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The human attention system helps us cope with a complex environment by supporting the selective processing
of information relevant to our current goals. Understanding the perceptual, cognitive, and neural mechanisms
that mediate selective attention is a core issue in cognitive neuroscience. One prominent model of selective at-
tention, known as load theory, offers an account of how task demands determine when information is selected
and an account of the efficiency of the selection process. However, load theory has several critical weaknesses
that suggest that it is time for a new perspective. Here we review the strengths and weaknesses of load theory
and offer an alternative biologically plausible computational account that is based on the neural theory of visual
attention. We argue that this new perspective provides a detailed computational account of how bottom-up and
top-down information is integrated to provide efficient attentional selection and allocation of perceptual processing
resources.
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Introduction

The day-to-day environment is extremely complex
and contains much more information than an indi-
vidual can process at once. Coherent and adaptive
behavior in this environment is therefore dependent
on a mechanism that affords the selective process-
ing of a subset of the information most pertinent for
current behavioral goals, while ignoring distracting
information that is largely irrelevant. This mecha-
nism is selective attention. And, while the need for a
robust selective attention mechanism has not been
debated—rather, it often is considered to be self-
evident1–9—the nature of the selection mechanism
has been. For the better part of 40 years (from the
late 1950s to the mid-1990s), one of the most promi-
nent debates in the literature on selective infor-
mation processing was focused on determining the
locus in the information processing stream at which

attention operated to select information to be acted
upon or to be stored in memorya.3,7,10–14

The year 2014 marks the 20th anniversary of a
significant turning point in the locus of selection de-
bate. This turning point, based on a theoretical per-
spective proposed by Lavie and Tsal,15 was focused
on identifying the conditions under which early (or
late) selection could occur, rather than determining
whether selective attention is either early or late. Ac-
cording to Lavie and Tsal,15 perceptual load was a

aThere were, and continue to be, other prominent debates
in the attention literature, including debates about the
units of selection (space, objects, or features), serial versus
parallel information processing models, spotlight versus
zoom-lens models, contrast gain or response gain models
of the effect of attention on neuronal responses, and the
number of attentional foci.
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key factor in determining whether or not selective
attention acted at an early stage of processing. This
theoretical perspective, which is often referred to
as load theory (LT; also perceptual load theory), was
supported empirically when Lavie16 demonstrated
that the amount of behavioral interference caused
by task-irrelevant information decreased when the
perceptual processing demands imposed by task-
relevant information were high.

The LT framework, which will be described in
more detail later in this review, has been influen-
tial for two important reasons. First, LT provided
a relatively straightforward descriptive framework
within which both early and late selection could
occur. This framework was grounded on the basic
premise that selectivity depends on task demands.
As a result, LT effectively rendered the locus of selec-
tion debate moot.15 Furthermore, the basic notion
that selection is not fixed at one stage or another—
sometimes referred to as flexible selection—has been
incorporated into a number of accounts of atten-
tional phenomena in the cognitive psychology and
cognitive neuroscience literatures.17–20 Second, and
perhaps more important, is that LT provides an ac-
count of the factors that determine the efficiency
of selective attention, particularly at early percep-
tual stages of information processing. This aspect
of LT has made it relevant for understanding the
basic mechanisms of attention, and it has implica-
tions for research on a variety of issues in a number
of areas, including distractibility, awareness, aging,
clinical disorders, individual differences in personal-
ity, spontaneous fluctuations in attention, and class-
room performanceb.22,24

bAnother way to estimate the impact of LT on the cog-
nitive psychology and cognitive neuroscience literature is
by citations. While there are certainly pitfalls with putting
too much emphasis on citation counts, they can pro-
vide a rough gauge of where LT fits within the context
of the literature. One recent analysis of citations from
1956–2004 using the Web of Science reported that both
Lavie and Lavie et al. are in the top 500 articles in the
cognitive psychology literature published between 1950
and 2004.21 We conducted a separate Web of Science ci-
tation analysis of the four core LT articles.15,16,22,23 Be-
tween 1994 and 2013 these articles have collectively been
cited 1825 times, equaling a combined annual citation
rate of 92.95 citations/year (total citations/20 years). The

Despite the simplicity of the LT framework—or
perhaps because of it—the explanation of percep-
tual selectivity it provides presents some significant
impediments for a complete understanding of se-
lective attention. Indeed, the results of a number of
recent studies have suggested that it is time for a
different perspective on the effects of task demands
on the perceptual selectivity of attention.25–31 The
purpose of this review is to evaluate several key LT as-
sumptions and to present an alternative perspective
on the mechanisms by which task demands affect
attention. Specifically, the remainder of this review
is divided into three sections.

In the first section, we provide a concise review of
the core assumptions of LT. The goal of the review is
not to be exhaustive—because others have done so
eloquently22,24,32—but rather to be targeted, high-
lighting LT in a historical context, the strengths and
weaknesses of LT, and recent challenges to several of
its core assumptions. Importantly, this review em-
phasizes the LT account of the perceptual selectivity
of attention. The allocation of perceptual processing
capacity is the core aspect of the original model and
it has remained unchanged in more recent versions
of LT that have been proposed to also explain the
effects of task demands at later stages of cognitive
control.23

In the second section, we propose an alterna-
tive framework that addresses the weaknesses of LT.
As an example, we describe a computational ap-
proach that fits within this framework; the approach
is based on the theory of visual attention (TVA)4 and
its neural implementation (NTVA).33

In the third section, we discuss the implications
that this framework has for understanding how the
selectivity of attention changes with task demands,
how this framework and the NTVA implementation
relates to other prominent accounts of attention,
caveats, and shortcomings of our alternative, and
novel predictions.

Perceptual selectivity and task demands

Historical context for LT
A natural component of scientific discourse is de-
bate. In the attention literature one would be

annual citation rates for these articles from the time of
publication are 17.1 (Ref. 15), 36.3 (Ref. 16), 41.4 (Ref. 23),
and 53.3 (Ref. 22) citations/year.
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hard-pressed to find a theoretical debate that lasted
as long as the locus of selection debate. Indeed, the
locus of selection debate effectively began at the
dawn of the cognitive revolution in the 1950s. Em-
pirically, this debate was rooted in the discrepancy
between Cherry’s11 evidence for filtering in the di-
chotic listening paradigm and Moray’s13 evidence
that subjectively important information (i.e., per-
sonal names) can break through the filter. Theo-
retically, this debate was rooted in the distinction
between Broadbent’s filter theory3 and Deutsch and
Deutsch’s late selection account.12 Forty years of
behavioral evidence from a variety of paradigms,
time and again, demonstrated that task-irrelevant
information could be effectively filtered out at early
perceptual stages of processing.11,13,34–41 This debate
was one of the first in the cognitive psychology liter-
ature in which in vivo human neural recordings were
used to provide some insight.42–44 However, like the
range of behavioral evidence, the neural evidence
also provided support to both sides of the debate.45

In the late 1980s and early 1990s a small number of
investigators argued for a change in perspective. For
instance, Allport,1,2,46 along with Kahneman and
Treisman,7 suggested that the debate between early
and late selection was misplaced. Instead, they pro-
posed that both early and late selection could oc-
cur. Consistent with this notion, a number of lines
of behavioral evidence suggested that the availabil-
ity of postperceptual information was influenced
by the extent that relevant and irrelevant items
are spatially or configurally distinguishable,47 the
perceptual complexity of the display,48,49 and the
extent to which attention is spatially focused.50,51

Moreover, multiple accounts offered plausible ex-
planations, suggesting that postperceptual process-
ing of unattended information could arise because
of information-processing leakage from perceptual
stages of processing to postperceptual stages, either
because of an early selection failure or because of
the lower processing demands of some types of
information.14,50 Lavie and Tsal15 used these pro-
posals as inspiration and provided a strong argu-
ment, along with a straightforward framework, ex-
plaining how both early and late selection could
occur. From this new perspective, Lavie and Tsal15

emphasized that the key issue was not determining
whether selection was only early or only late but
rather was identifying the conditions under which
early and late selection occurred.

According to Lavie and Tsal,15 a key factor in
determining selective stimulus processing was task
demands. The notion that task demands could in-
fluence selective processing of goal-relevant infor-
mation was not new. For instance, William James
proposed that increasing the demands on lessons
would reduce distraction (i.e., increase selectivity)
in the classroom;52 Treisman suggested that filter-
ing may only be needed if there was competition
across multiple input channels;14 Hillyard et al. sug-
gested that attention-related modulations of neural
activity may be modulated by the difficulty of the
task;42 and Yantis and Johnston suggested that the
perceptual load of a task influenced the spatial se-
lectivity of attention.50 Lavie and Tsal built on these
suggestions and developed a task difficulty–based
framework that provided an explanation of the con-
ditions under which selection occurred in early and
late stages.15

LT is a central component of the change in per-
spective on the locus of selection debate, offering
an avenue to reconciliation between the opposing
views. Perhaps even more important, LT also pro-
vided a framework for understanding the efficiency
of perceptual selectivity. From this perspective, LT is
perhaps even more important in the context of
the attention literature because it offers an ac-
count of the conditions under which task-irrelevant
information is processed at early stages of the
information-processing pathway and, as a con-
sequence, is brought to bear on several fun-
damental issues relating to attention, including
distractibility,53 clinical populations,54,55 aging,56

mind wandering,57 and awareness.58–60

The LT kernel of perceptual selectivity
The LT framework is well rooted in traditional cog-
nitive models of dual-task information processing,
demonstrating behavioral costs when attention is
divided among relevant stimuli.61–64 LT is an ex-
tension of many of these ideas to task-irrelevant
information processing. Based on these classic
frameworks, Lavie and Tsal15 assumed that the up-
per limit on the resources that could be allocated
was determined by the current availability of re-
sources or the internal demand, which ever was less.
LT included three other assumptions. First, an ad-
ditional constraint was placed on the allocation of
attentional resources such that perceptual process-
ing resources are allocated exhaustively. Second, the
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exhaustive allocation of resources is automatic and
thus proceeds until no processing capacity is avail-
able. A key aspect of this automaticity assumption
is that task demands are inherently driven by the
bottom-up perceptual characteristics of the display
or by external constraints of the task. This aspect
of the perceptual processing scheme is captured by
Lavie:16 “Whether selective processing will occur is
at the mercy of the perceptual load imposed by ex-
ternal events.” (p. 466). Third, to the extent that
there is some physical distinctiveness between the
task-relevant and task-irrelevant information (e.g.,
spatial location, color), the allocation of perceptual
processing capacity first occurs to task-relevant in-
formation and then, if capacity remains, it “spills
over” to task-irrelevant information. In other words,
the allocation of perceptual resources occurs in two
steps, first to relevant information and then to irrel-
evant information.

With these assumptions in place, LT could ac-
count for what appeared to be patterns of behav-
ioral performance that supported both early and
late selection. Easy tasks, in which the target dis-
crimination does not require all available resources,
were more likely to provide patterns of behavioral
performance consistent with late selection because
the excess resources would spill over to facilitate the
perception of task-irrelevant information. Difficult
tasks in which the target discrimination requires all
(or most) of the available resources are more likely to
provide patterns of behavioral performance consis-
tent with early selection, because no excess resources
spill over, effectively filtering out task-irrelevant
information.

Empirical support
Behavioral performance. The bulk of the behav-
ioral evidence that has been used to support the basic
tenets of LT comes from a task that is a hybrid be-
tween a visual search task65 and a flanker task.66 For
example, Lavie (Ref. 16, Exp. 1) asked participants to
make a speeded discrimination about whether a tar-
get presented on the horizontal meridian of a search
display was x or z. The target was either presented
alone (i.e., search set size 1) or with five other letters
(set size 6). Examples of the high- and low-load dis-
plays are illustrated in Figure 1A. The assumption in
this experiment was that the increase in the number
of items increased the perceptual load of the task.

In addition to the task-relevant search items (target
plus distractors), one additional item was presented
in the upper or lower visual field. The participants
were instructed that a target would never appear off
of the meridian and, as such, the additional letters
were completely task irrelevant. Importantly, like
in the classic flanker task, the identity of this task-
irrelevant letter was the same as the target, was the
alternative, or was neutral. Selectivity in this task
was measured by the amount of interference caused
by the irrelevant flanker. The key finding, shown
in Figure 1B, was that the amount of interference
caused by the task-irrelevant flanker was signifi-
cantly smaller under high load relative to low load.
Subsequent behavioral evidence has come from sim-
ilar tasks that control the number of items and the
eccentricity of the stimuli and that manipulate load
by manipulating the visual similarity between the
targets and distractors in the search display.67 Again,
even with the changes in the search display, when the
search task is more difficult (high target–distractor
similarity), the amount of interference caused by the
task-irrelevant flanker is reduced.

Neural evidence. In addition to the LT predic-
tions that behavioral interference caused by task-
irrelevant information should be reduced under
high load, LT also makes the prediction that neu-
ral responses evoked by task-irrelevant information
should be reduced by high load. Several lines of
evidence from the cognitive neuroscience literature
are often cited as supporting this prediction. For
example, in an fMRI study, Rees et al.68 asked par-
ticipants to make judgments either about the case
of a word presented at fixation (low load) or about
the number of syllables in the word (high load). In
addition to the word on the screen, task-irrelevant
motion fields were also presented. The key result,
shown in Figure 2A, was that blood oxygen level–
dependent (BOLD) responses in motion-sensitive
area MT evoked by the task-irrelevant stimulus were
reduced under conditions of high load. Similarly,
other work has shown that the magnitude of the
visual P1 event-related potential (ERP) evoked by a
peripheral task-irrelevant stimulus is reduced when
a foveal letter-discrimination task was made difficult
by noise (Fig. 2C).69 Analogous reductions in BOLD
responses in retinotopically organized visual areas
that represent task-irrelevant locations, in areas that
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Figure 1. Sample displays and key behavioral results from Lavie.16 (A) Two sample displays used in the experiment. The task-
relevant search display was presented on the horizontal meridian and consisted of lowercase letters. The target was either an “x” or
a “z.” Task-irrelevant flankers were presented above or below fixation and were uppercase letters that were congruent, incongruent,
or neutral with respect to the target (X, Z, P). The example on the left shows a low-load display in which the target is “x” and the
flanker is neutral (“P”). The example on the right shows a high-load display in which the target is “z” and the flanker is incongruent
(“X”). Displays were constructed based on the information provided in the Experiment 1 Methods section.16 (B) Sample results.
Left panel shows the response time (and standard error of the mean) to indicate whether the task-relevant target was an x or z as
a function of load and flanker congruency. Right panel shows the distractor interference effect that served as the basis for the key
conclusions in Lavie,16 computed as the difference between the incongruent and neutral conditions (i.e., incongruent–neutral).
Only the effect in the low-load condition was significant. The response times and interference effect data were taken from Table 1
of Ref. 16.

represent objects (e.g., faces), and in areas outside
of the visual cortex (e.g., the amygdala) have been
observed when performing high-load tasks.70–73

Evidence for reduced neural responses evoked
by task-irrelevant information under high load is
not restricted to the human brain. For instance,
responses evoked by unlikely targets measured in
macaque V4 neurons can be suppressed under high
task difficulty, compared with low task difficulty.73

Similarly, when attention is directed outside the
receptive field (RF) of macaque V1 neurons, the
response evoked by the neuron’s preferred stim-
ulus is lower when the task demands are high,
compared with when the task demands are low
(Fig. 2C).74

A critical reexamination of perceptual
selectivity in LT
Given that the LT framework is simple, has empir-
ical support from a number of sources, provides
a reconciliation of a longstanding debate, and has
been generalized beyond the confines of the tradi-
tional research on selective attention, one may ask,
Why take a second look? We argue here that there
is a wealth of evidence in the literature that raises
significant questions about each of LT’s cornerstone
assumptions, and thus LT’s explanation of percep-
tual selectivity.25–31 Here, we focus on three specific
issues: the definition of perceptual load, the auto-
maticity of the allocation scheme, and the two-step
allocation process.
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Figure 2. Examples of neural evidence that is consistent with LT. (A) Results showing reduced BOLD signal evoked by task-
irrelevant motion in area MT under high-load conditions. Adapted from Rees et al.68 and reprinted with permission from AAAS
(arrows, labels, and scale added). (B) Visual event-related potentials (ERP) evoked by task-irrelevant stimuli under conditions of
low and high load. The mean amplitude of the P1 ERP component is reduced under high load. Adapted from Handy et al.69 with
permission. (C) The response of a single macaque V1 cell showing a larger response to a task-irrelevant stimulus when attention is
directed outside the receptive field and the task is easy (blue lines and bars) compared to when the task is hard. Adapted from Chen
et al.74 with permission from Macmillan Publishers Ltd.

76 Ann. N.Y. Acad. Sci. 1316 (2014) 71–86 C© 2014 New York Academy of Sciences.



Giesbrecht et al. Selective attention under load

Definition of perceptual load. Despite the cen-
trality of the concept of load to LT, the definition is
vague. Load was originally explained as follows:

Obviously, the concept of perceptual load is
difficult to operationalize. It necessarily in-
cludes two components that are not easily de-
fined – the number of units in the display and
the nature of processing required for each unit.
In the present discussion we consider units as
those items appearing in the display with dif-
ferent identities . . . Note that by the term unit
we do not refer to the basic perceptual units,
but rather to items that serve as different al-
ternatives for the relevant response in the task.
Consequently, a string of letters, for example,
can serve as one unit (word) or as several units
(letters). The number of units, so defined, pro-
vides the level of perceptual load. . . . However,
perceptual load also correlates to the amount
of information required to process each unit
in order to produce the required response.15

(p. 185)

Perhaps even more unfortunate, more recent ver-
sions of the model have not provided a more precise
definition:

Increased perceptual load means that either the
number of different-identity items that need to
be perceived is increased, or that for the same
number of items perceptual identification is
more demanding on attention . . . .
Reduced distractor interference under condi-
tions of high perceptual load is not simply the
result of the general increase in task difficulty
with load and the associated slowing of per-
formance. Manipulations of extreme sensory
degradation (e.g., reducing the target size or
contrast so much that it is barely seen) that
cannot be compensated for by applying more
attention – in other words subjecting target
identification to sensory ‘data limits’ rather
than attention ‘resource limits’ – increase the
general task difficulty . . . but do not reduce dis-
tractor interference.22 (p. 75)

The lack of a precise definition of perceptual
load is, not surprisingly, problematic. A vague def-
inition makes the theory hard to test and intro-
duces the potential for circular reasoning about the

nature of load and its resulting effects. We are not
the first to raise this issue.32 A vague definition of
load also makes it much more difficult to com-
pletely understand the fundamental mechanisms of
perceptual resource allocation, because it is unclear
which aspects of information processing are being
affected. At best, the vague definition has resulted
in inconsistent labeling of load as “perceptual load”
or “attentional load.”68,69,72,75 At worst, the vague
definition has resulted in some empirical findings
being marshaled in support of LT when they are
expressly inconsistent with the assumptions of the
theory. For example, several fMRI and ERP studies
have provided strong evidence that increased task
difficulty causes reduced neural responses to task-
irrelevant information.68,69,71 On the surface, the
notion that increasing task demands reduces neural
responses to task-irrelevant information is exactly
what LT would predict, and these results have been
cited as evidence in favor of LT.22,24 However, in sev-
eral of these instances, the manipulation of difficulty
does not align well with the perceptual constraints
outlined in LT. For instance, the load manipulation
used by Rees et al. was, in their own words, a lin-
guistic manipulation (letter case (low load) versus
number of syllables (high load)). In other cases,
the manipulation of load was achieved with noise
masking (lines or dots).69,71 Noise masking is gen-
erally considered to be a sensory or data-limited
manipulation,76 which, according to LT, should not
increase perceptual selectivity.22,77

Automaticity of allocation. LT rests on the as-
sumption that the allocation of resources is deter-
mined exhaustively and automatically by the inher-
ent bottom-up processing demands imposed by the
task-relevant information. However, several stud-
ies have provided evidence suggesting that reduced
distraction is not determined by increased percep-
tual load alone. For example, spatial cues predictive
of the target location can reduce interference typ-
ically observed under low load,27 and expectancies
created by intertrial repetitions of low- and high-
demand displays can also modulate the magnitude
of behavioral distraction.28 Top-down expectancies
about task-irrelevant information also challenge
the automaticity assumption. For example, during
visual search, if observers are provided a cue about
the likelihood of distractors at specific locations,
retinotopic regions of visual cortex that represent
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the distractor locations exhibit suppressed BOLD
responses time locked to the cue and in the absence
of the distractor.78 Moreover, even the single unit ev-
idence from monkey neurophysiology that has been
used to support LT also suggests that top-down ex-
pectations play a key role in perceptual selectivity
as a function of load. Specifically, in the Boudreau
et al. study described earlier (see section Neural ev-
idence), three monkeys were tested and the only
one to exhibit suppressed V4 responses to unlikely
targets was the monkey that had previous experi-
ence with distractor rejection tasks (>100,000 tri-
als). This result suggests that top-down strategies are
critically important in mediating perceptual selec-
tivity. Together, these studies suggest that perceptual
load may not be the only determinant in modulating
distraction, but that voluntary control may dynam-
ically interact with load to modulate the efficiency
of selective attention.

Two-step allocation scheme. While LT critiques
typically focus on either the definition of load
or the automaticity components of the model,27,32

little attention has been paid to another problem-
atic assumption: the two-step resource allocation
scheme. Under conditions when the distinction be-
tween task-relevant and task-irrelevant information
is clear (e.g., differing spatial locations or colors),
perceptual processing capacity is first allocated to
task-relevant information, and then any remaining
capacity should spill over to the task-irrelevant in-
formation. This two-step allocation scheme makes
the strong prediction that there should be no effect
of the type, number, or presence of task-irrelevant
objects on performance. In contrast, the presence of
the distractor can influence performance. For exam-
ple, we recently conducted a behavioral and com-
putational modeling study using stimuli that closely
matched those used in previous LT papers.31 These
results, which will be discussed in detail later, re-
vealed that there are clear effects of distractor num-
ber, type, and presence (see also Ref. 79). Thus, as
with the other key aspects of LT, the two-stage al-
location scheme is not a viable explanation of how
perceptual selectivity changes with task demands.

An alternative

General framework
TVA4 appears to have been the first theory of at-
tention based on the principle that Desimone and

Duncan9 referred to as biased competition (BC)
in a later, highly influential article.80–82 In TVA, all
possible visual categorizations ascribing features to
objects “compete” (race) to become encoded into
visual short-term memory (VSTM) before it is filled
up. Each possible categorization is supported by
the sensory evidence that the categorization is true.
However, the competition is biased by attentional
weights and perceptual biases, so that particular ob-
jects and categorizations have higher probabilities
of being encoded into VSTM. The way in which
sensory evidence and attentional biases interact is
specified in two basic equations: the rate and weight
equations of TVA. Hence TVA may be regarded as a
mathematical formalization of the BC principle.

Several recent computational models of visual at-
tention may be viewed as special instantiations of the
general BC framework. This includes the normaliza-
tion model of attention by Reynolds and Heeger83

as well as the NTVA.33,84 Perhaps even more impor-
tant within the present context, BC has recently been
proposed as a potential basis for a new, more bio-
logically precise definition of perceptual load.85,86

In the following, we will describe NTVA in detail,
how it may explain attentional allocation of visual
processing resources, and the nature of visual pro-
cessing capacity in general.

A neural theory of visual attention
NTVA was proposed as a neurophysiological inter-
pretation of TVA.33,84 NTVA is a combined theory of
recognition and selection that instantiates the two
processes in a unified mechanism implemented as a
race of categorizations having the form “object x has
feature i.” The unification of selection and recogni-
tion tries to resolve the long-standing debate of early
versus late selection. The rate of processing v(x,i) of
a categorization “object x has feature i” in the race
is given by two equations.

The first is the rate equation:

v(x, i) = �(x, i)�i
wx∑

j∈S
w j

, (1)

where �(x,i) is the strength of the sensory evidence
that element x belongs to category i, �i is the percep-
tual bias associated with i, S is the set of elements
in the visual field, and wx and wz are attentional
weights for elements x and z. Thus the rate of pro-
cessing is determined by the strength of the sensory
evidence that object x is of category i, weighted by
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the bias toward making categorizations of type i, and
by the relative attentional weight of object x (given
by the ratio of wx over the sum of the attentional
weights of all objects in the visual field). Second, the
attentional weights are in turn given by the weight
equation:

wx =
∑

j∈R

�(x, j )�j , (2)

where R is the set of perceptual categories, �(x,j) is
the strength of the sensory evidence that element
x belongs to category j, and �j is the pertinence
(priority) value associated with category j. The dis-
tribution of pertinence values defines the selec-
tion criteria at any given point in time (filtering).
By Eq. (2), the attentional weight of object x is
a weighted sum of pertinence values, where each
pertinence value �j is weighted by the degree of
evidence that object x is actually a member of cate-
gory j (see also Ref. 87).

The first wave of unselective processing
In NTVA, a typical neuron in the visual system is
assumed to be a specialized representation of a sin-
gle feature that responds to the properties of only
one object at any given time. Thus, a neuron can
represent different objects at different times, but—
learning and development aside—it always repre-
sents the same feature i.

Visual processing starts with a massive parallel
comparison (matching) between objects in the vi-
sual field and visual representations in long-term
memory. Visual neurons are distributed at random
among the objects in the visual field and the process
has unlimited capacity and results in the computa-
tion of sensory evidence values, �(x,i), each mea-
suring the degree of a match between a given object
x in the RF of the neuron and a long-term memory
representation (category) i.

At the end of the first wave, an attentional weight
is computed for each object in the visual field. The
weights are found as levels of activation in a prior-
ity map, which may be located in the pulvinar of
the thalamus (for a summary of the supporting evi-
dence see Bundesen et al.,33 p. 300). The weights are
used for redistribution of cortical processing capac-
ity across the objects in the visual field by dynamic
remapping of RFs, so that the expected number of
cells allocated to a particular object becomes pro-
portional to the attentional weight of the object.

The second wave of selective processing
Different categorizations “object x has feature i” of
the objects in the visual field compete for entrance
into VSTM in a stochastic race process. The capacity
of VSTM is limited to K elements, typically around
four. Categorizations of the first K visual objects
to finish processing are stored in VSTM (the first
K winners of the race). Categorizations from other
elements are lost.

The object selection of the neuron occurs by dy-
namic remapping of the cell’s RF so that the func-
tional RF contracts around the selected object.88–91

The remapping is done in such a way that the prob-
ability that the neuron represents a particular object
equals the attentional weight of the object divided
by the sum of the attentional weights of all objects in
the classical RF. Thus, for neurons with RF that only
covers a subset of the stimuli in the visual field, the
set S in the rate equation reduces to only the objects
within the classical RF of the neuron (see Eq. (1)).

Though the total activation representing the
categorization depends on the number of neurons
representing the categorization, it also depends on
the level of activation of the individual neurons
representing the categorization. The bias parameter
�i is a scale factor that multiplies activations
of all individual feature-i neurons, so the total
activation representing the categorization “object x
has feature i” is also directly proportional to �i.92,93

By scaling up or down the general processing rate
in a population of neurons specifically responsive
to certain visual features, the general processing
rate of the features for all objects in the visual field
will be scaled up or down.

Thus, in the neural interpretation of the rate
equation (see Eq. (1)), the total activation repre-
senting the categorization “object x has feature i” is
directly proportional to both the number of neu-
rons representing the categorization, and the level
of activation of the individual neurons represent-
ing the categorization. The number of neurons is
controlled by wx/�wz (filtering), whereas the acti-
vation of the individual neurons is controlled by �i

(pigeonholing).10

Processing capacity in NTVA
NTVA assumes that the total activation represent-
ing the categorization “object x has feature i” is
directly proportional to both the number of neu-
rons representing the categorization and the level of
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activation of the individual neurons representing
the categorization. The definition of the total pro-
cessing capacity in NTVA naturally follows as the
total activation representing all categorizations of
all objects in the visual field:

C =
∑

x∈S

∑

i∈R

v(x, i), (3)

where S is the set of all visual stimuli and R is the
set of all visual categories/features. Referring back
to the rate equation (see Eq. (1)), the processing
capacity depends on both sensory evidence and
perceptual bias. Vangkilde et al.94 explored how tem-
poral expectancy may modulate processing capacity
in a single-stimulus identification experiment. They
found strong evidence for an increased processing
rate with higher expectancy of the stimulus and sug-
gested that an increase in perceptual bias was the
most plausible explanation for their results.

Because RF varies between populations of visual
neurons at different levels of the visual system, it
also becomes essential to relate processing capacity
to variation in RF size. In low-level visual areas such
as V1 or V2, RFs are small, and so only a single or
at most two objects will be present within the RF
of the cells. Competition for representation within
the cell will thus be minimally effective, leading to
unlimited processing capacity. To see this, compare
the situation when one, two, three, or four objects
are presented each in a separate quadrant of the
visual field at an eccentricity of about 10 visual de-
grees. In this case, all cells in V1 will have at most
one object within their RF due to the large spatial
separation compared to the size of the RFs. In ac-
cordance with NTVA, let the processing capacity at
this level of the visual system be defined as the total
activity in the population of V1 cells. Looking at the
V1 processing capacity, as the number of presented
stimuli increases from one to four, it is straight-
forward to see that the activity will increase linearly
with the number of stimuli, so that the processing
capacity when two stimuli are presented is twice
as large as when only a single object is presented,
and half of the processing capacity, compared to the
situation when four stimuli are presented, that is,
with unlimited processing capacity. Now, consider
the processing capacity at the level of the inferior
temporal (IT) cortex: here many cells will have all
four stimuli within their RF, leading to strong com-
petition for representation between the objects. At

this level in the visual system the processing capac-
ity will only increase minimally when several stimuli
are presented, compared to the condition with only
a single stimulus within the visual field, that is, lim-
ited processing capacity. Finally, consider process-
ing at the level of V4: some neurons will have only
one stimulus in their RF, but several cells will have
two and even three stimuli within their RF. Thus,
competition will vary across the population of cells
in V4 and, consequently, visual processing capacity
will neither be unlimited as at the level of V1 nor
strongly limited as in IT.

Kyllingsbæk et al.95 found support for the rela-
tionship between processing capacity and RF size by
manipulating the spatial separation between several
stimulus letters in a whole report, while keeping the
eccentricity of the stimuli constant. The proportion
of correctly identified letters was a strictly increas-
ing decelerating function of the spatial separation of
the stimuli, indicating increased processing capacity
when the spatial separation between the stimuli was
increased. To explain the results, a computational
model of visual crowding was developed based on
the assumption in NTVA of dynamic remapping
of RFs of neurons in the visual cortex. Using the
model, Kyllingsbæk et al.95 estimated the size of the
RFs involved in the processing of the letter stimuli.
The estimated radius of the RFs was 29° of visual
angle, which corresponded well with neurophysio-
logical findings by recordings in the inferotemporal
cortical visual area of macaque monkeys.96,97

Is processing capacity allocated in one or
two stages?
Though LT and NTVA are common in their focus
on limits in overall processing capacity, the two the-
ories differ strongly in how processing capacity is
allocated. According to LT, allocation of perceptual
processing resources happens in two stages. To un-
derstand the distinction between the two stages, it
is important to understand the distinction made by
LT between task-relevant and task-irrelevant objects,
both defined in terms of location. Task-relevant ob-
jects are located at positions in the visual field that
may contain a target (e.g., the positions may oth-
erwise contain a distractor or be empty). In con-
trast, task-irrelevant items are presented at positions
in the visual field where a target will never appear
during the task. In the first stage, LT assumes that
processing resources are exclusively allocated to
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stimuli at task-relevant locations. Only in the second
stage, spare processing resources left over from the
first stage may spill over to task-irrelevant objects,
which will then also be processed.

In contrast to LT, NTVA assumes that allocation
of processing resources happens in a single step:
once attentional weights have been computed, all
available processing resources are distributed across
the objects in the visual field in direct proportion to
the attentional weights of the objects (see Eq. (1)).
Thus, in contrast to LT, processing resources to dis-
tractors at task-irrelevant positions are allocated at
the same time as processing resources to targets and
distractors at task-relevant positions.

In two partial-report experiments, Kyllingsbæk
et al.31 tested the predictions of LT and NTVA against
each other. In the first experiment, four target let-
ters were presented at four out of six possible task-
relevant locations. In the periphery, zero, one, or
two neutral distracting flankers were shown at two
task-irrelevant locations. The flankers were neutral
in the sense that they had no relation to the targets in
terms of response selection. The color of the flank-
ing distractors was either the same (blue) as the
targets or different (red). The exposure duration
of the stimulus display was manipulated systemat-
ically and terminated by pattern masks. The task
of the participants was to report correctly on as
many of the four target letters as possible. If alloca-
tion of processing resources happens in two stages,
as conjectured by LT, allocation to the four targets
should happen in the first stage and be independent
of both the number of flanking stimuli and their
color. However, strong effects of both manipula-
tions were found. The number of correctly reported
targets decreased with the number of flanking stim-
uli and increased when the flankers were colored
in a different color than the targets, thus enabling
the participants to ignore them more efficiently. All
these effects were modeled very well when fitting
the data with NTVA, thus favoring the simpler as-
sumption of a single stage of allocation of processing
resources.

In the second experiment, the perceptual load was
manipulated by varying the number of targets to be
reported between two and eight letters. The flankers
were shown in the same color as the targets (blue)
and the number of flankers again varied between one
and two. Again, NTVA fitted the data well, assuming
a single allocation stage.

In addition, Kyllingsbæk et al.31 explored the in-
teraction between VSTM capacity and the percep-
tual load (the number of targets) of the task. They
found that the effect of the number of flankers was
strongest when the perceptual load was close to the
estimated capacity of VSTM and weaker for per-
ceptual loads below and above VSTM capacity. This
prediction follows naturally from NTVA: when the
perceptual load is close to VSTM capacity, relatively
high attentional weights, and thus processing ca-
pacity, are assigned to flankers. In addition, when
the limit of VSTM is reached, a flanker entering
VSTM before it is filled up will prevent a subsequent
target from entering. These two combined effects
lead to a stronger decrement in overall performance
compared to when the perceptual load is below the
capacity of VSTM.

Implications

Couching the alternative account of perceptual se-
lectivity within the general BC framework and
more specifically on NTVA has several important
implications.

First, we argue that the approach gives a more
parsimonious explanation of the nature of alloca-
tion of visual processing capacity than LT and one
that addresses LT’s weaknesses. For instance, NTVA
makes no arbitrary dichotomized definition of task-
relevant versus task-irrelevant stimuli and describes
how allocation of attention happens in a single step.
This account provides a nice fit with published em-
pirical findings,31 whereas LT does not. Addition-
ally, whereas the link between task difficulty and
resources that is central to two-stage models like LT
has been criticized,98,99 NTVA offers a more clear ex-
planation. Indeed, the specificity of our approach,
especially Eq. (1), makes it much clearer what con-
stitutes a manipulation of perceptual load: factors
that serve to change the rate of processing, v, change
load. Finally, whereas LT has difficulty accounting
for evidence showing that top-down expectations
about the search task (e.g., target location and load)
modulate the perceptual selectivity of attention, our
approach does not because top-down expectations
are explicitly captured within the NTVA framework
by both Eqs. (1) and (2).33

Second, the NTVA framework can be used to test
novel predictions and competing models. For in-
stance, an implicit assumption in LT follows from
the sharp distinction between task-relevant and
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Figure 3. Results from Experiments 1 and 2 in Kyllingsbæk et al.31 (A) The mean scores as a function of exposure duration and
the number and color of the task-irrelevant flankers in Experiment 1. Symbols indicate observed values and lines indicate predicted
values derived from TVA. Black filled circles and black solid lines represent trials without any flankers present. Blue symbols and
lines represent trials where the task-irrelevant flankers were presented in the same color as the targets. Red symbols and lines
represent trials where the flankers were presented in a different color from the targets. Filled squares and dashed lines represent
trials with only one flanker. Filled triangles and dotted lines represent trials with two flankers present. The error bar in the lower
right corner of each plot indicates the average standard error of the observed mean scores across participants. (B) The mean score
as a function of exposure duration in Experiment 2. Solid black circles represent observed values and solid lines represent predicted
values of NTVA. (C) The mean score as a function of the number of targets to be reported in Experiment 2. Black circles represent
trials with no flankers presented, blue squares represent trials with a single flanker present, and red diamonds represent trials with
two flankers in the display. Solid lines represent predicted values derived from NTVA. The error bars in the lower right corners of
the plots representing all participants indicate the average standard error of the observed mean scores across participants. Adapted
from Ref. 31 with permission.

task-irrelevant display locations. This implies that
the processing of information about the locations
of the stimuli is accurate and computed rapidly be-
fore the two-stage allocation of processing resources
takes place. NTVA makes no such assumption. Im-
portantly, these competing views could be tested by
creating two alternative models in NTVA, one based
on LT in which location information is available im-
mediately and one in which location information is
processed in parallel with the processing of stimulus
identity.

Third, the NTVA framework provides a different
perspective on recent LT alternatives. Specifically,
in the recent literature, LT has been criticized on
the grounds that in experiments that manipulate
load by manipulating set size, the reduction in task-
irrelevant flanker interference observed for larger set
sizes (i.e., high load) is not due to increased percep-
tual load but rather to the processing of the features
of the other distractors in the search display.25,26,29,32

This so-called dilution theory has been supported
by a series of behavioral experiments showing
that when the number of items are appropriately
controlled for in low-load displays, one can still
observe reduced distractor interference. However,
dilution theory has difficulty explaining reduced
interference when display set size is controlled,31,67

as well as difficulty explaining the nonlinear effect of
set size we observed in our previous work (Fig. 3).31

Moreover, dilution theory also has difficulty ac-
counting for reduced neural responses evoked by
task-irrelevant information in high-load single el-
ement displays.72 It is important to point out that
LT can account for these findings, and thus it could
be correct for those situations in which load is not
manipulated by set size. However, adopting this
premise severely limits the explanatory power of
LT, and the limitations are compounded when con-
sidering the other shortcomings of the model. In
contrast, the NTVA framework provides an overar-
ching account of both the effect of dilution when
the number of items in the display varies and the
reduced distractor interference when the number of
items does not.

Fourth, one of the core principles of the NTVA
framework is the notion that items compete (race)
for representation in VSTM. We argue that this prin-
ciple plays a key role in determining how the selec-
tivity of attention changes with task demands; and
the evidence from our computational work sup-
ports this argument.31 Others have also reported
behavioral evidence consistent with the compe-
tition principle by showing that the amount of
flanker interference is reduced when targets and

82 Ann. N.Y. Acad. Sci. 1316 (2014) 71–86 C© 2014 New York Academy of Sciences.



Giesbrecht et al. Selective attention under load

distractors are presented within a single visual hemi-
field, a condition in which multiple items are likely
to be processed by a single cortical representation.86

This finding, along with convergent neuroimaging
evidence,100 has led to the proposal that the effects
of perceptual load and dilution are mediated by the
BC principle.85,86 Importantly, this proposal is also
consistent with the NTVA framework.

Finally, because NTVA is a computational frame-
work that is based on the underlying physiolog-
ical properties of the visual system, our account
of the perceptual selectivity of attention can both
be brought to bear on, and be constrained by, ev-
idence from cognitive psychology, cognitive neu-
roscience, neuropsychology, and neurophysiology.
Importantly, NTVA can be viewed as a part of a
larger class of models of attention that also in-
cludes the BC model,9 the normalization model
of attention,83 the selective tuning model,101 the
visual attention model,102 and the ambiguity res-
olution model.103 Thus, future work will need to do
detailed comparisons with these other theories to
determine which offers the most accurate account
of the perceptual selectivity of attention under load.

Conclusion

Understanding the nature of the perceptual selec-
tivity of human attention is a core issue in cognitive
neuroscience. The importance of the change in per-
spective that LT solidified in the literature cannot
be underestimated: putting emphasis on identifying
the conditions determining (early or late) selection
of perceptual information pulled a good portion
of the field out of the rut created by the locus of
selection debate. The fact that LT also provided an
account of the efficiency of perceptual selectivity was
also an important contribution. However, based on
the recent literature and a close examination of LT,
we argue it is time for a new perspective. We have
offered one potential new perspective that is rooted
in both cognitive psychology and neuroscience and
provides a detailed computational account of how
bottom-up and top-down information is integrated
to provide efficient attentional selection and alloca-
tion of perceptual processing resources.
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