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We investigated perceptual segmentation in the context of a perceived-orientation task. Stimuli were dot clusters formed by
the union of a large elliptical sub-cluster and a secondary circular sub-cluster. We manipulated the separation between the
two sub-clusters, their common dot density, and the size of the secondary sub-cluster. As the separation between
sub-clusters increased, the orientation perceived by observers shifted gradually from the global principal axis of the entire
cluster to that of the main sub-cluster alone. Thus, with increasing separation, the dots within the secondary sub-cluster
were assigned systematically lower weights in the principal-axis computation. In addition, this shift occurred at smaller
separations for higher dot densitiesVconsistent with the idea that reliable segmentation is possible with smaller separations
when the dot density is high. We propose that the visual system employs a robust statistical estimator in this task and that
data points are weighted differentially based on the likelihood that they arose from a separate generative process. However,
unlike in standard robust estimation, weights based on residuals are insufficient to characterize human segmentation.
Rather, these must be computed based on more comprehensive generative models of dot clusters.
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Introduction

The estimation of any visual property (e.g., position,
orientation, motion) requires that information be pooled
over an extended image region. Such pooling is only
useful, however, if the selected region is appropriate to the
estimation task. In estimating the motion of an object, for
instance, pooling is necessary because of the inherent
ambiguity of local motion signals (the aperture problem).
However, such pooling can also yield highly biased
estimates if motion signals from two different objects are
mixedVe.g., if along with the moving object of interest,
the pooling also includes motion signals from a stationary
background or a nearby object moving in the opposite
direction (e.g., McDermott & Adelson, 2004; McDermott,
Weiss, & Adelson, 2001). Similarly, object localization
(e.g., for guiding saccades) requires that the visual infor-
mation for one object be segregated from visual informa-
tion corresponding to other objects before an estimate of
location is computed (Cohen, Schnitzer, Gersch, Singh, &
Kowler, 2007; Denisova, Singh, & Kowler, 2006;
Melcher & Kowler, 1999; Vishwanathan, Kowler, &

Feldman, 2000). Thus, the estimation of any visual
property presupposes perceptual segmentation, the divi-
sion into “perceptual groups.”
Perceptual segmentation includes a variety of phenom-

ena, including figure-ground segmentation (Driver &
Baylis, 1996; Koffka, 1935; Peterson & Gibson, 1994;
Rubin, 1915/1958), segmentation of dot arrays into
perceptual groups (Kubovy & Wagemans, 1995; Rock &
Brosgole, 1964; Wertheimer, 1923), segmenting objects
into component parts (Biederman, 1987; De Winter &
Wagemans, 2006; Hoffman & Richards, 1984; Marr &
Nishihara, 1978; Singh & Hoffman, 2001), etc. Here we
focus on the segmentation of dot clusters into potentially
two sub-clusters. Perceptual segmentation is often treated
as a binary process, i.e., a region or set of dots is either
segmented or notVit is either one “perceptual unit” or
two. However, we suggest it may be more fruitful to think
of segmentation as graded. It is plausible that the visual
system represents degrees of “belief” concerning percep-
tual segmentation in any given instance, depending on the
strength of evidence from multiple sources. Such a
proposal is consistent with recent work on contour
integration and interpolation, which models the grouping
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of image elements into the representation of a single
extended contour as a probabilistic process (Elder &
Goldberg, 2002; Feldman, 1997, 2001; Geisler, Perry,
Super, & Gallogly, 2001; Hon, Maloney, & Landy, 1997;
Singh & Fulvio, 2005; Warren, Maloney, & Landy, 2002,
2004).
In the current study, we examine the influence of

perceptual segmentation on the visual estimation of a
global property when there is uncertainty concerning
perceptual segmentation. We use the context of perceived
orientation of dot clusters, comprising a large “main” sub-
cluster and a smaller “secondary” sub-cluster that could
either be perceived as separate or as part of the main
cluster (see Figure 1a).
We examine the visual estimation of global orientation

as a means of measuring probabilistic segmentation: The
stronger the evidence that the secondary sub-cluster is a
separate perceptual unit, the weaker should be that sub-
cluster’s influence on the perceptual estimate of global
orientation.

Perceived orientation of dot clusters and
shapes

Previous work has shown that the perceived orientation
of a dot cluster is well predicted by its first principal axis.
This is the line that minimizes the sum of squared
distances to the dots, where the distances are measured
perpendicular to the candidate line1 (Lánsk], Yakimoff, &
Radil, 1987; Lánsk], Yakimoff, Radil, & Mitrani, 1989;
Yakimoff, 1981; Yodogawa, 1985). The visual system’s
reliance on the principal axis has been demonstrated for
dot clusters sampled from different distributionsVinclu-
ding a uniform distribution on rectangular regions
(Yakimoff, 1981) and bivariate Gaussian distributions
(Lánsk] et al., 1987, 1989). There are also, however,
secondary influences, such as a small bias toward the
cardinal and the T45- directions (Lánsk] et al., 1989).
Not surprisingly, the precision of observers’ orientation

estimates decreases with increasing spread of the dots
(i.e., decrease in correlation). However, Lánsk] et al.
(1987) found that observers’ performance in estimating
orientation remained above chance even for correlations
as low as 10%.
Previous work on the perceived orientation of 2D

shapes is also consistent with a principal-axis computa-
tion, even though the results are not always articulated in
these terms. Li and Westheimer (1997) speak of the
“implicit orientation” of shapes; for instance, a shape such
as an X is perceived as being vertical even though all of
its edges are oblique. They showed that the implicit
orientation of shapes exhibits many of the same character-
istics as the explicit orientation of a line segment (notably,
the oblique effect; see also Liu, Dijkstra, & Oomes, 2002).
They thus reasoned that the computation of global shape
orientation may be based on mechanisms closely related
to those involved in the computation of line orientation.
For our current purposes, it is noteworthy that, in their
examples (e.g., an X or an ellipse), the implicit orientation
corresponds precisely to the orientation of the principal
axis.
Burbeck and Zauberman (1997) studied perceived

orientation on rectangular stimuli whose longer sides were
modulated sinusoidally with waves of varying frequency
and relative phase. Based on their results, Burbeck and
Zauberman argued against a model based on averaging the
edge orientations of the shape’s bounding contour. They
proposed instead that a shape’s perceived orientation is
mediated by its skeletal description, as given by the
medial-axis transform2 (Blum, 1973). Although the
medial axis may indeed play a role, it is again noteworthy
that Burbeck and Zauberman’s results are also consistent
with a principal-axis computationVa possibility they did
not consider (see Cohen & Singh, 2006).
Oomes and Dijkstra (2002) investigated the perceived

orientation of ellipsoids and other symmetric three-
dimensional shapes. Contrary to results with 2D shapes,
they found systematic deviations of observers’ settings
from the 3D principal axis. However, a decomposition of

Figure 1. (a) A stimulus that can be interpreted either as a single dot cluster or as a composite consisting of a large elliptical sub-cluster
and a small, separate sub-cluster. (b) Predictions of orientation based on a principal-axis computation based either on the entire cluster as
a whole (shown in red), or based on the main sub-cluster alone, ignoring the smaller sub-cluster (shown in blue).
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observers’ settings into tilt (orientation in the image plane)
and slant (orientation in depth) revealed that these
deviations arose almost entirely from the slant component.
Their results thus showed that while observers under-
estimate the orientation in depth of 3D objects (how much
the object is slanted away from the frontal plane), they are
nevertheless proficient at using the principal axis of the
2D projection of the object in estimating its orientation in
the image plane.
Cohen and Singh (2006) studied perceived orientation

of multi-part 2D shapes comprising a small part protrud-
ing out of a large “base.” Their results showed systematic
deviations of perceived orientation from the shapes’
principal axis. The magnitude of this deviation increased
with the salience of the part’s boundaries (based on the
curvature magnitude at the points of negative minima of
curvature bounding the part; see Hoffman & Singh, 1997).
As the boundary points became sharper, and the part more
distinct, observers’ orientation estimates approached the
principal axis of the base part, suggesting that the small
protruding part was being largely ignored (see Figure 2).
These results suggest that part segmentation is a graded
process that is reflected in the computation of global
properties of a shape composed of multiple parts.

Robust statistics

Robust statistics is a collection of mathematical meth-
ods concerned with developing statistical estimators that
are little affected by small failures of distributional
assumptions (see Appendix A for a more detailed dis-
cussion). It provides an alternative to both parametric and
non-parametric estimation methods. Parametric methods
include maximum-likelihood approaches and Bayesian
approaches, and these approaches can be used to derive

optimal methods for specific distributional families.
Essentially all statistical modeling in vision makes use
of parametric methods (see, e.g., Knill & Richards, 1996;
Landy, Maloney, Johnston, & Young, 1995).
They are called “parametric” because they are based

on the assumption that all statistical distributions are
known except for a small number of parameters. A
typical parametric problem is to estimate the mean 2
and variance A2 of a Gaussian distribution. We can
derive estimators that are unbiased and have minimum
variance. If we were certain that the distribution of data
is Gaussian it would be difficult to justify not using
such estimators.
Non-parametric estimators, in contrast, are based on

only weak distributional assumptions and typically have
higher variance than corresponding parametric estimators.
For any statistical problem, we can typically derive
parametric estimators that have lower variance and
methods for testing hypotheses that have greater statistical
power than if we used non-parametric methods. However,
if we assume that the distribution from which data is
drawn is, for example, Gaussian and it is not, then our
“optimal” parametric estimators need not be very “good”
at all (Tukey, 1960).
Robust estimation provides an alternative to parametric

and non-parametric approaches. The experimenter may
know that the distribution is “close” to Gaussian but not
precisely Gaussian. The distribution may be a mixture of
two distributions, one of which is Gaussian and one of
which is not. On some proportion ( of trials, the data are
drawn from the non-Gaussian distribution, and this
contamination may manifest itself by the presence of
evident outliers in the data.
Robust statistics provides principled methods for deal-

ing with these outliersVdata points that are likely to have
been generated by a contaminating process that is distinct

Figure 2. Representative stimuli and results from Cohen and Singh (2006). Observers adjusted an orientation probe to match the
perceived orientation of each shape. Results are shown as polar histograms of pooled observer settings corresponding to four part-
boundary conditions. Mean orientation settings for shapes with weak part boundaries were close to that of the global principal axis of the
shape. However, with increasing sharpness of the part boundaries, mean orientation settings approached the orientation of the large base
part.
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from the presumed underlying model for the bulk of the
data.
We might expect that an optimal statistical estimator for

the Gaussian distribution would be “nearly optimal” when
applied to data from distributions that are “nearly
Gaussian.” Surprisingly, it need not be. Tukey (1960)
demonstrated that optimal estimators may fail dramati-
cally with even small proportions of contamination (.
Robust statistics consists of methods that allow us to
derive estimators that are close to optimal for an
uncontaminated distribution but that are resistant to small
amounts of contamination ( (Hampel, 1974; Huber, 1981).
The “goodness” of each possible estimator is evaluated
not only for the base distribution f(x) but also for a
neighborhood of contaminated distributions (1 j ()f(x) +
(h(x), where h(x) is any distribution and 0 G ( e (0. A
typical choice of robust statistic is the one with the best
“worst case” performance in this neighborhood (Huber,
1981).
To give a concrete example, if a sample is drawn from a

Gaussian distribution with unknown mean 2, the mean of
a data sample X� is the unbiased minimum variance
estimator of the parameter 2 (Lehman, 1983, p. 84). If
up to 1–2% of the data could be extreme values drawn
from a second, unknown distribution then a 10% trimmed
mean (where we discard the smallest 5% of the sample
and the largest 5% of the sample) would typically be a
lower variance estimator than the mean. If the outliers
resulting from contamination are much larger in absolute
value than the typical samples form the Gaussian, the 10%
trimmed mean could be much lower in variance than the
ordinary mean. But we can do even better (in terms of
lower variance) than the 10% trimmed mean if we use a
Huber-M estimator that assigns different weights to points
depending on how extreme they are (Maronna, Martin, &
Yohai, 2006, pp. 25–29). We will illustrate such an
estimator in the General discussion section.
While robust methods deal with a broader class of

contaminations than just the introduction of outliers, they
are best known as principled methods for dealing with
“suspicious” data points. Rather than having to make a
binary choice between including or excluding a partic-
ular data point, a robust statistical estimator assigns
differential weights to data points based on some
quantity that reflects the likelihood that they arose from
the same generative process as the bulk of the data or
are instead due to the second contaminating process
(Hampel, 1974; Huber, 1981; Hon et al., 1997; Landy
et al., 1995). Data points likely to have arisen from the
same generative process are assigned a full weight of 1,
whereas those likely to have arisen from a different process
are assigned weights near 0, with a continuous fall-off in
between.
We examine whether the human visual system adopts a

similar strategy in estimating a global propertyVthe
orientation of dot clustersVin the face of uncertainty
concerning segmentation.

Experiment

We investigate the perceived orientation of dot clusters
that could potentially be segmented into two sub-clusters.
Our basic question is: How does the perceptual segmenta-
tion of a dot cluster influence its perceived orientation? In
other words, as a cluster gradually goes from being
perceived as “clearly a single cluster” to “probably two
clusters” to “clearly two distinct clusters,” how are
observers’ orientation estimates affected?
Consider the stimulus in Figure 1a, which could be

interpreted either as a single cluster or as a composite
consisting of a large elliptical sub-cluster and a much
smaller sub-cluster. If the stimulus is treated as a single
dot cluster, its orientation should be predicted by the
principal axis of the entire cluster as a whole (shown by
the red line in Figure 1b). Conversely, if the cluster is
fully segmented, with the smaller sub-cluster treated as
entirely separate, one would expect the dots within the
small sub-cluster to be excluded entirely from the
computation of orientation. Hence, the perceived orienta-
tion would be predicted by the principal axis of the larger
cluster alone (shown by the blue line in Figure 1b).
These two strategies correspond to the opposite ends

of a prediction spectrum, plotted in Figure 3 in terms of
the “influence” of the smaller sub-cluster on the

Figure 3. Influence of the secondary cluster on the estimated
orientation of the dot clusters as a function of its orthogonal
separation from the axis of the main cluster. Three predictions are
shown based on three possible strategies. (1) No segmentation:
All dots are treated equally, including the ones in the small sub-
cluster. The influence continues to rise without bound. (2) Full
segmentation: The secondary cluster is ignored entirely and
hence exerts no influence whatsoever. (3) Robust segmentation:
For small separations, the smaller sub-cluster is included entirely
in the principal-axis computation (full influence) but, with increas-
ing separation, its points are systematically down-weighted
(decaying influence).
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overall perceived orientation. According to the “full-
segmentation” prediction (horizontal blue line), the
smaller sub-cluster has no influence at all since it is
excluded from the orientation computation. According to
the “no segmentation” prediction (dashed red line), the
smaller cluster is included fully in the orientation
computation, i.e., treated equally with the dots in the large
cluster. Hence, as the smaller cluster is moved further and
further away from the main cluster, its influence on the
orientation estimate continues to rise without bound.
The “robust segmentation” prediction is intermediate:

For small separations between the two sub-clusters, the
dots within the secondary sub-cluster are included in the
orientation computation. However, with increasing sepa-
ration (hence increasing likelihood of segmentation), these
dots are systematically down-weighted. Thus, as the
separation of the secondary sub-cluster increases, its
influence on the overall orientation estimate at first rises
(following the “no segmentation” prediction); but with
further increase in separation, it gradually falls to zero,
corresponding to the “full-segmentation” prediction (see
Figure 3, solid brown curve). We ask whether the visual
system employs a robust segmentation-like strategy in
computing the orientation of dot clusters.
It is evident that the spatial separation between the two

sub-clusters is not the only variable that affects their
perceived segmentation. Given a fixed separation, sub-
clusters with higher dot density are more likely to be
perceived as “separate” or segmented than those with
lower dot density. This is analogous to the simple fact in
statistics that, for a given difference between two sample
means, it is easier to find reliable evidence in favor of a
two-distribution hypothesis over a one-distribution “null”
hypothesis, with a larger sample size.3 In terms of the
influence function, one would thus expect that with
increasing separation between the two sub-clusters, the
influence function for high-density dot clusters would
peak and fall sooner (i.e., at smaller spatial separations)
than that for low-density dot clustersVbecause the high-
density sub-clusters presumably require a smaller spatial
separation to be reliably segmented. Our experiment
manipulates both the separation between the two sub-
clusters and their (common) dot density.

Methods
Observers

Five observers at Rutgers University, with normal or
corrected-to-normal visual acuity, participated in the expe-
riment. All were naı̈ve to the purpose of the experiment.

Stimuli and design

Stimuli consisted of dot clusters formed by the union of
two sub-clusters: (i) a large sub-cluster comprising dots
sampled uniformly from an elliptical region and (ii) a

secondary sub-cluster comprising dots sampled uniformly
from a small circular region. The dimensions of the ellipse
were 10.9 dva by 4.36 dva. The smaller cluster was placed
such that the center of the circular region lay on an
(invisible) line orthogonal to the major axis of the ellipse,
placed 3.27 dva from the center of the large ellipse (see
Figure 4). Each dot had a diameter of 5.2 arcmin.
The variables manipulated were as follows:

1. The separation $ between the two sub-clusters, as
measured by the orthogonal distance of the center of
the small circle from the major axis of the ellipse.
The four values of $ used were 1.52, 2.61, 3.7, and
4.79 dva.

2. The mean density of dots in the sub-clusters. The
three values used were 0.63, 1.26, and 1.89 dots per
square dva. These density values determined the
number of dots to be sampled within the elliptical
and circular regions on any given trial.

3. The diameter of the small circular region: 1.74 and
2.4 dva.

There were thus a total of 4 � 3 � 2 = 24 conditions.
Figure 5 shows examples of stimuli in eight of these
conditions: dot clusters in the lowest and highest density
conditions, each with the four levels of spatial separation
between the two sub-clusters (for the smaller sized
secondary sub-cluster).

Procedure

On each trial, an observer was shown the test dot cluster
composed of light blue dots against a black background
for 1000 ms, followed by a mask composed of interleaved
white and light blue dots for 250 ms. An adjustable probe
pattern then appeared on the screen, consisting of multiple

Figure 4. A schematic diagram showing the underlying ellipse and
disks used to generate the dot stimuli. The small circular region
was placed at one of four possible distances $ from the main axis
of the large ellipse.
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parallel red lines (see Figure 6). The observers’ task was
to adjust the orientation of the probe pattern using a track
ball. They were instructed as follows: “Rotate the red
probe pattern to match the perceived orientation of the dot
cluster. If you see multiple possible orientations, choose
the strongest one. There is no right or wrong answer.” No
mention was made in the instructions about the possibility
of a secondary sub-cluster, and observers relied on their
own perceptual intuitions to interpret the notion of “test
dot cluster.” The multi-line pattern was used instead of a
single line segment because we were interested in the

perceived orientation of the dot cluster regardless of the
specific point within the cluster through which the
principal axis should pass (e.g., its perceived center). No
time constraints were imposed on the adjustment.
Observers performed adjustments in 40 trials for each

of the 24 conditions. The trials within each condition
were counterbalanced for handedness, i.e., the position of
the secondary sub-cluster relative to the main elliptical
sub-cluster. For each trial, a new dot configuration was
sampled with the parameter values determined by the
required condition. The clusters were shown at a random

Figure 6. The trial sequence used in the experiment. Observers adjusted the orientation of the multi-line probe to match the perceived
orientation of the test dot cluster.

Figure 5. Examples of dot cluster stimuli shown for 8 of the 24 conditions used in the experiment. The top row shows clusters with the
lowest dot density (0.63 dots per dva2), the bottom row with the highest density (1.89 dots per dva2). The four columns correspond to the
four levels of spatial separation between the center of the small circular region and the major axis of the elliptical region ($ = 1.52, 2.61,
3.7, and 4.79 dva). All stimuli shown here have the smaller diameter used for the secondary cluster (1.74 dva).

Journal of Vision (2008) 8(7):6, 1–13 Cohen, Singh, & Maloney 6



orientation. Each observer’s settings were collected in
two experimental sessions and were preceded by a prac-
tice session.

Results

Observers’ orientation settings were encoded in terms
of the angular deviation from the major axis of the
underlying ellipse used to generate the main sub-cluster.
Deviations in the direction of the principal axis of the
entire cluster (i.e., of the union of the two sub-clusters)
were considered positive. Preliminary analyses of the
orientation settings revealed only small differences
between corresponding left-handed and right-handed
stimuli, and their directions were inconsistent across
observers (mean differences = j3.03, j2.3, 3.18, 3.54,
3.98 degrees for the five observers). For subsequent
analyses, we collapsed the data across left-handed and
right-handed shapes and focused on the effects of spatial
separation, dot density, and size of the smaller sub-cluster.
Figure 7 plots the mean orientation settings in degrees as a
function of the three independent variables.
The x-axis in each plot thus corresponds to the

prediction of the “full-segmentation” hypothesis discussed
above (recall Figure 3), namely, the orientation settings
that would be predicted if observers treated the smaller
sub-cluster as completely separate, and ignored it entirely

in computing the principal axis of the dot cluster. The
dashed lines in each plot depict the predictions of the “no-
segmentation” hypothesis. The three dashed lines corre-
spond to the three different levels of dot density and were
computed based on the actual (sampled) dot configura-
tions shown during the course of the experiment. These
are thus the mean orientation settings that would be
predicted if observers treated each cluster as a single,
unsegmented, perceptual unit and computed its principal
axis by weighting all dot equally.
As is clear from the plots in Figure 7, observers’

settings follow neither of these two predictions but rather
exhibit a pattern that is qualitatively similar to the “robust
segmentation” hypothesis discussed above. For small
values of spatial separation $ between the sub-clusters,
observers’ settings follow the “no segmentation” predic-
tion (the diagonal dashed lines), indicating that all dots are
being treated equally in computing orientation. With
further increases in spatial separation, however, the
orientation settings gradually fall and approach the “full-
segmentation” prediction (the x-axis of each plot)V
indicating that the dots within the small cluster are
ignored almost entirely in these conditions.

Differentially weighted principal axis computation

In order to quantify the influence of the dots within the
secondary sub-cluster, we analyzed the data in terms of a

Figure 7. Mean orientation settings measured as angular deviations from the major axis of the ellipse used to generate the large cluster.
The two plots correspond to the two different sizes of the secondary cluster. The three curves in each plot correspond to the three different
dot densities: 0.63, 1.26, and 1.89 dots per dva2. The three oblique dashed lines correspond to the predictions based on the principal axis
of the entire cluster (i.e., with the dots within the secondary cluster fully included in the computation).
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differentially weighted principal-axis computation: The
dots within the main sub-cluster were assigned a “full”
weight of 1, whereas dots within the smaller sub-cluster
were assigned a partial weight of !. For each trial, we
determined the value of the partial weight ! (to the dots
within the smaller sub-cluster) that would yield the
observed orientation setting on that trial. We did this by
computing the orientation setting as a function of !
numerically for many finely spaced values of ! and
selecting the value of ! that led to (or best approximated)
the observed setting on that trial. These estimated values
of the weights ! were then averaged within each given
condition. Figure 8 plots these mean weights as a function
of spatial separation, dot density, and secondary-cluster
size. A value of 0 along the y-axis in Figure 8 corresponds
to the prediction of the “full-segmentation” hypothesis,
whereas a value of 1 corresponds to the prediction of the
“no-segmentation” hypothesis, i.e., the principal axis of
the entire cluster.
As before, the plots in Figure 8 make it clear that

for smaller values of spatial separation ($ = 1.52 and
2.61 dva), observers’ orientation settings follow the
prediction of the “no-segmentation” hypothesis; the values
of the weights ! assigned to dots within the smaller cluster
are statistically indistinguishable from 1. But with further
increase in spatial separation ($ = 3.7 and 4.79 dva), the
orientation settings approach the predictions of the “full-
segmentation” prediction (i.e., the partial weights !
approach 0).

The plots in Figure 8 also clarify the contribution of dot
density to perceived orientation. The partial weights ! for
the highest dot density (magenta curves) are consistently
lowerVi.e., closer to the “full-segmentation” predic-
tionVthan those for the lowest dot density (black curves).
This is consistent with the prediction that, given a
particular level of spatial separation between the two
sub-clusters, dot clusters with higher dot density are more
likely to be perceived as segmented. (In other words, dot
clusters with higher dot density require a smaller spatial
separation in order to be reliably segmented.)
Expressed as partial weights ! in a differentially

weighted principal-axis computation, the data no longer
show an effect of size of the secondary sub-cluster.
Therefore, the difference between the left and the right
subplots in Figure 7 can be attributed entirely to the fact
that a larger secondary sub-cluster necessarily exerts a
greater influence on the principal axis of the overall
cluster than a smaller one.
The results are thus consistent with a differentially

weighted principal-axis computation in which the dots
within the smaller sub-cluster are assigned systematically
lower weights (i) with increasing spatial separation
between the sub-clusters and (ii) with increasing dot
density. Given that increasing spatial separation and
increasing dot density both result in an increased like-
lihood of segmentation, these results are qualitatively
consistent with a robust estimation approach to the
computation of perceived orientation.

Figure 8. Orientation settings recoded in terms of the relative weight ! assigned to the secondary cluster dots in a differentially weighted
principal-axis computation that would yield the observer’s setting on any given trial. A value of 1 along the y-axis corresponds to the
prediction of the “no segmentation” hypothesis, whereas a value of 0 corresponds to the prediction of the “full segmentation” hypothesis.
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General discussion

The estimation of any visual property requires that
information be pooled over an appropriately defined
region and thus depends critically on perceptual segmen-
tation. We have suggested that (i) perceptual segmentation
is better treated as a graded process, and (ii) the visual
estimation of a global visual property (such as orientation)
can be used as a tool to measure probabilistic segmenta-
tion, i.e., the strength of the visual system’s “belief”
concerning whether an image region corresponds to one
perceptual unit or two.
We used the context of perceived orientation of dot

clusters formed by the union of two sub-clusters: a large
elliptical sub-cluster and a small circular sub-cluster. By
manipulating the spatial separation between the two sub-
clusters and their common dot density, we varied the
strength of evidence in favor of the “segmentation”
hypothesisVthat the smaller sub-cluster is a separate
perceptual unit from the larger one. The results showed a
systematic dependence of perceived orientation on both
variables. For small spatial separations between the two
sub-clusters, observers’ orientation estimates were con-
sistent with the principal axis of the entire cluster
(indicating that the dots within the smaller sub-cluster
were being treated equally with the rest). However, with
increasing spatial separationVhence increasing evidence
for segmentationVthe orientation estimates gradually
approached the principal axis of the larger sub-cluster
alone (indicating that the dots within the smaller cluster
were having little influence). Moreover, this decrease in
influence occurred sooner, i.e., for smaller spatial
separations, when the dot density was high. This is
consistent with the fact that, given a fixed spatial
separation, a higher dot density provides more reliable
evidence for segmentation. The above pattern of results
is qualitatively consistent with a robust strategy for
estimating orientation.

Robust principal components analysis

The procedure just described makes explicit use of
knowledge of the cluster membership of each dot. In
effect, it assumes that it has available a visual parsing of
the scene into clusters (objects) that is correct or close to
correct. Typical robust methods in statistics do not have
access to such information, and we decided to compare
the performance of a typical robust PCA algorithm based
on an iterative weighted principal components analysis.
This PCA algorithm is very similar in structure to

common robust estimation approaches that use Huber-M
estimators (Maronna et al., 2006, pp. 25–29). The
algorithm was iterative, computing a series of estimates
of the principal axis, continuing until the estimates
converged.

It began by computing the principal axis of all dots in
the stimulus array including those in both the main and the
secondary cluster using ordinary (non-robust) PCA. Then
it computed the signed residual differences between each
point in the array and the nearest point on the principal
axis and converted these signed residuals to z-scores.
These z-scores were then converted to weights by a

weighting function (the Huber-k loss function shown in
Figure 9). The weighting function assigns full weight to
z-scores between jk and +k and a lower score to more
extreme z-scores, decreasing with absolute magnitude of
the z-score.4 We selected the value k = 1.5 for this
example, but performance is not sensitive to k. The
principal axis was then recomputed by PCA but now
weighting each point according to the weights assigned by
the Huber-k loss function.
These two steps (estimation of the principal axis,

computation of residuals and weights) were then repeated
until the estimate of the principal axis converged. The
final weights assigned to the points serve as a measure of
how close each point was to the principal axis and how
much weight it had in determining the final principal axis.
At each iteration in the algorithm, the effect of any point
on the next principal axis estimate depended only on its
residual with respect to the previous principal axis
estimate.
There are competing robust PCA approaches (Maronna

et al., 2006, Section 6.1); we chose this approach because
it highlights possible qualitative differences between
human performance and statistical approaches that do
not have a visual parsing of the scene.
In Figure 10, we plot an influence function for the effect

of smoothly displacing the secondary cluster away from
the main. The horizontal axis is used to plot the displace-
ment $ of the secondary cluster. When $ was 0, the
secondary cluster was contained in the main cluster. The

Figure 9. The Huber-k type weighting function used in the robust
PCA analysis. Points with z-scored residuals in the interval [jk, k]
are assigned a full weight of 1. Those with larger residual
magnitudes are assigned weights given by k/z2.
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vertical axis plots the angle of the estimated principal axis
based on weighted principal components analysis. The
results are averaged across 300 fits of simulated stimuli
for each value of $. The influence of the secondary cluster
is evident for small values of $ but, for large values, the
influence diminishes, characteristic of a robust estimator.
For comparison, we show the results of using ordinary
(non-robust) PCA.
The robust PCA method just described has several

drawbacks that call into question its value as model of
human performance. First, the loss functions are defined
on the standardized values of residuals (measured from
the current estimate of principal axis in the iterative
procedure). This means that when points are down-
weighted based on the likelihood that they arose from a
separate generative process, this determination is made
simply based on their standardized residuals independent
of whether any particular group of deviant points form a
spatially coherent cluster.
As a consequence, an increase in the dot density of both

sub-clusters results in little change in the assignment of
weights or the influence function. In a simulation, we
found that tripling the dot density had almost no effect on
the influence function and on where it peaked. Again, the
performance of the algorithm is at odds with observed
behavior of our observers.
Moreover, suppose that there are two secondary

clusters, both well outside of the main cluster but one

much closer to it than the other. The residuals to the more
deviant cluster disproportionately affect the standardized
residual scale and, as a result, the points in the other
deviant sub-cluster will be assigned z-scores near 0 and
weights near 1 and will exert considerable influence on
the final estimate of the principal axis. It seems plausible
that the visual system would segment both the further
cluster and the closer, ignoring both, but a residual-based
algorithm cannot do so easily.
The above failures stem from the fact that a robust

estimation strategy based on residuals embodies an overly
simplistic generative model of “objects.” Our results
suggestVbut do not conclusively demonstrateVthat the
visual ability to detect clusters in scene plays a crucial
role in segmentation and estimation of object orientation
in human vision. We advance this claim as a conjecture.
To our knowledge, no existing robust statistic makes

use of a similar model-based approach and, if our
conclusions above are valid, there is no point in compar-
ing human performance to existing robust estimators.
Even if a standard robust estimator duplicates or exceeds
human performance, it is not using the same part-based
approach: it is not a model of human visual processing in
our experiments.
An interesting direction for future work would be to

investigate psychologically valid generative models of dot
clusters. A long and fruitful line of research on shape
representation has focused on axis or skeleton-based
models of objects (Blum, 1973; Blum & Nagel, 1978;
Brady & Asada, 1984; Leyton, 1987). It is likely that
probabilistic versions of skeletal models (e.g., Feldman &
Singh, 2006; Zhu, 1999)Vsuitably adapted to dot clus-
tersVwould provide a promising candidate. The inves-
tigation of such models and their appropriateness for
modeling the visual detection and segmentation of dot
clusters awaits future research.

Appendix A

Robust statistics is a collection of methods for deriving
good estimators when the experimenter has only partial
knowledge of the distribution from which data was drawn.
These methods can, in principle, be used to select optimal
statistics by any criterion. For simplicity, we focus on esti-
mators that have low variance and that are unbiased.
Suppose, for example, that the experimenter has a sample

of data drawn from a Gaussian distribution f(x; 2, A2),

X1;I;Xn È f x;2;A2
� �

; ðA1Þ

with unknown mean 2 and unknown variance A2. Suppose
that the experimenter’s goal is to estimate the unknown
parameter 2, the mean of the distribution. Given this

Figure 10. The results of the Robust PCA analysis showing the
influence of the secondary cluster dots as a function of their
increasing spatial separation $ from the large cluster. Each point
corresponds to the mean of 300 fits of simulated stimuli with a
given value of $. The results of using ordinary (non-robust) PCA
are shown for comparison.
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information, we can derive the estimator T(X1,I, Xn)
that is unbiased (the expected value of the estimator
E[T(X1,I, Xn)] = 2) and that has the smallest variance
among all unbiased estimators.
In the Gaussian case, the unbiased estimator with the

smallest variance is the mean of the data, T(X1,I, Xn) = X�.
Suppose that, for example, if we take the mean of a
sample of size 100 from a Gaussian distribution with
unknown mean and variance 1 and compare the mean
with another unbiased statistic, the median of the sample,
the median is also unbiased but its variance is about 60%
greater than that of the mean.
If we change the distribution to, for example, Student’s

t-distribution with 3 degrees of freedom, the roles of the
median and the mean reverse, and now the median has
lower variance than the mean by about 40%.
Thus, if the distribution is not Gaussian, the sample

mean may no longer be the unbiased estimator with
minimum variance, or it may not be an unbiased estimate
of the population mean.
But what if the statistician is unsure about the

distributional family? Perhaps the sample is drawn from
a Gaussian distribution with probability 1 j ( but with a
small probability ( from a second unknown distribution,
h(x). The resulting distribution is a mixture distribution:

X1;I;Xn È 1 j (ð Þ7 x;2;A2
� �þ (h xð Þ: ðA2Þ

We still wish to estimate 2, A2 but now we have the added
complication that part of our data may be drawn from an
unknown second distribution h(x).
Tukey (1960) demonstrated that estimators that are

optimal in the uncontaminated case may behave very
badly with even very small degrees of contamination (
(Tukey, 1960). They are not “robust” to failures of the
distributional assumptions.
When the true distribution is unknown, the statistician

may choose to use non-parametric methods that make
only weak assumptions about distribution. The median of
a sample is an estimate of the median of the distribution
for any distribution. Since the mean and the median of the
Gaussian are both 2, the mean and the median are in
competition as estimators. In the uncontaminated case, for
large samples, the median has a variance that is more than
60% larger than that of mean. However, with even small
amount of contamination, the median can have lower
variance than the mean.
The goal of robust statistics is to provide a principled,

third alternative by looking for statistics that do almost as
well as the optimal statistic in the parametric case but
which are little affected by “small” amounts of contam-
ination (. A more precise criterion might be to rate each
possible statistical estimator by its worst performance for
any choice of the unknown contamination h(x).

One measure of use in evaluating the robustness of a
statistic is its influence function (Hampel, 1974). We
restrict attention to contaminated distributions that are
Dirac (impulse) functions at location x,

f( xð Þ ¼ 1 j (ð Þf xð Þ þ (% x j x0ð Þ; ðA3Þ

where %(x) denotes a Dirac generalized function (Bracewell,
2000, chap. 5). The contaminated distribution above is
readily interpreted. With probability (, the value x is
substituted for the sample value that would have been
drawn from f(x). We denote any estimator by Tn(X1,I, Xn).
If we increase the sample size n, we can compute the limit
of Tn denoted TV, and we can write TV( f(x)) as shorthand
for the limit as sample size increases when samples
are drawn from the distribution f(x). If, for example,
f(x) is Gaussian with mean 2, and Tn(X1,I, Xn) = X�, then
TV( f(x)) = 2: the limit of the mean of the sample converges
to the population mean as sample size increases.
The influence function is a Gâteau derivative (Jurečková

& Picek, 2005, p. 15)

T V
x fð Þ ¼ lim(Y0þ

TV f( xð Þð Þ j TV f xð Þð Þ
(

; ðA4Þ

which measures how much effect a small contamination
has on the statistic Tn(X1,I, Xn). The influence function
we report in the text is an empirical version of this
theoretical limit.
A robust estimator Tn(X1,I, Xn) has an influence

function that goes to 0 as ªxª increases or is at least
bounded. In contrast, we can show that for the ordinary
mean Tn(X1,I, Xn) = X�, the influence function T Vx( f ) = x
increases without bound. The mean is not a robust
estimator.
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Footnotes

1
More generally, the first principal axis is given by the

eigenvector of the covariance matrix corresponding to the
largest eigenvalue. Throughout we will simply use
“principal axis” to refer to the first principal axis.

2
Blum’s (1973) medial-axis transform treats each shape

as the union of maximally inscribed disks. The locus of
the centers of these circles defines the medial axis, which
provides a skeletal description of the shape.

3
Surprisingly, however, subjects appear not to be very

good at taking into account sample size in making
intuitive cognitive judgments concerning whether or not
two samples are drawn from the same population (see
Obrecht, Chapman, & Gelman, 2007).

4
This robust estimator is an example of a common

method adopted from robust regression. Essentially any
curve that smoothly decays to 0 would lead to better
performance than a non-robust estimator. The resulting
estimator would be robust to some extent but would not
have the qualitative properties that human observers
exhibit. The choice of an “optimal” robust estimator
depends on not just the assumed distribution of that data
but possible small deviations from that distribution and
typically there is no one correct choice.
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Lánsk], P., Yakimoff, N., Radil, T., & Mitrani, L. (1989).
Errors in estimating the orientation of dot patterns.
Perception, 18, 237–242. [PubMed]

Lehman, E. L. (1983). Theory of point estimation. New
York: Wiley.

Leyton, M. (1987). Symmetry-curvature duality. Computer
Vision, Graphics, and Image Processing, 38, 327–341.

Li, W., & Westheimer, G. (1997). Human discrimination
of the implicit orientation of simple symmetrical
patterns. Vision Research, 37, 565–572. [PubMed]

Liu, B., Dijkstra, T. M., & Oomes, A. H. (2002). The
beholder’s share in the perception of orientation of 2-D
shapes. Perception & Psychophysics, 64, 1227–1247.
[PubMed]

Maronna, R. D., Martin, R. A., & Yohai, V. J. (2006).
Robust statistics, theory and methods. Chichester,
UK: Wiley.

Marr, D., & Nishihara, H. K. (1978). Representation and
recognition of three-dimensional shapes. Proceedings
of the Royal Society of London B: Biological
Sciences, 200, 269–294. [PubMed]

Melcher, D., & Kowler, E. (1999). Shape, surfaces and
saccades. Vision Research, 39, 2929–2946. [PubMed]

McDermott, J., & Adelson, E. H. (2004). The geometry of
the occluding contour and its effect on motion
interpretation. Journal of Vision, 4(10):9, 944–954,
http://journalofvision.org/4/10/9/, doi:10.1167/4.10.9.
[PubMed] [Article]

McDermott, J., Weiss, Y., & Adelson, E. H. (2001).
Beyond junctions: Nonlocal form constraints on
motion interpretation. Perception, 30, 905–923.
[PubMed]

Obrecht, N., Chapman, G. B., & Gelman, R, (2007).
Intuitive t tests: Lay use of statistical informa-
tion. Psychonomic Bulletin & Review, 14, 1147–1152.
[PubMed]

Oomes, A. H., & Dijkstra, T. M. (2002). Object pose:
Perceiving 3-D shape as sticks and slabs. Perception
& Psychophysics, 64, 507–520. [PubMed]

Peterson, M., & Gibson, B. (1994). Must figure-ground
perception precede object recognition? An assump-
tion in peril. Psychological Science, 5, 253–259.

Rock, I., & Brosgole, L. (1964). Grouping based on
phenomenal proximity. Journal of Experimental
Psychology, 67, 531–538. [PubMed]

Rubin, E. (1958). Figure and ground. In D. C. Beardslee
& M. Wertheimer (Eds.), Readings in perception
(pp. 194–203). Princeton, NJ: Van Nostrand. (Original
work published 1915).

Singh, M., & Fulvio, J. M. (2005). Visual extrapolation of
contour geometry. Proceedings of the National
Academy of Sciences of the United States of America,
102, 939–944. [PubMed] [Article]

Singh, M., & Hoffman, D. (2001). Part-based representa-
tions of visual shape and implications for visual
cognition. In T. Shipley & P. Kellman (Eds.), From
fragments to objects: Grouping and segmentation in
vision. Advances in psychology series (vol. 130,
pp. 401–459). New York: Elsevier Science.

Tukey, J. W. (1960). A survey of sampling from
contaminated distributions. In I. Olkin (Ed.), Contri-
butions to probability and statistics (pp. 448–485).
Stanford University Press.

Vishwanath, D., Kowler, E., & Feldman, J. (2000).
Saccadic localization of occluded targets. Vision
Research, 40, 2797–2811. [PubMed]

Warren, P. A., Maloney, L. T., & Landy, M. S. (2002).
Interpolating sampled contours in 3-D: Analyses of
variability and bias. Vision Research, 42, 2431–2446.
[PubMed]

Warren, P. A., Maloney, L. T., & Landy, M. S. (2004).
Interpolating sampled contours in 3D: Perturbation
analyses. Vision Research, 44, 815–832. [PubMed]

Wertheimer, M. (1923). Laws of organization in percep-
tual forms. Psychologische Forschung, 4, 301–350.

Yakimoff, N. (1981). Does assignment of orientation to
dot patterns reveal optimization processes in the
visual system? Biological Cybernetics, 42, 39–43.
[PubMed]

Yodogawa, E. (1985). Quantitative measure of perceived
orientation strength of dot patterns. Proceedings of
the IEEE International Conference on Systems, Man,
and Cybernetics, 584–588.

Zhu, S. C. (1999). Embedding Gestalt laws in Markov
random fields. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21, 1170–1187.

Journal of Vision (2008) 8(7):6, 1–13 Cohen, Singh, & Maloney 13

http://www.ncbi.nlm.nih.gov/pubmed/7892735?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/3620537?ordinalpos=20&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/2771608?ordinalpos=85&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/9156200?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/12519022?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/24223?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10492819
http://www.ncbi.nlm.nih.gov/pubmed/15595897?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.journalofvision.org/4/10/9/
http://www.ncbi.nlm.nih.gov/pubmed/11578077?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18229488?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/12132754?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/14155415?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15647347?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=15647347
http://www.ncbi.nlm.nih.gov/pubmed/10960652?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/12367742?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/14967207?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7326280?ordinalpos=35&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

