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Abstract

The geometric determinants of shape decomposition were studied using a performance-based method. Observers’ identification of
contour segments was shown to be systematically modulated by their curvature properties, and by the geometric properties of the
enclosed region. Specifically, negative minima of contour curvature provided the best segment boundaries. Segments with negative-
minima boundaries were identified with greater accuracy than those with positive maxima or inflection boundaries of comparable length.
Additionally, segment identification was shown to be determined by contour length, the turning angle at part boundaries, and the width
at the part’s base (hence the part’s protrusion). The results indicate that part decomposition is an automatic process. Moreover, this pro-
cess is graded, i.e. parts are more strongly segmented, or more likely to be perceived, according to the strength of many geometric
determinants.
! 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding of the neural basis of visual shape has,
for many years, been largely restricted to very early or very
late stages of processing. Early visual cortical areas (such as
area V1) are known to respond to simple local image fea-
tures, such as oriented edges (Hubel & Wiesel, 1959,
1962). Work on late visual processing (such as area IT),
on the other hand, has shown selectivity for high-level cat-
egories of complex recognizable shapes, such as faces or
hands (Desimone, Albright, Gross, & Bruce, 1984; Gross,
Rocha-Miranda, & Bender, 1972; Perrett, Rolls, & Caan,
1982; Tanaka, Saito, Fukada, & Moriya, 1991). However,
processing at intermediate levels, responsible for trans-
forming local image measurements into global representa-
tions of objects, is only beginning to be understood

(Pasupathy & Connor, 1999, 2001, 2002). It is at these
intermediate-level representations of shape that we focus
our psychophysical investigation. Despite a great deal of
discussion of parts in the shape literature, surprisingly
few performance-based methods have been developed to
investigate the part-based nature of visual shape. This
paper reports a series of psychophysical experiments
designed to quantify geometric influences on the part-based
representation of visual shape. In doing so, it provides
some indication of how the gap between local measure-
ments of edges and the global representation of shape
might be bridged.

1.1. Shape and part

A great deal of information about an object’s shape is
carried by its occluding contour (Attneave, 1954; Koender-
ink, 1984). Indeed, recognition performance with silhou-
ettes has sometimes been found to be almost as good as
with shaded drawings of 3D objects (Hayward, Tarr, &
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Corderoy, 1999). Recent work using single-cell recordings
in area V4 in the primate visual cortex has investigated
the representation of this important source of information,
and found evidence for a piecewise coding of shape. Specif-
ically, Pasupathy and Connor (1999) demonstrated a selec-
tivity of V4 cells to contour curvature as determined by
curvature polarity (whether a contour segment has positive
or negative curvature—i.e., bounds a locally convex or
concave region) and curvature magnitude (or contour
‘‘acuteness’’). Different populations of cells were found to
respond selectively to either convex or concave segments
of an occluding contour. In subsequent studies employing
whole shapes, Pasupathy and Connor (2001, 2002) found
evidence for a distributed coding of shape, with different
units within a population responding to either convex or
concave segments at different angular positions on the
shape (relative to its center). The representation of shape
in V4 thus appears to be a piecewise representation, in that
different units in V4 encode different—either convex or
concave—pieces or segments of a shape’s occluding
contour.

The notion of a part-based representation has also
played an important role in object recognition and behav-
ioral approaches to visual shape. Although any subset of a
shape may, in a sense, be considered its ‘‘part,’’ the percep-
tual notion of a part corresponds to those subsets of a
shape that are naturally perceived as being semi-indepen-
dent units—hence perceptually separable from the rest of
that shape. Parts are thus more than the arbitrary pooling
of earlier stage inputs; they are rather the perceptually and
psychologically salient visual units of a shape’s representa-
tion. Organizing shape representations in terms of parts—
with smaller parts hierarchically nested within larger
parts—allows one to separate the representation of the
shape of each individual part from the representation of
the spatial relationships between the parts. This, in turn,
leads to a more robust representation of shape—one that
is more stable across viewing conditions—e.g., changes in
the articulated pose of an object, or an observer’s vantage
point with respect to it (Biederman, 1987; Hoffman & Rich-
ards, 1984; Marr & Nishihara, 1978; Palmer, 1977). Fur-
thermore, hierarchical structure in shape representation is
a central aspect of visual experience. The ability to direct
action to different levels of object structure is crucial to
visually guided manipulation and interaction. People,
arms, hands, and fingers are all natural candidates for
visual attention, semantic labeling, and motor interaction.
Understanding the geometric determinants of shape seg-
mentation thus allows one to understand how these separa-
ble units of shape are perceptually generated.

Part-based representation of shape, while central to
many theories of high-level vision and object recognition,
has generally lacked systematic psychophysical investiga-
tion. Compelling psychophysical support for part-based
representation of shape should ideally take the following
form: (i) demonstration that human vision automatically
divides complex shapes into smaller units, (ii) demonstra-

tion that there are consistent and predictable rules that dic-
tate the segmentation of shape into these sub-units, and
that these sub-units determine the storage of visual infor-
mation, and finally, (iii) demonstration that these same
sub-units dictate the extraction of other visual properties,
such as orientation, location, and size. The following inves-
tigations were undertaken with points (i) and (ii) as the
guiding framework. (For work investigating point (iii),
see Cohen & Singh, 2006; Denisova, Singh, & Kowler,
2006).

Parts have generally been studied from the point of view
of high-level vision, as categorical units of object represen-
tation (Tversky & Hemenway, 1984) and units important
for recognition and naming (e.g., Biederman, 1987; Bieder-
man & Cooper, 1991). However, what a part is from the
point of view of bottom–up visual processing (i.e., low-
level mechanisms of visual segmentation) is less clear.
Our goal is to characterize the notion of a visual part in
concrete psychophysical terms, based on observers’ perfor-
mance in an objectively-defined task. Unlike many previ-
ous studies, we use unfamiliar randomly-generated
shapes, in order to focus on the geometric properties of
the bounding contour. In a part-based account, certain
portions of a shape constitute natural units of representa-
tion for the visual system, and therefore should be much
more readily identifiable than other portions of compara-
ble size. We therefore use segment identification as the
operational test for naturalness of shape parts. The ‘‘null
hypothesis’’ then becomes identification performance as
might be predicted by a decomposition-free account of
shape representation (such as one based on unstructured
templates). Under such an hypothesis, any portion of a
shape should be equally easy or difficult to identify, as long
as its size is preserved.

In this paper, we focus on one source of shape informa-
tion, namely occluding contour. Specifically, we examine
the geometric properties of a contour segment that make
it more or less identifiable. Experiments 1 and 2 compare
contour curvature landmarks that potentially provide nat-
ural boundary cues for parts. Experiments 3 and 4 examine
geometric factors that determine the salience of a part’s
representation.

1.2. Contour curvature and information content

Attneave (1954) observed that objects’ boundaries—
their occluding contours in the projected image—have high
information content as they signify the greatest change in
image characteristics. Koenderink (1984) has shown, more
specifically, that the occluding contour carries a great deal
of information about 3D shape: for smooth shapes, the
sign of curvature of the occluding contour directly informs
one of the sign of Gaussian curvature of the 3D shape.

Similarly, along occluding contours, Attneave (1954)
observed that information is concentrated at extrema of
contour curvature—points where the change signified by
curvature is the highest (i.e. points where the magnitude
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of curvature is locally maximal; see Norman, Phillips, &
Ross, 2001, for quantification of visual sensitivity to curva-
ture extrema, and De Winter & Wagemans, 2004, for an
available database of observer responses). Although Attne-
ave did not differentiate between different types of extrema
based on the sign or polarity of curvature, subsequent work
has demonstrated that extrema may be divided into multi-
ple categories, including positive maxima and negative
minima of curvature (see Fig. 1; Koenderink & Van
Doorn, 1982; Koenderink, 1984; Hoffman & Richards,
1984; Richards & Hoffman, 1985; Leyton, 1989). Curva-
ture extrema have also been shown to provide important
perceptual landmarks on surfaces (Phillips, Todd, Koend-
erink, & Kappers, 2003). A more recent informational
analysis has shown that negative minima (local peaks of
concave curvature) carry greater information than positive
maxima (local peaks of convex curvature; Feldman &
Singh, 2005). The differential role of positive maxima and
negative minima will play a central role in the experiments
reported in this paper.

Their status as information peaks has made extrema of
contour curvature the subject of much work in shape rep-
resentation. It is theorized that curvature extrema play a
significant role in the visual representation of shape—either
locally, by receiving heightened emphasis in local contour
representation, or globally, through their importance as
landmarks utilized by mechanisms of shape segmentation
and encoding (Barenholtz, Cohen, Feldman, & Singh,
2003; Cohen, Barenholtz, Singh, & Feldman, 2005; Berta-
mini & Farrant, 2005).

The latter hypothesis derives from the minima rule
(Hoffman & Richards, 1984), which postulates that the
visual system uses negative minima of curvature to define
candidate boundaries between parts. Hoffman and Rich-
ards proposed this rule based on the principle of transver-
sality, namely, that two randomly interpenetrating surfaces
generically create a concave discontinuity at the locus of
their intersection. It should be noted that the minima rule
also embodies a fundamental asymmetry between positive
and negative curvature: only curvature extrema in concave
regions (i.e., negative minima) are postulated to serve as
candidate points for shape segmentation; equivalent curva-

ture extrema in convex regions (i.e., positive maxima) do
not have this status.

1.3. Contour integration and grouping

A parallel motivation for the role of curvature extrema
in shape segmentation derives from work on contour inte-
gration. It has been demonstrated that the turning angles
between successive local elements (the discrete version of
curvature) in a discretely-sampled contour play a critical
role in visually integrating these elements into the represen-
tation of a single extended contour (Field, Hayes, & Hess,
1993; Feldman, 1997; Pettet, McKee, & Grzywacz, 1998;
Geisler, Perry, Super, & Gallogly, 2001). Contour integra-
tion, or grouping, is strongest for the smallest turning
angles, and weakens with their increasing magnitude. The
greater the turning angle between two given contour frag-
ments, therefore, the less likely it is that they will group
perceptually into a single unit. If the representation of
smooth contours is governed by a similar dependence, cur-
vature extrema would constitute the ‘‘weakest links’’ along
a contour—thereby suggesting that they provide the most
natural break points for segmenting a contour.

Studies of contour integration do not differentiate
between curvature of positive and negative sign, because
they generally employ open contours for which the sign
of curvature is not canonically defined. However, in the
related domain of visual completion of partially-occluded
shapes, Liu, Jacobs, and Basri (1999) demonstrated an
added influence of convexity on the amodal grouping
of contours. Concave pairs of contour fragments were
less likely to be perceptually grouped into the representa-
tion of a single surface than corresponding convex pairs.
This study thus suggests that negative minima, even more
than positive maxima, may serve as points of weak con-
nectedness—giving further strength to the idea that they
function as natural segmentation points for the visual
system (a similar asymmetry in grouping between positive
maxima and negative minima has been shown by Singh
& Hoffman, 1998, in the context of perceptual
transparency).

1.4. Shape segmentation and curvature extrema

Despite a strong theoretical basis and compelling visual
examples, direct performance-based psychophysical evi-
dence for automatic shape segmentation at negative min-
ima is currently limited. In recent years, behavioral work
has begun to show differential representation of curvature
extrema based on their sign of contour curvature. Bare-
nholtz et al. (2003) and Cohen et al. (2005) showed that
observers are much more sensitive to shape changes involv-
ing negative minima of curvature than those involving
positive maxima. Bertamini (2001) showed that observers
are faster and more accurate in making positional (height)
comparisons between an external landmark and a convex
extremum, vs. a concave extremum. A third study by

inflection

neg. minimum

pos. curvature
neg. curvature

pos. maximum

Convex

Fig. 1. The figure demonstrates three types of curvature landmarks,
positive maxima, negative minima, and inflections.
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Lamote and Wagemans (1999), involving the detection of
small gaps in closed contours, showed that observers were
better able to detect gaps that fell on positive maxima of
curvature, relative to those that fell on negative minima.
These studies point to the distinct roles played by the two
types of curvature extrema in various tasks. Rather than
suggesting that one type of extremum is emphasized more
or less in visual representation than the other, these studies
taken together (along with physiological work in area V4;
see Pasupathy & Connor, 1999, 2001) provide evidence
for the hypothesis that negative minima and positive max-
ima are represented differentially.

But what role does the differential status of these two
types of curvature extrema play in the visual representation
of shape? Understanding of this issue is still quite incom-
plete. Behavioral evidence for part segmentation based on
contour geometry thus far has involved one of two difficul-
ties. Performance-based measures have mostly involved rel-
atively indirect inference of part segmentation from other
visual phenomena, such as judgment of object symmetry
(Baylis & Driver, 1994), attentional superiority within parts
(Barenholtz & Feldman, 2003; Vecera, Behrmann, & Fila-
pek, 2001; Watson & Kramer, 1999), or visual search for
shapes (Hulleman, te Winkel, & Boselie, 2000; Wolfe &
Bennett, 1997; Xu & Singh, 2002). In an unpublished study
described briefly in a review paper (Baylis & Driver, 1995),
observers viewed stimuli composed of a vertical rectangle
divided by a single jagged contour into two lateral regions,
one red and one green. Observers were instructed to mem-
orize either the red or green object. In the test phase, a hor-
izontal section of the original stimulus or a similar
distracter section was presented. Observers were asked to
indicate whether this section matched the initial stimulus.
Results showed that observers were faster and more accu-
rate to verify the presence of the test section if it contained
a contour segment that was largely convex (with regard to
the assigned study color) as opposed to primarily concave.
This study brings to light a question that remains open
throughout studies of part decomposition. A tendency to
favor convex stimuli is well documented, dating back to
Rubin’s observations (Rubin, 1921). Since parts defined
by negative minima will often be largely—but not
entirely—convex,1 it has been impossible based upon previ-
ous research to determine which factor is dominant in
visual part segmentation: Are parts defined simply through
convexity—either contour-based (Latecki & Lakamper,
1999; Vaina & Zlateva, 1990) or region-based (Rosin,
2000)—or are they segmented explicitly at negative
minima?

At the other end of the spectrum are experimental stud-
ies where observers are asked to explicitly draw part cuts
on line drawings of familiar objects by hand (e.g. De Win-
ter & Wagemans, 2004, 2006; Siddiqi, Tresness, & Kimia,

1996). De Winter and Wagemans (2004, 2006) have
recently conducted several large scale studies which ana-
lyzed the hand-drawn part cuts generated by hundreds of
observers. In doing so, they were able to quantify several
geometric influences on part segmentation. This included
demonstrating that, when asked to draw cuts, observers
generally selected negative minima as segmentation points
more often than other locations (although they also
selected inflections and positive maxima). De Winter and
Wagemans’ studies also demonstrated that top–down fac-
tors, such as the recognizability of shapes as known
objects, interact with bottom–up geometric factors. Specif-
ically, cognitive knowledge of an object’s functional parts
mediates the number and placement of part cuts drawn
by observers. For instance, one’s knowledge that a wing
is a functional part of a bird may lead one to segment it,
regardless of the specific geometry of the occluding con-
tour. The reliance on familiar shapes means, however, that
contour geometry cannot be manipulated parametrically—
thus making it difficult to quantify the influence of contour
geometry in the absence of recognition. Moreover, these
studies do not provide evidence for the automaticity of part
segmentation.

One study using 3D surfaces of revolution, shown as
structure-from-motion displays, tested observers’ memory
for sections of the studied shape (Braunstein, Hoffman, &
Saidpour, 1989). When observers were asked to choose
between four alternatives—a part with negative minima
endpoints, a similar part with positive-maxima endpoints,
and two distractors—observers selected the negative-min-
ima option roughly 66% of the time. However, when the
test options included only one veridical segment, observers
were just as likely to select maxima-defined segments as
minima-defined segments. Clearly, more definitive evidence
is needed. The current work examines whether there is an
automatic advantage for geometrically determined segment
classes. Additionally, we will expand this investigation fur-
ther than simply investigating which type of part is pre-
ferred, to examine a wider class of geometric influences
on part segmentation.

The current experiments use a performance-based seg-
mentation method that taps more directly into visual
mechanisms of part segmentation. We employ two ver-
sions of this method: segment verification (Experiments
1 and 2) and segment identification (Experiments 3 and
4). The method allows a quantitative measure of the per-
ceptual naturalness of candidate parts defined by specific
geometric attributes. We are thus able to directly compare
the perceptual efficacy of different extrema types (Experi-
ment 1 and 2) on a wide class of randomly-generated
shapes. Additionally, we compare the perceptual natural-
ness of segments defined by uniform sign of curvature
(delineated by inflection points—where contour curvature
switches its sign) to those bounded by positive maxima
and negative minima (Experiment 2). Finally, in addition
to examining geometric determinants of perceived part
boundaries, it is important to understand geometric deter-

1 Negative minima, by definition, lie in concave regions of the bounding
contour. Hence parts segmented at smooth negative minima will invari-
ably contain sections of negative curvature.
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minants of part salience. We examine the influence of geo-
metric properties on strength of segmentation—that deter-
mine a graded spectrum of shape decomposition
(Experiments 3 and 4).

2. Experiments

Experiments 1 and 2 employed a segment-verification
task (SVT). Observers were shown a test segment, which
was followed by a mask, then an entire entire probe shape
(see Fig. 2). Test segments matched a portion of the probe
shape on 50% of trials. The observer’s task was to indicate
whether or not each trial contained a match between the
test segment and the probe shape.

The SVT relies on a similar rationale as a task employed
by Palmer (1977) to demonstrate the hierarchical structure
of perceptual representation. In Palmer’s task, observers
were asked to verify the presence of a specific configuration
of straight-line segments within a larger figure made up of
such segments. Palmer’s data showed that observers were
fastest to identify a group of segments that fell within the
same perceived hierarchical unit. The SVT used here, sim-
ilar to that employed by Waeytens, Hanoulle, Wagemans,
and d’Ydewalle (1994) (see also Leek, Reppa, & Arguin,
2005), differs in several respects. Stimuli used in these
experiments were randomly-generated smooth outline
shapes. We were thus able to explore the process of seg-
mentation over a wide class of smooth 2D shapes, and test
which geometric properties of the occluding contour are
most predictive of part segmentation. Half of the trials pre-
sented segments selected from the test shape. In mismatch
trials, non-target segments were generated via a random
distortion of a segment taken from the shape (described
below). This method allowed multiple levels of task diffi-
culty (created by manipulating the magnitude of vertex dis-
placement) and allowed measurement of discrimination
performance using d 0.

The presentation order—test segment before the probe
shape—was chosen based on observers’ difficulty with the
task in pilot studies when the order was reversed (yielding

near-chance performance).2 In addition to the test segment
itself, a thin gray border was presented parallel to the seg-
ment (see Fig. 3). This border indicated the inside of the
shape and served two purposes: it decreased the difficulty
of the task by cueing observers to the general area on the
probe shape on which to search for the test segment. It also
permitted a correct figure/ground assignment, offsetting
any bias observers may have to see the isolated segment
as convex.

2.1. Experiment 1a: Negative minima vs. positive maxima

Experiment 1a compared the role of different types of
curvature extrema in shape segmentation. Accuracy was
measured for trials in which test segments were bounded
on either side by positive maxima, or by negative min-
ima, of curvature. If part decomposition is determined
by negative minima as candidate boundaries, as postu-
lated by the minima rule, accuracy for minima-bounded
segments should be substantially greater than for max-
ima-bounded segments. Positive maxima constitute the
best comparison case for testing the role of negative min-
ima, since the two types of curvature extrema are locally
equivalent, differing only in their sign of curvature.
Moreover, by Attneave’s analysis, they are postulated
to have the same informational content.3 This experiment
thus investigated whether curvature extrema play differ-
ent roles in shape segmentation, based on their sign of
curvature.

2.1.1. Methods
2.1.1.1. Observers. Twelve Rutgers University undergradu-
ates participated in exchange for course credit. All were
naı̈ve to the purpose of the experiment.

Test segment
presented in
isolation (350ms)

Mask (500ms)

Probe shape
(presented until 
response)

Tim
e

Fig. 2. An illustration of the trial sequence used in Experiments 1 and 2.

2 It should be noted that this presentation order only strengthens the
logic on which the SVT rests, namely, that segments constituting natural
units of shape for the visual system will produce better verification
performance. In all trials, the observer has precise information about the
segment before the shape appears. Greater failure in one condition to
verify the segment’s identity within the shape indicates a greater degree of
incongruence between the perceptual parsing of the shape and the
artificially divided segment.

Maxima Segment Minima Segment

border
ownership
cue

Probe ShapeTest Segments

Fig. 3. Test segment types used in Experiments 1a and 1b.

3 Both extrema types are local peaks of curvature magnitude. However,
for randomly-generated closed shapes, positive maxima tend on average to
have greater curvature magnitude.
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2.1.1.2. Stimuli. Probe shapes were random 2D smooth
shapes presented as outlines. Shapes were generated online
thus resulting in a unique set of shapes for each observer.
This technique was employed to create a wide stimulus
set. Each shape was first randomly generated as a 12-point
polygon measuring between 0.86" and 4.28" of visual angle
in diameter. The location of each point on the polygon was
selected by projecting 12 radial axes, initially separated
equally in polar angle (by 30"), from the center of the
screen. In order to create variability in shapes, a random
angular offset was applied to each vertex (uniformly dis-
tributed on [!5", 5"]). This resulted in an angular separa-
tion ranging between 20" and 40" between neighboring
points. The radial distance of each point was drawn from
a uniform distribution between 0.43" and 2.14" of visual
angle. A smoothing operation was then applied to each
shape by fine-sampling the closed contour and convolving
with a 1D Gaussian.

Two versions were created for each shape—the probe
shape and the distorted shape. The distorted shape was
generated by applying a displacement of set magnitude,
but random direction, to each vertex in the initial polygon
defining the probe shape. Four distortion magnitudes were
used. Each displaced vertex was tested for a possible rever-
sal in the sign of curvature (i.e., a switch form convex to
concave, or vice versa) in the contour, resulting from the
distortion procedure. Distortions resulting in such reversals
were rejected; a new distorted shape was then sampled
using the same procedure.

Curvature extrema were identified as zero crossings of
the third derivative of the contour defining shape’s outline.
Segments were generated by selecting two consecutive
extrema of the same sign (either both positive maxima or
both negative minima) with at least one intervening extre-
mum of the opposite sign. Thus, each minima-defined seg-
ment contained at least one positive maximum between its
minima endpoints, and vice versa. If a generated shape did
not contain any suitable segment, it was discarded and a
new shape was sampled.

For match trials, a test segment of the appropriate
type was randomly selected from the probe shape, and
presented in conjunction with the probe shape. For mis-
match trials, test segments were selected from the corre-
sponding section on the distorted version of the shape,
and presented in conjunction with the probe shape.
Probe shapes and test segments were presented as white
contours, "1 arcmin thick, against a black background.
Test segments were presented with a border cue that indi-
cated the direction of the ‘inside’ of the probe shape. The
border cue was drawn as a parallel gray segment, drawn
by moving each point on the test segment in the locally
normal direction, toward the inside of the probe shape
from which the segment was selected. It was 4 arcmin
thick.

2.1.1.3. Design. Three variables were manipulated: segment
type (minima-bounded segments, i.e., segments whose end-

points were negative minima of curvature, or maxima-
bounded segments), trial type (match or mismatch), and
distortion level (10, 14, 18, or 22 arcmin) in mismatch trials.
Trials were presented in blocks of 32. In total, there were 20
blocks for a total of 640 experimental trials, preceded by
two practice blocks.

2.1.1.4. Procedures. Observers were shown the following
sequence on each trial (see Fig. 2): (i) a test segment
(350 ms), (ii) a mask (500 ms), and (iii) the entire probe
shape (presented until response). The test segment matched
exactly a portion of the probe shape on 50% of trials. The
observer’s task was to indicate (yes/no) by keyboard press,
whether or not the test segment matched a portion of the
probe shape. Incorrect responses produced a feedback
tone.

2.1.2. Results and discussion
Results indicated much greater response accuracy for

minima-defined segment trials (mean accuracy = 75.6%,
SE = 1.7) than maxima-defined segments (mean accu-
racy = 63.7%, SE = 2.6) Converted to d 0 this difference
translated into a nearly 100% increase in sensitivity. This
difference in sensitivity persisted across all levels of distor-
tion. The mean sensitivity for minima-defined segments
was 1.49 (SE = .14) as compared to maxima-defined seg-
ments (mean = .76, SE = .17). An analysis of variance
yielded significant main effects for segment type
(F(1,11) = 32.4, p < .0001) as well as distortion level
(F(3,33) = 18.0, p < .0001). Not surprisingly, discrimina-
tion performance improved with increasing distortion level.
Moreover, there was a significant interaction
(F(3,33) = 5.0, p < .01). As is evident in Fig. 4, the differ-
ence in performance between positive maxima and negative
minima is greater for larger distortions.

Observers were thus far more accurate to correctly ver-
ify the presence of contour segments taken from probe
shapes if those segments were bounded by negative minima
of curvature, than if they were bounded by positive max-
ima of curvature. Broadly speaking, these results suggest
first that subsets of a shape are automatically segmented
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Fig. 4. Results of Experiment 1a. Error bars indicate standard error.
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by human vision. Observers were not overtly asked to
demarcate or otherwise indicate parts, but simply to per-
form the task of verifying whether or not a segment
belongs to a shape. The fact that one type of contour seg-
ment—as determined by the geometric properties of its
boundaries—was more verifiable than the other, suggests
that one type of segment approximates more closely the
natural units of shape as defined by the visual system. Spe-
cifically contour fragments with negative-minima end-
points were favored over those with positive-maxima
endpoints.

2.2. Experiment 1b: Segment length

Shapes necessarily have more total positive curvature
along their occluding contour than negative curvature.
A contour with more total negative curvature than posi-
tive curvature would not be closed. One consequence of
this geometric necessity is that segments of positive curva-
ture on a closed shape are frequently longer than those of
negative curvature. While the stimuli in Experiment 1a
had the benefit of being generated entirely at random—
thereby creating a wide class of shapes—a byproduct of
such generative freedom was that minima-bounded seg-
ments were on average longer than maxima-bounded seg-
ments. This geometric inequality may lead to an
alternative explanation of the data: perhaps the higher
performance for minima-bounded segments simply reflects
their increased lengths.

In order to investigate this possibility, Experiment 1b
performed a controlled modification of the first experiment
in which test segments in all conditions were constrained to
have the same mean and range of lengths. This control was
carried out by creating a balanced library of 640 pre-com-
puted probe-shape and test-segment pairs.

2.2.1. Methods
Methods were identical to those of Experiment 1a, with

the exception that trial stimuli (probe shapes and test seg-
ments) were pre-selected for segment length from shapes
randomly generated using the same procedure as the first
experiment. Specifically, stimuli were selected so that the
set of minima-defined segments had the same mean as the
set of maxima-defined segments (=90 arcmin), and a com-
mon range of ±26 arcmin. Trials were presented in random
order.

2.2.1.1. Observers. A new group of 12 Rutgers University
undergraduates participated in exchange for course credit.
All were naı̈ve to the purpose of the experiment.

2.2.2. Results and discussion
The differential pattern of results in Experiment 1b was

very similar to that of Experiment 1a, though there was a
small overall decrease in accuracy across conditions. Mean
accuracy for minima-defined segment trials was 69.9%
(SE = 2.4) as compared to 58.5% (SE = 2.4) for maxima-

defined segments. Converted to d 0, this translated to a
mean sensitivity of 1.11 (SE = .16) for minima-defined seg-
ments and .47 (SE = .16) for maxima-defined segments.
Once again there was a significant main effect of segment
type (F(1,11) = 42.9, p < .0001) as well as distortion level
(F(3,33) = 12.9, p < .0001). Their interaction was not sta-
tistically significant (Fig. 5).

It is clear from the results of Experiment 1b that the
minima-segment advantage cannot be attributed simply
to segment length. In both Experiments 1a and 1b, this
advantage was robust, and obtained across all levels of dis-
tortion tested.

2.3. Experiment 2: Curvature extrema vs. positive curvature

As noted in the Introduction, single-cell studies in area
V4 point to a piecewise coding of shape in the primate
visual cortex, with different units within a population
responding to either convex or concave segments of the
occluding contour, at different locations on a shape (Pasu-
pathy & Connor, 1999, 2001). One point of difference,
however, between these findings and Hoffman & Rich-
ards’ minima rule is that, in a coding scheme where indi-
vidual units respond to purely convex or purely concave
segments, the segmentation of the occluding contour
would occur not at negative minima of curvature, but
at inflection points—points where the occluding contour
switches from being concave to convex, or vice versa
(see Fig. 1). This reliance on inflection points is consistent
with the idea that the dichotomy between positive and
negative curvature is fundamental in shape representation:
regions of positive Gaussian curvature on smooth 3D
objects project to convex segments on the occluding con-
tour, and tend have a ‘‘thing-like’’ perceptual quality,
whereas regions of negative Gaussian curvature project
to concave segments on the occluding contour, and tend
to have a ‘‘glue-like’’ quality (Koenderink, 1984; Koend-
erink & Van Doorn, 1982). These considerations suggest
that inflection points should play a key role in the visual
segmentation of occluding contours. Indeed, some models
in the computer vision literature have explicitly proposed
segmenting shapes based on the convexity of the
candidate parts (Latecki & Lakamper, 1999; Rosin, 2000;
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Fig. 5. Results of Experiment 1b. Error bars indicate standard error.
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Vaina & Zlateva, 1990). The precise way in which convex-
ity is used differs from model to model. Some have
proposed that partitioning be executed in a way that results
in parts having only convex regions (e.g., Latecki &
Lakamper, 1999), whereas others propose overall maximi-
zation of part convexity for the entire shape decomposition
scheme (e.g., Rosin, 2000).

Although contour segments bounded by negative min-
ima often tend to have largely positive curvature, it is evi-
dent that for smooth shapes they must contain sections of
negative curvature as well (since, by definition, negative
minima themselves lie in negative-curvature segments of
the occluding contour). Which factor determines visual
part decomposition? Does the visual system explicitly
use curvature extrema (specifically, negative minima) for
segmentation, or does it partition shapes in a way that
preserves uniformly positive-curvature regions? In order
to differentiate between these two accounts, Experiment
2 compared segments bounded by extrema endpoints with
segments defined by uniform sign of curvature, bounded
by inflection endpoints. Since these inflection points
always occurred inside pairs of consecutive extrema of
the same sign of curvature, the resulting segments were
always shorter than the extrema-endpoint segments.
Therefore, it was necessary to include another inflection-
endpoint condition in order to examine the influence of
segment length. Thus we included segments that were
bounded by inflections immediately outside of a pair of
consecutive extrema. In this way, we were able to examine
the effect of increasing length between these landmarks. In
total there were six segment types (see Fig. 6), three
defined with respect to minima-bounded segments and
three defined with respect to maxima-bounded segments.
For each, the three segments included the original
extrema segments, as well as two types of inflection-
bounded segments—one contained strictly within the
extrema-defined segment (inflection-shorter segments) and
one strictly containing the extrema-defined segment
(inflection-longer segment).

2.3.1. Methods
2.3.1.1. Observers. Fourteen Rutgers University undergrad-
uates participated in exchange for course credit. All were
naı̈ve to the purpose of the experiment.

2.3.1.2. Stimuli. Probe shapes were generated using the
same random-generation procedure as before. Test seg-
ments bounded by inflection points were generated by first
selecting a segment bounded by two extrema of the same
type (using the same procedure as before), and then either
proceeding to the points of zero curvature inside the
extrema endpoints (for inflection-shorter segments) or to
the points of zero curvature outside both extrema (for
inflection-longer segments). As in Experiment 1, probe
shapes were generated by applying a smoothing operation
to the bounding contours of randomly-generated polygons.
The level of smoothing was much greater than in Experi-
ment 1 in order to create meaningful inflection points.
However, extended segments of zero curvature (rather than
a single point) sometimes remained. In these cases, the
inflection was taken to be the midpoint of the zero curva-
ture segment.

Six types of segments were used: minima-bounded
segments, inflection segments—shorter than minima,
inflection segments—longer than minima, maxima-
bounded segments, inflection segments—shorter than
maxima, inflection segments—longer than maxima (see
Fig. 6).

2.3.1.3. Design. Experiment 2 manipulated four variables:
segment base type (minima-based vs. maxima-based), seg-
ment length (inflections-shorter, extrema, inflections-
longer), trial type (match vs. mismatch), and distortion
level (14, 18, 22 arcmin). Twenty blocks of 36 trials were
presented to each observer, preceded by two practice
blocks.

2.3.1.4. Procedure. The stimulus presentation and trial
sequence were identical to Experiments 1a and 1b.

2.3.2. Results
Fig. 7 shows performance for all segment types and

distortion levels. An ANOVA revealed a significant
main effect for segment base type (minima-based or
maxima- based) (F(1,13) = 21.64, p < .0001), namely, a
superior performance for minima-based segments over
their maxima-based counterparts. There was a main
effect of segment length (F(2,26) = 10.24, p < .001)
showing an overall increase in performance with
increasing segment length. Finally, there was a signifi-
cant effect of distortion level (F(2,26) = 36.89,
p < .0001). The interaction between between segment
base type and segment length was also significant
(F(4,44) = 5.48, p = .01).

Since the influence of distortion level was consistent
across all six types of segments, we focus on the interaction
between segment base type and segment length. Fig. 8

Minima-
defined
segment

Maxima-
defined
segment

Inflection
shorter

Extrema Inflection
longer

Segment Types

Probe Shape

Fig. 6. Segment types for Experiment 2. Only the white contour was
presented.

2832 E.H. Cohen, M. Singh / Vision Research 47 (2007) 2825–2840



shows the data collapsed across distortion levels. Perfor-
mance for all three minima-based segments was superior
than that for all maxima-based segments. The highest per-
formance was observed for the minima-bounded segments
and the longer-than-minima inflection segments.

Focusing on the three minima-based segments, we find
an asymmetric differential in performance, in going from
the minima-bounded segments to the inflections-shorter
vs. inflection-longer segments. There is a large drop in per-
formance in going from the minima-bounded segments to
the inflections-shorter segments. However, the perfor-
mance for the inflections-longer segments is no better than
that for the minima-bounded segments. This asymmetry
indicates that differences in accuracy were not due to differ-
ences in segment length per se, but rather due to the pres-
ence of negative minima. In other words, performance
increased to the extent that a minima-defined unit was pres-
ent. Furthermore, the leveling off is unlikely to be due to a
ceiling effect. All three distortion levels (collapsed in Fig. 8)

exhibit the same pattern of leveling off from minima to
longer than minima inflections, even though they have dif-
ferent accuracy levels. Finally, the raw accuracy data show
that no condition in Experiment 2 (for either match or mis-
match conditions) yielded a mean accuracy higher than
82%, thus making a ceiling effect unlikely.

It is also noteworthy that the asymmetry found for
minima-based segments was not observed for the max-
ima-based segments; this curve shows a roughly linear
(though barely significant) increase in accuracy with
increasing segment length. Fig. 9 shows these differentials
in performance (‘‘slopes’’)—from inflection-shorter to
extrema segments, and extrema segments to inflection-
longer segments—for both minima-based and maxima-
based segments. This plot clarifies that a significant
difference in slope is observed only for the minima-based
segments. These results thus provide further evidence that
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negative minima provide the strongest contour-based
cues to shape segmentation.

2.3.3. Discussion
The results of Experiment 2 indicate that segments with

negative-minima boundaries represent the most identifiable
segment units. Simply put, performance increased to the
extent that a minima-defined unit was present in the test
segment. Performance increased with segment length from
shorter inflection segments to minima-bounded segments.
However, performance for the minima and longer-than-
minima inflection segments was virtually identical—consis-
tent with the fact that these two segment types contain the
same ‘natural part’ unit.

The current results show no evidence of an explicit role
of inflections in segmentation. Segments of uniform posi-
tive curvature were not as readily identified as minima-
defined segments. Uniform positive-curvature or strict
convexity thus does not appear to be the key geometric
factor in part segmentation. Rather, negative minima of
curvature determine decomposition.4

3. Graded segmentation and part salience

Although the preceding evidence has brought us closer
to understanding the way in which part boundaries are
visually defined, our understanding of the role of parts
within a global representation of complex shape remains
limited. Complex objects may contain many parts. Within
a shape’s global representation, the status of a given shape
part is clearly dependent upon many factors including
scale, object complexity, and other local and global geo-
metric determinants. Visual experience suggests a contin-
uum of part importance, upon which mere texture-like
surface variations are given low emphasis, and prominent
parts are awarded high emphasis. It has long been sug-
gested that complex shape representations are organized
as hierarchical tree structures (Marr & Nishihara, 1978;
Palmer, 1977; Rom &Medioni, 1993). More stable or more
salient parts are represented at higher levels (near the root
of a hierarchy tree), while smaller or less stable parts are
represented at lower-levels. However, hierarchical structure
provides only the broadest framework for understanding
object representation: Even parts at the same hierarchical
level, and of the same size, can differ a great deal in their
perceptual salience.

Hoffman and Singh (1997) proposed that the represen-
tation of a part is graded, and that the visual salience of a
part is influenced by at least three geometric factors: its
size relative to the whole object, its degree of protrusion
(as defined by the ratio of its perimeter to the width of
the part at its base), and the strength of its boundaries
(as characterized by both the magnitude of curvature at
the part boundaries, and the turning angle between the
two nearest inflections on either side of a boundary
point). This gradedness of part representations is also
emphasized by a computational theory of shape represen-
tation by Siddiqi, Kimia, Tannenbaum, and Zucker
(2001). Siddiqi et. al proposed that shapes can be
described via a combination of three continuous pro-
cesses—bending, protruding, and partitioning. The appli-
cation of these processes generates a 3D space within
which a shape’s description may be localized. Though
both these schemes have strong intuitive appeal, little
direct psychophysical support exists for the way in which
individual geometric factors influence the strength or sal-
ience of a part’s representation (but see Hoffman & Singh,
1997 and Siddiqi et al., 2001, for influences mediated by
figure-ground perception and visual search, respectively).
The following experiments directly measure the contribu-
tions of boundary strength, contour length, base-width,
and part protrusion to a part’s visual salience.

3.1. Segment identification task

The yes/no segment-verification method used in the pre-
vious experiments required a distortion in the shape of the
test segment (for the mismatch or ‘‘no’’ trials). Unlike
Experiments 1 and 2, which compared performance across
segments with qualitatively different boundary cues, Exper-
iments 3 and 4 manipulated quantitative properties of test
segments—such as the turning angles at their part bound-
aries. The random distortion method used in SVT does
not permit tight control over these properties across both
versions of the segment (the original and the distorted). It
was therefore necessary to modify the experimental method
to a forced-choice task that did not involve segment
distortion.

The 4AFC segment-identification task (SIT) employed
in Experiments 3 and 4 allows direct measurement of the
influence of individual geometric factors on the represen-
tational strength of a given part. Observers were shown
an outline shape followed by a contour segment taken
from that shape, and asked to identify the position of
the segment within the shape by choosing between four
screen quadrants (see Fig. 10). The experimental ratio-
nale for the SIT was that identification performance
should be superior for contour segments that are more
strongly (or more likely to be) emphasized in a shape’s
representation. By systematically manipulating various
geometric properties of parts, we can better understand
the role of parts in shape representation, and their geo-
metric determinants.

4 Although the results of Experiment 2, provide evidence against part
segmentation based on uniformly positive curvature (i.e., convex-only
segments), or parsing at inflection points, they do not automatically rule
out models based on the maximization of convexity for the entire part
decomposition scheme (e.g., Rosin, 2000). Such decomposition methods
also often result in part boundaries located at or near negative minima of
curvature (although they tend to perform poorly on shapes with curved
axes—because such shapes receive low convexity measures, despite being
perceived as a single part).
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3.2. Experiment 3: Boundary strength

In Experiments 1 and 2, we demonstrated that, in the
context of closed contours bounding 2D shapes, the sign
of curvature plays an important role in shape segmenta-
tion. In particular, negative minima are more effective in
creating boundaries between parts than positive maxima.
In the current experiment, we examined the role of cur-
vature magnitude at those negative minima, namely, their
‘boundary strength’ (Hoffman & Singh, 1997). We inves-
tigated whether parts become more identifiable when
their boundaries are characterized by high negative-cur-
vature as opposed to low-negative curvature. Observers
performed the segment-identification task for a set of
shapes and test segments that varied in the turning angle
at their boundaries, and their contour length (see
Fig. 11).

3.2.1. Methods
3.2.1.1. Observers. Sixteen Rutgers University undergradu-
ates participated in exchange for course credit. All were
naı̈ve to the purpose of the experiment.

3.2.1.2. Stimuli. Study shapes in Experiments 3 and 4
were first created as randomly-generated polygons similar
to those in Experiments 1 and 2. However, a lower
degree of smoothing was applied in order to permit tigh-
ter control over the turning angles. In order to generate
test segments with specific values of turning angle at the
boundaries, two steps were employed. For each shape, a
test segment, defined by the contour falling between two
consecutive negative-minima, was selected at random.
The shape was then modified locally to set the turning
angles at the boundaries of the segment to the required
value. Specifically, each endpoint was translated along
the bisector of the angle formed by its neighbors on
either side, so that the angle formed by the three points
had the required value. The resulting polygonal shape
was then smoothed using a 1D Gaussian convolution
as in Experiment 1. This technique was employed to pro-
duce a large library of randomly-generated shapes for
each turning-angle condition. After shape generation, test
segments were measured for length. Based on these two
properties, 500 shape–segment stimulus pairs were
selected such that there were 50 shapes for each of the
5 · 2 conditions.

When test segments were presented in isolation, they
were rotated so that they always pointed upward, i.e., with
their midpoint extending into the upper middle screen
quadrant. Each segment was presented just above the cen-
ter of the screen. This technique prevented the segment’s
orientation or position from providing a cue as to its origi-
nal location on the shape.

3.2.1.3. Design and procedure. Observers were presented the
following sequence on each trial: (1) the study shape for
1000 ms, (2) a mask 500 ms, (3) test segment for 500 ms,
(4) a mask 500 ms, and (5) a screen divided into four quad-
rants presented until response (see Fig. 10). Their task was
to select, by key press, the quadrant within which the seg-
ment appeared on the probe shape. Incorrect responses
received auditory feedback.

study shape
 (1000ms)

mask
(500ms)

test segment
(500ms)

mask
(500ms)

Decision screen
(presented until

 response)

Fig. 10. The trial sequence for the segment-identification task used in Experiments 3 and 4.
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Two independent variables were manipulated: segment
length (with mean and ranges of: 137 ± 11 arcmin and
68.5 ± 11 arcmin), and the turning angle at the segment’s
boundary points (15", 30", 45", 60", and 75"). Thus, ten
types of segment were possible (see Fig. 11). Fifty unique
shapes were generated for each of the 10 segment types,
resulting in 500 trials. These trials were presented in 20
blocks of 25 each, and preceded by 30 practice trials.

3.2.2. Results and discussion
Significant effects were obtained both for segment length

(F(1,15) = 61.25, p < .0001) and for turning angle at part
boundaries (F(4,60) = 33.44, p < .0001), with a marginal
interaction between the two (F(4,60) = 2.50, p = .05).
The results thus demonstrate a systematic influence of
boundary angle and segment length on segment identifica-
tion (see Fig. 12). A monotonic increase in accuracy with
boundary strength is evident in both segment length condi-
tions. As test segments were characterized by increasing
turning angles at their boundaries, observers were more
accurate to identify them. A roughly 12% increase in per-
formance was observed for longer segments as compared
to shorter segments, across boundary angles.

3.3. Experiment 4: Segment length and protrusion

In addition to the influence of turning angle at part
boundaries, the results of Experiment 3 exhibited a system-
atic increase in identification performance with increasing
segment length. This is not surprising: the longer the test
segment, the greater its percentage of the occluding con-
tour of the study shape. Any contour-based shape repre-
sentation scheme would thus predict a systematic increase
in performance with increasing segment length. However,
a description of just the occluding contour is unlikely to
serve as the final representational format for shape. A great
deal of evidence suggests that the visual system represents
not just the contour (i.e., a 1D ‘‘string’’ representation),
but the region bounded by the contour, e.g., using a skele-

ton or axis-based description (Blum, 1973; Blum & Nagel,
1978; Brady & Asada, 1984; Burbeck & Pizer, 1995; Feld-
man & Singh, 2006; Fulvio & Singh, 2006; Kovacs, Feher,
& Julesz, 1998; Leyton, 1988; Marr, 1977; Marr & Nishiha-
ra, 1978; Sebastian & Kimia, 2005; Singh & Hoffman,
2001).

In Experiment 4, we investigated whether a region-based
property—namely, part protrusion—exerts a systematic
influence on segment identification performance. Defined
as the ratio of a part’s perimeter (or segment length) to
the length of its ‘‘base’’ (the straight-line join of its two
boundary points), protrusion provides a measure of the
extent to which a part ‘sticks out’ from a shape (Hoffman
& Singh, 1997). Parts with equal contour length may vary
widely in their protrusion. In Experiment 4, we examined
whether part protrusion provides a better predictor of seg-
ment identification performance than sheer contour length.
This was done by manipulating two parameters of the test
segment: contour length and base width (measured as the
distance between the two boundary points). For a fixed
segment length, increasing its base width decreases the
part’s protrusion. For a given base width, increasing seg-
ment length increases the part’s protrusion. The factorial
design obtained by crossing contour length with base width
thus allows an evaluation of the individual influences of
both variables—and hence the influence of part protrusion,
which depends on both.

3.3.1. Methods
3.3.1.1. Observers. Twelve Rutgers University undergradu-
ates participated in exchange for course credit. All were
naı̈ve to the purpose of the experiment.

3.3.1.2. Stimuli. Study shapes and test segments were gen-
erated using a similar technique as in Experiment 3. Base
lengths were manipulated by translating the endpoints of
the test segment on the study shape equally, either toward
or away from each other, along their straight-line join. Seg-
ment lengths were selected in the same manner as described
in Experiment 1b. Although the turning angle at boundary
points was not a manipulated variable, turning angles were
constrained to lie between 45" and 65".

3.3.1.3. Design and procedure. The trial sequence and the
task of the observer were identical to Experiment 3. Two
independent variables were manipulated: segment length
(three ranges: 80 ± 11 arcmin, 125 ± 11 arcmin, and
170 ± 11 arcmin), and base width (24, 37, 50, and 62 arc-
min). A total of 12 types of test segments were thus used
(see Fig. 13). Fifty unique shapes were generated for each
segment type, resulting in 600 experimental trials. These
trials were presented in 20 blocks of 30 each, preceded by
30 practice trials.

3.3.2. Results and discussion
As expected, segment length exerted a significant influ-

ence on identification performance (F(2,22) = 89.28,
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p < .0001), with longer segments yielding better perfor-
mance. In addition, the part’s base width also exhibited a
significant main effect (F(3,33) = 91.56, p < .0001), with
longer base widths yielding poorer identification perfor-
mance. The interaction between segment length and base
width was also significant (F(6,66) = 5.89, p < .0001). As
noted above, this is the pattern of performance one would
expect based on the influence of part protrusion.

A simple regression revealed that segment length
accounted for 40.6% of the response variance. However,
when base width was added to the regression model, even
in linear form, the combination of segment length and base
width accounted for 65.9% of the variance—a statistically
significant boost in R2 (p < .0001).

One may generally expect wider bases to fall on larger
parts. The decrease in performance associated with increase
in base width indicates, however, that the increase in per-
formance was not simply due to a influence of part size,
but rather due to an influence of increasing part protrusion,
as a result of decreasing base width (Fig. 14).

At a first level of analysis, the results reveal three influ-
ential factors in determining part salience: contour length,
base width, and part protrusion. The results also suggest,
however, that while contour length is a natural predictor
of part identification, part protrusion (based on a combina-
tion of contour length and base-width) provides a stronger
predictor. The finding that decreasing base width increases
part identification suggests that parts are not more salient
simply based on the percentage of the stimulus they com-
prise. Rather, properties of the part’s region, such as its
protrusion, are also strongly determinant in a part’s repre-
sentational strength.

4. General discussion

We have presented a new method for studying geometric
influences on part-based representation of shape. By
employing novel and randomly-generated shapes in a per-
formance-based task, we quantified the influence of shape
geometry on part segmentation in the absence of naming
or recognition of familiar shapes. Segment identification
was found to depend on qualitative geometric properties
of the segments’ endpoints, as well as on metric properties
of the bounded region. Negative minima provided the best
contour-based cue to segmentation: segments with nega-
tive-minima endpoints were identified with greater accu-
racy than those with comparable positive-maxima
endpoints. When segments with curvature-extrema end-
points were compared to those with inflection endpoints,
segments with negative-minima endpoints were again
found to elicit superior identification. This superiority
was not an artifact of increased segment length: increasing
segment length beyond the negative-minima endpoints of a
segment did not result in additional increase in perfor-
mance. These findings also suggest that uniform sign of
curvature does not provide the best characterization of per-
ceptually natural parts. Finally, the strength of part repre-
sentation was shown to be graded: increasing segment
length, turning angles at part boundaries, and part protru-
sion all resulted in a systematic increase in segment identi-
fication performance.

4.1. Structural shape representation

There is general consensus that the visual system seg-
ments object shapes into component structural units and
organizes the representation of shape in terms of these
units. However, which structural representation scheme is
employed by vision remains a topic of some debate. Given
evidence from neurophysiology (Pasupathy & Connor,
1999, 2001), it seems possible that shape is represented by
encoding curvature properties of its bounding contour.
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As discussed earlier, however, many have also argued for a
more region-based representation scheme that incorpo-
rates, in addition to contour properties, those of the
enclosed region as well—perhaps by employing an axis or
skeleton-based representation (Blum, 1973; Feldman &
Singh, 2006; Sebastian & Kimia, 2005). Such a scheme
allows one to capture additional shape properties such as
local and global symmetries.

The differential performance between positive- and neg-
ative-curvature segments throughout these experiments
itself suggests that representation of shape was not simply
contour-based. Segments in these two conditions were lar-
gely identical in terms of their local properties. In Experi-
ment 2, for instance, the influence of added contour
length was shown to be dependent on the type of surround-
ing segment. The fact that observers exhibit differential per-
formance with these segments suggests that representation
of the contour is necessarily tied to the region it encom-
passes. In this sense, it is perhaps not entirely apt to treat
the sign of curvature as a property simply of a contour—
since it necessarily alters region-based descriptors of shape.
Furthermore, the results of Experiment 4 demonstrate that
observers are sensitive to region-based properties of shape
not directly associated with the 1D representation of con-
tour, such as a part’s base width (or cut length) and its
degree of protrusion. Clearly, the differential influence of
such metric properties is not simply reducible to decreased
grouping or continuation as in studies of contour integra-
tion. Such findings, though, are only the beginning an
understanding of region-based representation.

4.2. Part independence

In Cohen and Singh (2006), we showed that geometric
properties determining part salience also determine the
extent to which a given part can be integrated into a glo-
bal estimate of a shape. For instance, when a part was
characterized by shallow boundaries, it strongly influ-
enced judgments of the shape’s global orientation. How-
ever, as a part’s boundaries became sharper, and the
part more distinct, its influence became less integrated
into the global estimate of the shape’s orientation. These
results suggested that the continuum of part salience may
be naturally characterized as one of part independence.
The extent to which a part constitutes a salient sub-unit
also determines the extent to which it is incorporated into
a unified global representation of the shape—and hence
the extent to which its influence is separable from the rest
of the shape in making a global shape estimate (such as
location or orientation).

4.3. Salience and spatial scale

One explanation for the increased part salience due to
contour length, boundary strength, and part protrusion
relates to responses across multiple spatial scales (see,
e.g., Burbeck & Pizer, 1995, for the influence of scale on

shape representation). Specifically, it is possible that a
part’s perceptual salience may be characterized in terms
of the range of spatial scales at which the part can be
detected. For instance, very shallow turning angles at neg-
ative minima will only be detectable—i.e., coded as distinct
from a straight contour—at a fine spatial scale. As the
turning angle gets sharper, however, even coarse scale
detectors will respond to the curvature extrema—whether
this is construed in terms of the responses of end-stopped
cells (see Dobbins, Zucker, & Cynader, 1987, 1989), or sim-
ply due to a weakening in contour integration due to the
large turning angles between neighboring edges along the
contour. A part with high protrusion will similarly tend
to be detectable at a wider range of spatial scales (specifi-
cally, even at coarser scales) than one with low protrusion.

Is spatial scale alone sufficient to explain the full spec-
trum of geometric influences on part salience? There seem
to be some hierarchical aspects of part perception that
are not easily reducible to spatial scale. For instance, a part
may be more salient, or receive greater emphasis in shape
representation, if it is perceived as a ‘base’ part (such as a
‘trunk’) from which other parts (such as ‘branches’) pro-
trude—even if that ‘base’ part is smaller in size. Further-
more, parts may vary in salience depending on the
number of surrounding similar parts (the tines on a fork
vs. the teeth of a comb). There is no doubt that the
multi-scale nature of basic visual processing can account
for many aspects of shape perception, and of properties
that determine a part’s perceptual status within a shape.
However, a full understanding of part-based representation
is likely to involve other, more structural and hierarchical,
characteristics as well. The experimental techniques devel-
oped here provide a tool that can provide insight into the
geometric influences on part segmentation and part sal-
ience. Uncovering how these geometric properties are
encoded by neural mechanisms remains a challenge for
future work.
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