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Symmetry is a biologically relevant, mathematically
involving, and aesthetically compelling visual
phenomenon. Mirror symmetry detection is considered
particularly rapid and efficient, based on experiments
with random noise. Symmetry detection in natural
settings, however, is often accomplished against
structured backgrounds. To measure salience of symmetry
in diverse contexts, we assembled mirror symmetric
patterns from 101 natural textures. Temporal thresholds
for detecting the symmetry axis ranged from 28 to 568 ms
indicating a wide range of salience (1/Threshold). We built
a model for estimating symmetry-energy by connecting
pairs of mirror-symmetric filters that simulated cortical
receptive fields. The model easily identified the axis of
symmetry for all patterns. However, symmetry-energy
quantified at this axis correlated weakly with salience. To
examine context effects on symmetry detection, we used
the same model to estimate approximate symmetry
resulting from the underlying texture throughout the
image. Magnitudes of approximate symmetry at flanking
and orthogonal axes showed strong negative correlations
with salience, revealing context interference with
symmetry detection. A regression model that included the
context-based measures explained the salience results,
and revealed why perceptual symmetry can differ from
mathematical characterizations. Using natural patterns
thus produces new insights into symmetry perception and
its possible neural circuits.

Introduction

Symmetry is a visually compelling phenomenon
that has been extensively studied and modeled, as

summarized in the reviews by Tyler (1996) and Treder
(2010), but the neural mechanisms of symmetry
perception remain obscure. In mathematics, symme-
try is defined as invariance to transformations such as
reflection, rotation, and translation (Conway, Burgiel,
& Goodman-Strauss, 2008). Symmetry is thus a
powerful rule that reduces the information required to
describe or retrieve a pattern (Lin, 1996). If the
process of shape formation were random, symmetric
shapes would be extremely rare. Instead, symmetric
shapes abound in nature (Thompson, 1942/1992), and
are used frequently for manmade objects (Pizlo, 2010)
and ornamentation (Washburn & Crowe, 1988).
Symmetry has thus proven to be a useful reductive
principle for defining shapes (Blum, 1973; Leyton,
1992; Marr & Nishihara, 1978; Wertheimer, 1958).

Mirror symmetry has been considered the most
salient of all symmetries (Mach, 1886/1959). Vertical
mirror-symmetric patterns can be detected at the
fixation point in around 50 ms (Julesz, 1971).
Variations in location or orientation reduce this
efficiency, but perception of approximate mirror
symmetry near fixation survives the addition of
considerable noise (Barlow & Reeves, 1979; Gurnsey,
Herbert, & Kenemy, 1998). Such evidence has led to
suggestions that recognition of mirror symmetry is
pre-attentive (Baylis & Driver, 1994; Julesz, 1971). It
is possible that mirror-symmetry perception is privi-
leged as a component of specialized face-neurons
(Tsao, Freiwald, Tootell, & Livingstone, 2006) and
facial attractiveness judgments (Perrett et al., 1999;
Rhodes, Proffitt, Grady, & Sumich, 1998). Moreover,
other species also detect and use mirror symmetry
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(Delius & Nowak, 1982; Giurfa, Eichmann, & Menzel,
1996; Swaddle & Cuthill, 1994; Swaddle & Pruett-
Jones, 2001), especially for judging mate attractiveness
(Møller & Thornhill, 1998), suggesting that this ability
is biologically significant and may have a canonical
neural substrate.

There are surprisingly few experimental studies of
mirror symmetry detection by human observers using
ecologically representative stimuli. The bulk of
research has employed randomly generated dot or
block patterns. In such impoverished stimuli, images
contain only accidental structure except for that
produced by the image reflection. Images of natural
or manmade surfaces, on the other hand, contain a
wealth of patterns generated by the presence of
surface markings, textures, objects, terrains, illumi-
nation patterns, etc. We tested the hypothesis that the
geometric characteristics of the surrounding patterns
affect mirror symmetry salience. Using a variety of
natural and manmade textures (Brodatz, 1966) we
generated mirror-symmetric images that included
contour symmetries, in which the outlines of shapes
are symmetric (Wilson & Wilkinson, 2002), and
pattern symmetries, that have dense symmetric point
correspondences (Barlow & Reeves, 1979). We mea-
sured temporal thresholds for identifying the sym-
metry orientation, and quantified salience as the
inverse of the threshold.

It is obvious that perceiving symmetry requires
comparisons across retinal locations. The nature of the
underlying long-range neural interactions has barely
been explored (Saarinen & Levi, 2000), but it is clear
that such connections occur only after striate cortex.
Cells in striate cortex are tuned to spatial frequencies
and orientations (Hawken & Parker, 1987; Hubel &
Wiesel, 1968), so one class of models attempts to detect
symmetry with oriented filters (Osorio, 1996; Poirier &
Wilson, 2010). Dakin and Watt (1994) and Dakin and
Hess (1997) used outputs of filters oriented orthogonal
to the axis of symmetry to locate the axis. As a
counterexample, Rainville and Kingdom (2000)
showed that symmetry perception in human vision
involves detecting oblique mirror orientations with
respect to the axis of symmetry. We designed a model
to estimate the magnitude of symmetry-energy, using
spatial filters consistent with cardinal and obliquely
oriented cortical receptive fields. We then tested
whether the salience of symmetry across the patterns
could be predicted from the magnitude of symmetry-
energy, or whether it was necessary to include
interference from measures of the surrounding struc-
ture. Finally, we used the context-based model to
explain why some mathematically symmetric patterns
can be judged as symmetric only after extended
inspection.

Methods

Stimuli

One hundred and one textures were selected from the
Brodatz (1966) set, which consists of photographs of
texture patterns under spatially uniform light, and has
been widely used and analyzed in computer vision.
Mirror symmetries were generated by adding each
image matrix to its reflection. This technique generated
perfectly mirror symmetric images that exhibited a wide
range of natural image characteristics, varying consid-
erably in texture scale, periodicity, randomness, ho-
mogeneity and structure. Each texture image was used
to generate a class of eight symmetric and 24
nonsymmetric images through the process illustrated in
Figure 1: Each image was divided into quadrants. First,
each quadrant was reflected about a vertical axis, and
then each of the original quadrants was added to each
of the reflected quadrants (pixel-by-pixel). Four sym-
metric images resulted from each quadrant added to its
own reflection. Twelve nonsymmetric images resulted
from each of the four quadrants added to the reflection
of each of the other three quadrants. Then the same
process was repeated with reflections about the
horizontal axis doubling the number of test images in
an image class. Two directions of reflection assured
that a dominant orientation within an image class

Figure 1. The technique employed for generating tests and

masks. Each original image was divided into quadrants.

Symmetric test images were produced by adding a quadrant to

its reflection (A þ Ar). Mask images were produced by adding

one quadrant to the reflection of another quadrant (BþDr). The

base texture image was adapted from Brodatz (1966).
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would not provide a reliable cue to the direction of
symmetry. Symmetric test images were presented with
the axis oriented vertically (randomly 08 or 1808) or
horizontally (908 or 2708). Nonsymmetric images were
used as masks and were presented at 08, 908, 1808, or
2708, determined randomly. Since the nonsymmetric
masks were generated through the same procedure as
the symmetric stimuli, they have similar spatial-
frequency and orientation statistics. Tests and masks
were square grayscale images subtending 6.2 degrees of
visual angle. Each image was histogram-equalized, and
normalized for maximum contrast.

Procedure

For each texture class, we measured temporal
thresholds for determining symmetry orientation.
Images were presented with a vertical or horizontal
symmetry axis, and observers identified the orientation
by pressing buttons. The orientation task allows
subjects to determine the correct answer in a single
image without comparison to other images, while the
forced choice makes it less susceptible to criterion shifts
than judgments of the presence or absence of symme-
try. Vertical symmetry detection is generally faster than
horizontal detection (Barlow & Reeves, 1979; Mach,
1886/1959), but with equal chance of presentation in
either orientation, this inequality should not affect the
results.

We used double-random staircases that adjusted for
stimulus duration (Figure 2). To estimate the threshold
corresponding to 79% accuracy, reversals followed
three consecutive correct responses or one incorrect

response (Wetherill & Levitt, 1965). Starting values for
the two independent staircases were 480 ms and 40 ms.
Presentation intervals were changed by 120 ms for the
first two reversals, and 16 ms for the remaining
reversals. Each test presentation was followed by a 150-
ms mask. Threshold values were calculated as means of
the last eight reversals each of the two staircases. The
experiment consisted of about 11,000 trials for the 202
randomly interleaved staircases. After 1 hour of
practice, observers participated for six to eight sessions
(1 hour each) spread over a few weeks.

Equipment

Stimuli were generated using Matlab, and presented
on a Sony GDM-F500 flat screen monitor with 1024 ·
768 pixels (Sony, Tokyo, Japan) running at a refresh
rate of 120 Hz via a Cambridge Research Systems
Visage Visual Stimulus Generator (Cambridge Re-
search Systems, Rochester, Kent, UK). The Visage uses
14-bit digital to analog converters. The output of the
screen was linearized using the CRS OptiCal. Head
position was stabilized by a chinrest situated 1 m from
the stimulus monitor. Stimuli were presented level with
the observer’s eyes. Viewing was binocular in a dimly lit
room, and there was no feedback.

Observers

Author EC and three paid uninformed observers
participated in all conditions. Observers (two male, two

Figure 2. The experiment trial sequence.
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female) ranged in age from 22 to 31 years. All had
normal or corrected-to-normal vision.

Results

Figure 3 depicts examples of all 101 texture classes,
displayed in order of duration thresholds, averaged
over the four observers. Individual observer’s data are
shown in Appendix Table 1. Duration thresholds
varied 20-fold from 28 ms to 568 ms, indicating that
mirror symmetry detection is not universally rapid.
Thresholds ranged roughly over a factor of 10 for each
observer, showing a strong dependence on the context
provided by the generating texture. There was decent
concordance between observers, reflected by a mean
correlation of r¼ 0.68, p , 0.0001, (SE¼ 0.07). Using
the standard definition of Salience as perceptual
prominence, or likelihood of being noticed, we assume
that the more prominent a feature is, the faster it can be
seen, so 1/Temporal-Threshold quantifies Salience, just
as 1/Contrast-Threshold quantifies Sensitivity. In order
to determine the sources of variation in symmetry
salience, we calculated measures of mirror symmetric
energy and distracting factors across the complete set
of images.

Image analyses

Model

In all the symmetric patterns in Figure 3, every
oriented feature on one side of the axis, is accompanied
at the same distance on the opposite side by an identical
but mirror-reflected feature. We designed a model that
uses filters for such mirror-concordances to identify the
axis of symmetry and a measure of symmetry-energy.1

To simulate oriented, odd-symmetric, cortical filters in
a computationally efficient manner, we used steerable
pyramids (Simoncelli & Freeman, 1995) at six orien-
tations spaced uniformly around the circle, and four
spatial scales beginning from the finest possible at the
pixel size and then becoming progressively coarser by
an octave in spatial frequency. All 24 pyramid filters
were correlated with the image at every pixel. For every
pixel, only the orientation and output of the filter with
the absolute maximum response at each scale was
retained, with its sign intact. This nonlinear operation
drastically reduces the amount of computation required
for subsequent analyses. For every candidate axis,
pixels equidistant to the axis were compared for the
orientations of the filters with the maximum response.
If the two orientations were related by a mirror
reflection, then an AND junction was activated (Figure

Figure 3. Instances of each type of symmetric texture class displayed in the order of mean observer duration threshold for that class.

In the experiment, each class contained eight distinct symmetric images. Numbers on the Y-axis correspond to mean threshold for

the first pattern of each row.
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4). At each AND junction, if the outputs of the two
filters were equal within a small tolerance, their outputs
were summed into a symmetry-energy index (To inhibit
inaccuracies in image rendering, pixel registration,
rounding and other such factors from inactivating the
AND operation, the tolerance was set at difference/sum
, 0.05. Given the variance of neural responses, this
tolerance seems realistic. It made little difference if the
tolerance was set at 0.025). We calculated symmetry-
energy for vertical and horizontal axes at every pixel
within the central half of the image. In the absence of
canonical data about how to degrade weights for
symmetry-energy with distance from the axis, we used
uniform weighting from the axis to one-fourth of the
size of the image on both sides.

Axis selectivity

The axis with the maximum symmetry-energy
calculated by the model was taken as the axis of
symmetry. The images are on a discrete square grid,
and the only possibilities are horizontal or vertical
symmetry. This means that given an n · n image, there
are 2n possibilities for the axis. The maximum response
of our model provided the location of the correct axis
for every one of the 101 · 8¼ 808 patterns. Our
model’s search for the symmetry axis also yields
measures of symmetry-energy at flanking and orthog-

onal axes. Therefore to examine the robustness of the
axis-selectivity of the model, we calculated two ratios
for the 101 generating patterns: symmetry-energy
around the primary axis where it was maximum
(‘‘Primary Symmetry-Energy’’) divided by energy
around the orthogonal axis where it was maximum
(‘‘Orthogonal Symmetry-Energy’’), and energy around
the maximum axis divided by energy around the
parallel flanking axis with the next largest magnitude of
symmetry-energy (‘‘Flanking Symmetry-Energy’’).
Figure 5 shows that both ratios are substantially over
unity for all patterns (mean ratios, 14.2 and 8.4, ranges
4.1–24.70 and 2.7–15.2), demonstrating that the model
easily identified the correct axis for patterns differing
widely in spatial frequency, randomness and structure.
Note that the relationships between salience and the
distracting ratios are essentially linear.

Symmetry salience

The magnitude of axis symmetry-energy was an
excellent predictor of the symmetry axis location.
However, over the 101 patterns, axis Primary Symme-
try-Energy was only weakly and negatively correlated
with symmetry axis Salience (r¼�0.38, df ¼ 100, p ,
0.01). Thus the simplest explanation of symmetry
salience as being proportional to symmetry-energy
around the principal axis, can be rejected. Clearly,
some other measures are necessary to explain observer
performance.

Inspection of Figure 3 shows that many symmetric
images that are least salient occur in repetitive texture
patterns, while the most salient occur within textures
without a repeating structure. The measures of
symmetry-energy at flanking and orthogonal axes
calculated for the axis location procedure can also be
used to quantify approximate symmetry in the gener-
ating patterns. We tested whether the presence of
approximate symmetry at other axes would reduce the
salience of the primary symmetry axis, and thus lead to
higher temporal thresholds. For example, approximate
symmetry at a flanking axis could cause confusion
about the location of the primary axis, and approxi-
mate symmetry around an orthogonal axis could cause
confusion about the orientation of the primary axis.
The ratio of axis symmetry-energy to orthogonal
symmetry-energy had a positive correlation of 0.75 (df
¼ 100, p , 0.0001) with salience, and the ratio of axis
symmetry-energy to flanking symmetry-energy had a
positive correlation of 0.71 (df ¼ 100, p , 0.0001)
(Figure 5). These correlation magnitudes clearly show
that the distracting effects of flanking and orthogonal
approximate symmetries overcome the effects of
symmetry-energy at the main axis. The correlations of
Salience are higher with the Flanking-Ratio and

Figure 4. Filters at six orientations connected to their mirror

symmetric counterparts with AND junctions. The model repeats

this in parallel at four scales and at all locations.
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Orthogonal-Ratio than with the un-normalized maxi-
mum flanking and orthogonal symmetry-energies (0.56
and 0.61), possibly because the ratios reflect the
weighing of the relative energies in the decision. If the
effects of the distracting symmetry energies are
partialled out, the correlation between axis symmetry
and salience is essentially zero. The partial correlation
of Salience with Primary Symmetry-Energy when
controlling for Flanking and Orthogonal Symmetry-
Energy, is�0.03, implying that salience is essentially a
function of the two distractors.

To get a measure of the combined effect of a context-
based explanation, we regressed salience on the three
measures of symmetry-energy (axis, orthogonal ratio,
and flanking ratio). The resultant R2¼ 0.63 (df¼ 97, p
, 0.0001) should be compared to the mean between-
observer correlation (R2 ¼ 0.46). The coefficient of the
Primary Symmetry-Energy in the regression equation
was vanishingly small. The combined effect of the two
distractors is greater than each individual effect, even
though the correlation between the distractors is 0.94.
This analysis shows that when the image is also
approximately symmetric around other axes, that
reduces the salience of the primary axis and observers
take longer to discern the correct axis and report its
orientation. Salience differences for symmetry across a
wide variety of natural patterns can thus be explained
by these context effects.

Could the salience differences be explained by a
simpler factor such as spatial frequency? Low salience
images tended to have more energy at higher frequen-
cies than did high salience images. There was a
significant correlation (r ¼ 0.38, p , 0.0001) between

duration thresholds and the frequency of maximum
energy, but this effect is much weaker than the flanking
and orthogonal distracting effects, and adding spatial
frequency to the regression did not substantially
increase R2.

Discussion

Our symmetry estimation model has only four
serial steps, so its operation would be rapid and
efficient when implemented in parallel, as would be
done in the cortex. Shepherd and Brayton (1987)
showed that AND junctions are quite feasible. When
excitatory and inhibitory inputs interact in a dendritic
tree, the nonlinear threshold needed to generate an
action potential would translate these interactions
into a binary decision, e.g., an AND gate would result
if two excitatory inputs are simultaneously active.
Alternately, our AND junction could be implemented
by inhibiting a summing neuron with the absolute
output of a differencing interneuron. Our filters are
local receptive fields, i.e., their parameters are not
shared across different locations in the image. After
an initial parallel filtering layer we make the
information drastically sparser in a pooling layer
using a winner-take-all rule, followed by a symmetry
selectivity layer, and then another winner-take-all
pruning. This relates our work to two recent modeling
successes. Multiple alterations between filtering and
maximum pooling have successfully modeled object
recognition by the brain (DiCarlo, Zoccolan, & Rust,
2012; Serre, Wolf, Bileschi, Riesenhuber, & Poggio,
2007), and unshared receptive field weights coupled
with a massively parallel architecture are critical
components in unsupervised learning of invariances
(Le et al., 2012).

The mathematics of symmetry in planar patterns is
straightforward. Only 14 classes of patterns are
possible, and all are sufficiently described in Thurston’s
orbifold notation by five signature features, mirrors,
kaleidoscopes, gyrations, miracles, and wonders (Con-
way et al., 2008). While all of these features can be
discerned with active inspection, only some are
immediately perceived as symmetric, suggesting a
difference between mathematics and perception. Our
context-based model provides an explanation of why
symmetry is not salient in some cases of perfect
mathematical symmetry. For example, a horizontal
grating is perfectly mirror-symmetric around some
vertical axis, and cognitively observers can be con-
vinced of that, but the symmetry is not salient. As
estimated by our model, local symmetry-energy around
many vertical axes is equal to that around the primary
axis. In this case, the model will not find the correct

Figure 5. Ratio of symmetry-energy at best axis to best flanking

axis (squares), and ratio of symmetry-energy at best axis to best

orthogonal axis (diamonds), plotted against salience for all 101

textures.
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axis, and it is not salient for human observers either. If,
however, the horizontal grating is bent into a ‘‘V,’’ the
symmetry is salient for observers, and the model easily
identifies the correct axis because symmetry-energy is
lower around every other axis. Similarly, the model
explains that a perfectly symmetric square-lined pattern
is only revealed as symmetric with conscious inspection
because a number of vertical and horizontal axes give
the same local symmetry-energy as the primary axis.
Finally, the model explains that perceived symmetry is
artificially robust when generated from random noise,
because symmetry-energy is very low around other
axes.

Rapid symmetry estimates are important in tasks
ranging from judgments of facial attractiveness (Perrett
et al., 1999) to inferring the shapes of three-dimensional
solids (Pizlo, 2010). By using symmetric patterns
generated from natural textures, this study reveals that
salience of mirror symmetry varies systematically as a
function of specific geometrical properties of the
generating pattern. Our computational model demon-
strates that pattern and contour mirror symmetry are
detectable efficiently by extracting the energy present in
mirror orientations. This model presents an elegant
neural possibility of how mirror-symmetry could be
extracted from retinal images. In addition, it shows that
salience is affected more by the distracting effect of the
approximate symmetry of the underlying pattern
around other axes, than by the magnitude of symmetry-
energy around the main axis. The analyses explain why
published estimates of high efficiency are accurate only
for symmetries generated from random noise, why
symmetry is not salient in many natural patterns that
consist of repeating regular, or semiregular, elements,
and why some mathematically symmetric patterns
don’t appear symmetric unless actively scanned. Using
images of natural structures thus provides new insights
into symmetry perception.

Keywords: symmetry perception, computational mod-
eling, texture perception, psychophysics, natural images
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Footnote

1 While the term energy occurs in multiple scientific
contexts, our use of the term symmetry-energy should
be narrowly understood as a quantification of mirror
symmetry.
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Appendix Table 1

Table 1. Duration thresholds (ms) for each of the four observers for each texture class. Each box corresponds to the symmetry class in
Figure 3 at the same location.
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