI classification data (see MATERIALS AND METHODS for de-
tails). This model provides an estimate of amplification and
noise filtering parameters to account for the effects of attention
on discrimination performance across a range of noise levels.

Figure 6 shows classification performance as a function of
noise level for each visual area. Overall, the model fits the data
well, accounting for 89–95% of the within-subject variance.
Figure 5C shows the noise filtering parameter estimates for
each visual area, and Fig. 5D shows the amplification param-
eter estimates. This parametric analysis is highly concordant
with the conclusions drawn from assessing the no-noise and
high-noise conditions: noise filtering emerges at the level of V1
and is evident in all downstream visual areas, whereas ampli-
fication emerges later in the visual hierarchy.

Is it possible that attention led to enhanced classification
performance in early visual areas, not by selectively enhancing
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responses to the low-level features contained in the attended
objects, but rather, by the feedback of a more abstract atten-
tional signal that would be distinct from the pattern of feed-
forward stimulus-driven responses? A recent study reported
that attending to the shape of peripheral objects can lead to
object-specific patterns of activity in the foveal representation
of early visual areas (Williams et al. 2008). Interestingly, these
activity patterns remained stable across changes in object
position, implying that a more abstract object-selective signal
was being fed back to early visual areas in a manner indepen-
dent of the low-level visual input.

We consider it unlikely that the feedback effects found in the
Williams et al. (2008) study can account for the present
findings, as such an account fails to explain why we observed

attentional enhancement in V1 and V2 only in the highest noise
condition, with no enhancement under conditions of moderate
or no noise. Moreover, our visual localizer produced regions of
interest that largely excluded the foveal representation (see Fig.
2B). Nonetheless, to further address this possibility we con-
ducted an analysis to determine whether stimulus-driven re-
sponses to unattended objects were effectively enhanced by top-
down attention. To do this, we first trained a classifier to discrim-
inate object category using activity patterns in the zero-noise,
unattended condition. This trained classifier was then used to
predict the viewed object category in all other conditions. Since
the classifier used for training was based on the stimulus-driven
activity patterns evoked by unattended objects (i.e., unattended
signals in the absence of noise), boosts in classification perfor-
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mance with attention can be attributed to top-down enhancement
of stimulus-driven responses.

The results of this control analysis are shown in Fig. 7.
Performance in all conditions was very similar to our original
analysis when classifiers were trained separately on each con-
dition (cf. Fig. 4). Of critical interest, we found that attentional
effects for the high-noise condition were reliable in both V1
[t(5) � 3.29, P � 0.019] and V2 [t(5) � 3.17, P � 0.025],
implying that top-down attention serves to enhance the pattern
of stimulus-driven responses in early visual areas under con-
ditions of high noise. These findings are consistent with an
active noise-filtering mechanism in which feedforward re-
sponses to the relevant signal (i.e., the object) are selectively
enhanced, relative to responses to the noise.

DISCUSSION

Many recent studies have utilized fMRI and multivoxel
pattern analysis to explore how attention can enhance visual
processing (Cukur et al. 2013; Jehee et al. 2011; Kamitani and
Tong 2005; Peelen et al. 2009; Reddy et al. 2009; Scolari et al.
2012; Serences and Boynton 2007). Here, we expanded this
approach by examining the role of attention in extracting
information about complex objects in the presence of visual
noise. We found that activity patterns in higher visual areas
could better distinguish between attended than unattended
objects, but that these benefits of attentional processing were
equally prominent for noisy and noise-free viewing conditions.
In contrast, early visual areas V1 and V2 exhibited improved
processing with attention only when objects were presented in
high levels of external visual noise. The noise dependency of
these attentional effects in V1/V2 was all the more striking
given that the mean BOLD response was similarly boosted by
attention, regardless of noise level. Our results suggest that an
important role of top-down feedback to early visual areas is to
extract relevant signals from irrelevant noise. Moreover, these
findings raise the possibility that certain effects of attentional
feedback in early visual areas might fail to be detected if
stimulus conditions are insufficiently noisy or perceptually
challenging.

By examining these fMRI data within the signal-processing
framework of the perceptual template model (Lu and Dosher
1998), we were able to separately measure the attentional

contributions of noise filtering and amplification. These quan-
titative analyses provided compelling evidence of differences
in processing across the visual hierarchy: whereas noise filter-
ing was clearly evident at the earliest stages of visual process-
ing, effects of amplification were found only in higher-level
visual areas. These findings support our proposal that top-down
attentional mechanisms operate along the visual hierarchy by
applying noise filtering at early sites of the visual processing
stream, followed by an amplification stage. From a signal
processing perspective, such a design would allow the visual
system to be well suited at extracting relevant information from
both noisy and noiseless inputs. If amplification were instead to
precede noise filtering, there would be no benefit of the
amplification stage during the processing of noisy visual in-
puts.

Although we found signatures of noise filtering throughout
the visual pathway, this result does not necessarily imply that
active noise filtering occurs in every one of these visual areas.
Given that cortical areas downstream would inherit any mod-
ulation of visual processing from early visual areas, a simpler
account is that the reduction of external noise occurred primar-
ily in early visual cortices, with the resulting noise-reduced
signal propagated to higher visual areas. Our model-based
estimates of attentional amplification suggest a further distinc-
tion between low- and high-level visual areas, with amplifica-
tion emerging only at higher stages of the visual pathway,
beyond V1 and V2. The combined effects of noise filtering and
amplification provide a good account of the pattern of results in
high-level visual areas, in which attentional enhancement oc-
curred across all noise levels (see Fig. 6). In theory, enhance-
ment across all noise levels could also result from a reduction
in (multiplicative) internal noise, but psychophysical studies
have provided compelling evidence to rule out this possibility
(Dosher and Lu 2000a). Moreover, the pattern of results we
observe across the visual hierarchy is better explained in terms
of sequential stages of noise filtering and amplification.

Although areas V1 and V2 showed no attentional enhance-
ment for objects in the absence of noise, some previous fMRI
studies have found attentional enhancement of pattern-specific
responses in early visual areas under noise-free conditions.
However, these studies typically involved simple stimuli, such
as a single orientation grating or multiple stimuli that allowed
for competition between distinct neuronal populations. For
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example, Kamitani and Tong (2005) found that selective at-
tention directed to one of two overlapping orientated gratings
could modify orientation-selective activity patterns in early
visual areas. Although no visual noise was present in the
compound stimulus, this stimulus design allowed for compet-
itive interactions to take place between the attended grating and
the unattended grating. Similar competitive interactions are
likely to take place when an observer views objects in noise,
between neuronal populations responding to the contours of the
object and those responding to the noise elements. In another
fMRI study, Jehee et al. (2011) found that attending to the
orientation of a peripheral (noise-free) grating led to enhanced
orientation-selective responses in early visual areas, but that
attending to the contrast of that grating did not. The modula-
tory effects found in their study were attributed to feature-
based attention directed at a specific orientation. In the present
study, participants had to attend to objects composed of many
different local features, and the top-down mechanisms in-
volved in this more complex form of attentional selection may
well differ from basic mechanisms of feature-based attention.
It will be interesting for future studies to determine the extent
to which mechanisms of amplification and noise reduction can
modulate activity in early visual areas, and how such factors
may depend on the complexity of the stimulus being attended.

The present study provides compelling evidence for atten-
tion-based noise filtering in early visual areas. These visual
areas might also have passive noise-filtering properties, but the
attention-dependent effects found here indicate that a target
object is better distinguished from surrounding noise when it
becomes the focus of attention. What types of top-down
feedback to early areas would allow for noise filtering (i.e.,
improved SNR), such that the responses to local object features
are enhanced or the responses to the noise elements are
dampened? It is possible that simple forms of attentional
feedback could have contributed to the noise-filtering effects
found in early visual areas. For example, given that our
line-drawn stimuli had somewhat greater power at lower spa-
tial frequencies, a feature-based attentional mechanism (Mar-
tinez-Trujillo and Treue 2004; Maunsell and Treue 2006;
Treue and Martinez Trujillo 1999) that enhanced responses to
lower spatial frequencies could improve the SNR to some
extent. Top-down feedback might also involve more complex
filtering operations, such as facilitating the processing of frag-
mented contours by modulating the strength of lateral connec-
tions between neurons with collinear receptive fields. Atten-
tional modulation of collinear interactions has been reported in
single-unit recording studies of V1, and both perceptual learn-
ing and task-related voluntary attention appear to be important
for realizing these effects (Crist et al. 2001; Li et al. 2008;
Roelfsema et al. 1998).

However, recent fMRI studies have also found that object-
related knowledge can lead to top-down effects in early visual
areas. For example, following successful recognition of an
ambiguous image of an object, activity patterns in early visual
areas are more stable and reliable (Gorlin et al. 2012; Hsieh
et al. 2010). In addition, attending to the shapes of peripheral
objects can lead to object-specific patterns of activity in the
foveal representation of early visual areas, presumably due to
top-down feedback of object-related information (Williams et
al. 2008). In separate ongoing studies, our lab has found that
covertly attending to one of two overlapping objects leads to

systematic biases in the patterns of activity in early visual
areas, which involve shifts toward the pattern that would be
evoked if the attended stimulus were presented in isolation (see
also Hou and Liu 2012). The above studies suggest that
high-level representations of shape and object properties could
potentially inform top-down feedback signals to early visual
areas to facilitate the attentional filtering of objects in noise.
Following the initial sweep of feedforward responses to an
object in visual noise, the activation of shape-selective neurons
in higher areas might lead to top-down feedback to early visual
areas, to enhance local responses to relevant object contours
and to suppress responses to unaccounted for noise. Such
top-down attentional filtering would lead to a refinement of the
visual signals that reach high-level areas. Such dynamic inter-
actions between high- and low-level visual areas would be
consistent with the proposed role of recurrent interactions in
visual perception and attentional selection (Hochstein and
Ahissar 2002; Lamme and Roelfsema 2000; Tong 2003), and
with the notion that feedback can act as a predictive coding
mechanism in early visual areas (Rao and Ballard 1999;
Wacongne et al. 2011). It will be interesting if future studies
investigate whether attention-based noise filtering relies on
top-down feedback that modulates visual responses based on
more simple properties, such as spatial frequency or collinear-
ity, or more complex properties.

How might the attentional mechanisms of noise filtering and
amplification operate at the neuronal level? We would antici-
pate that these attentional mechanisms lead to changes in the
gain of neuronal responses, as has been demonstrated in many
neurophysiological studies of visual attention (McAdams and
Maunsell 1999; Reynolds et al. 2000; Treue and Martinez
Trujillo 1999). For example, selective top-down enhancement
of the fragmented contours corresponding to the target object
might serve to enhance the gain of responses to the relevant
signal. Such enhancement of relevant contours could also lead
to local suppression of responses to noise, as would be pre-
dicted by divisive normalization models with local inhibition
(Heeger 1992; Reynolds and Heeger 2009). In addition, atten-
tion has recently been found to modulate the variability of
neuronal firing (Mitchell et al. 2009) as well as the strength of
correlated noise responses between neurons (Cohen and Maun-
sell 2009), and such factors could potentially contribute to the
effects of attention found here. Because of the coarse nature of
the BOLD response, fMRI studies cannot readily distinguish
between these possible types of neuronal modulation, as either
an increase in response gain or a reduction in response vari-
ability at the neuronal level would lead to similar improve-
ments in the reliability of large-scale activity patterns. How-
ever, the present fMRI study does allow us to distinguish
between amplification and noise filtering: the strength or reli-
ability of responses is similarly boosted for signal and noise in the
former case, whereas in the latter case the signal is enhanced
relative to the noise.

Our results further demonstrate how fMRI pattern classifi-
cation can provide a different window into functional or visual
processes than that provided by simple measures of mean
BOLD activity. For example, the addition of visual noise led to
stronger mean BOLD responses in early visual areas, whereas
the presence of such noise severely impaired the reliability of
the activity patterns evoked by different objects. The discrep-
ancy between these two measures highlights the fact that
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classification accuracy reflected the distinctiveness of the vi-
sual signal (i.e., object category) in the presence of uninfor-
mative, disruptive noise, whereas mean BOLD activity re-
flected the overall strength of visual responses to both signal
and noise. These results indicate potential limitations of pre-
vious reports suggesting that the overall BOLD activity in early
visual areas is not disrupted by the addition of visual noise or
image scrambling (Grill-Spector et al. 1998; Tjan et al. 2006).

We also observed differences in how attending to the objects
affected the mean BOLD signal and classification perfor-
mance. In particular, we found no attentional effects in classi-
fication accuracy for noiseless or medium-noise images in V1
or V2, despite the fact that attending to the objects led to
increases in mean BOLD responses. These findings parallel
other recent work showing dissociable effects of spatial atten-
tion on mean BOLD responses and the reliability of orienta-
tion-selective activity patterns (Jehee et al. 2011). It is there-
fore important to consider how our pattern classification results
compare with previous studies that have investigated the ef-
fects of attention and noise on mean BOLD activity. For
example, a recent fMRI study found that attending to a low-
contrast grating presented in high-contrast noise reduced mean
BOLD responses in V1 (Lu et al. 2011). This result was
interpreted to suggest a noise-filtering mechanism, in which
attending to the grating suppressed responses to the irrelevant
external noise, thereby leading to an overall decrease in mean
BOLD response. This finding concurs with our pattern-classi-
fication evidence for noise filtering in V1. However, we also
found effects of noise filtering in higher visual areas beyond
V1, whereas Lu et al. failed to observe an attentional decrease
in mean BOLD response in these areas. It would be interesting
for future studies to investigate whether noise filtering and
amplification are similarly engaged by simple stimuli such as
gratings and complex object stimuli such as we used here, and
how these mechanisms can be measured using pattern classi-
fication and mean BOLD activity.

In conclusion, we found that attending to objects embedded
in noise led to dramatic increases in pattern classification
performance, implying that noise filtering is an important
function of covert visual attention. The differential effects of
attention across the visual hierarchy suggest that the visual
system is designed to operate optimally under both low- and
high-noise situations. Early visual areas exhibited strong ef-
fects of noise filtering but negligible evidence of amplification,
whereas high-level visual areas showed effects of both mech-
anisms, due to the emergence of amplification at higher stages
of processing. These results reveal how top-down attention can
serve multiple functions, and how its effects on visual process-
ing are not unitary. To date, most neuroimaging and neuro-
physiological studies of attention have emphasized the specific
role of attention in modulating the “gain” or response level of
sensory neurons (Buracas and Boynton 2007; Reynolds and
Chelazzi 2004). However, such an attentional amplification
mechanism would not be sufficient for improving sensory
encoding in the presence of external noise, particularly if both
signal and noise are spatially overlapping. Instead, multiple
mechanisms are needed to explain how attention is able to
dynamically enhance visual processing across a variety of
viewing conditions, especially those that involve substantial
visual clutter or noise.
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