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Although the orientation of line segments and simple shapes is a well-studied area of vision, little is known about geometric
factors that influence perceived orientation of complex multipart shapes. The study of these factors is of interest because it
allows for an insight into the basic problem of how local geometric attributes are integrated perceptually into a global shape
representation. We examined the perceived orientation of two-part shapes using an adjustment method and a 2AFC task. In
particular, we investigated the influence of the perceptual salience, or distinctiveness, of a partVas defined by the turning
angles at its boundariesVand its area relative to the main ‘‘base’’ part. In contrast to previous results on simple shapes, our
results exhibited large and systematic deviations of perceived orientation from the principal axis of the shape. For shapes with
sharp part boundaries, perceived global orientation deviated maximally from the principal axis and was approximated by the
axis of the main base part of the shape. With weakening part boundaries, the perceived orientation gradually approached the
principal axis of the entire shape, reflecting that both parts were taken into account in estimating orientation. The results are
consistent with a differentially weighted principal-axis computation in which the attached part is given systematically lower
weighting with increasing turning angles at the part boundaries. They thus allow a quantitative characterization of part salience
in terms of part independence: Turning angles at a part’s boundaries determine the extent to which its influence is
perceptually separable from the rest of the shape. We suggest that Robust Statistics may provide a useful framework for
quantifying the influence of part segmentation on visual estimation.
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Introduction

Initial measurements by biological visual systems are
confined to small, local Bapertures[ in retinal images.
Observers’ perception of object structure, on the other
hand, is known to be strongly influenced by nonlocal
attributes of an object’s geometry. A basic problem in
vision science is to understand how local image
measurements are integrated into the global representa-
tion of object shape. A natural way to approach shape
integration is to investigate how local properties of a
shape’s geometry influence the perception of a global
shape attribute. In this study, we use orientation as the
global attribute to be estimated. In particular, we
investigate how local geometric determinants of a part’s
visual salience affect the perceived overall orientation of
two-part shapes.

Part-based representation of shape

Prior research indicates that the human visual system
represents complex shapes in terms of simpler parts,
rather than as unstructured templates. It decomposes
shapes into smaller semi-independent parts and
organizes shape representation in terms of these parts and

their spatial relationships (see, e.g., Biederman, 1987;
Hoffman & Richards, 1984; Marr & Nishihara, 1978;
Palmer, 1977; Singh, Seyranian, & Hoffman, 1999).
Such structured representations1 have the benefit of
allowing for greater robustness under changes in view-
ing conditionsVfor instance, involving changes in
articulated poseVbecause the representation of an
object’s shape can be dissociated from any particular
spatial configuration that its parts may take.
Hoffman and Richards (1984) proposed that the visual

system uses negative minima of curvatureVpoints of
locally maximal magnitude of curvature in concave
regions along a shape’s occluding contourVto define
candidate boundaries between parts. This minima rule was
motivated by the principle of transversality, according to
which the intersection of two smooth surfaces almost
surely (i.e., with probability 1) generates a concave
tangent discontinuity at their locus of intersection2

(Guillemin & Pollack, 1974).
Part segmentation at negative minima has indeed been

found to explain a number of phenomena in shape
perception (see Singh & Hoffman, 2001, for a review),
including the perception of symmetry and repetition
(Baylis & Driver, 1994), changes in perceived shape
associated with reversals of figure and ground (Driver &
Baylis, 1996; Hoffman & Singh, 1997), the perception of
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transparency (Singh & Hoffman, 1998), the localization of
vertex height (Bertamini, 2001), visual search asymme-
tries (Hulleman, te Winkel, & Boselie, 2000; Wolfe &
Bennett, 1997; Xu & Singh, 2002), and differential
performance in comparing two probes along a shape’s
outline (Barenholtz & Feldman, 2003). Additionally,
change detection involving complex shapes indicates a
heightened sensitivity to concavities (Barenholtz, Cohen,
Feldman, & Singh, 2003; Cohen, Barenholtz, Singh, &
Feldman, 2005). More recently, we have shown using a
segment-identification task (Cohen & Singh, 2004) that
observers are substantially better at determining whether
or not a given contour segment has been taken from the
outline of a given shape if it is segmented at negative
minima of curvature, rather than at positive maxima or at
inflections.
Recent work in physiology also provides evidence for

curvature-based coding of contours in area V4 of the
macaque. Different sets of V4 neurons have been found to
be selective for contour segments with different magnitudes
of curvature and, moreover, for either positive or negative
curvature (i.e., locally convex or concave segments; see
Pasupathy & Connor, 1999, 2001). Selectivity for sign of
curvature is also found in the inferotemporal cortex, where
cell responses have been shown to generalize over mirror
reversals and contrast reversals of shapes but not over
figure-ground reversalsVwhich necessarily switch the
sign of curvature at each point along a contour (i.e.,
reverse the roles of local convexities and concavities;
Baylis & Driver, 2001).

Part salience

The studies cited above have brought us closer to an
understanding of the geometric properties that the visual
system uses in segmenting shapes into parts. However,
our understanding of how the representation of global
shape is organized by human vision using segmented
parts is still rather limited. In computational vision,
hierarchical representational schemes involving tree
structures have been proposed, where branches of the
shape’s medial-axis Bskeleton[ (Blum, 1973) correspond-
ing to different parts are organized in a tree hierarchy,
with smaller parts nested within larger ones (e.g., Kimia,
Tannenbaum, & Zucker, 1995; Rom & Medioni, 1993).
Although these representational schemes have a great deal
of intuitive appeal for biological vision as well, the precise
way in which the human visual system organizes the
global representation of shape using parts has yet to be
determined.
It is clear that not all parts have the same status in the

visual representation of a shape: A toe, for instance, has
quite a different status in the structural representation of the
human form than the torso. However, even with sheer size
and level in a shape’s hierarchy equated, two parts can have
very different perceptual salience. The smaller attached part

in each of the two shapes in Figure 1 has the same size and
is at the same level in its shape’s hierarchy (here, a simple
one, consisting of a single small part protruding out of a
larger Bbase[). However, the part on the left is consid-
erably more salient perceptually than the one on the right.
This example illustrates two geometric factors proposed
by Hoffman and Singh (1997) in their theory of part
salience: part-boundary strength and part protrusion. The
part on the left is delineated by negative minima that have
substantially greater turning angles than the one on the
right,3 and its protrusionVdefined by the ratio of its
perimeter to the length of its part cutVis also substantially
higher.
Previous work has documented some influences of the

turning angle, curvature, or both at part boundaries on part
salienceVfor example, via its influence on figure-ground
assignment (Hoffman & Singh, 1997), performance on a
task comparing two probes along a shape’s bounding
contour (Barenholtz & Feldman, 2003), and likelihood of
choosing a negative minimum as a part boundary (De
Winter & Wagemans, 2006).
In a recent series of experiments, we directly tested

the influence of turning angle at negative minima of
curvature (as well as other geometric properties) on the
perceptual salience of a part, using a 4AFC task (see
Figure 2). We employed the experimental rationaleVfirst
used by Palmer (1977) to measure part goodnessVthat
observers should be systematically better at verifying/
identifying parts with higher perceptual salience. On
each trial, a randomly generated 2D shape was briefly
flashed and masked. Following this, a contour segment
taken from the bounding contour of the shape was
presented, followed by a screen divided into four
quadrants (Figure 2a). The observers’ task was to
indicate the location of the contour segment on the
original shape, by choosing one of the four quadrants.
The results showed that observers’ accuracy on this
task increases steadily with the turning angle at part
boundariesVthereby indicating that parts defined by
higher turning angles at their part boundaries are

Figure 1. Demonstration of the difference in the perceptual
salience of a part arising from the turning angles at its part
boundaries and its protrusion (ratio of part perimeter to cut
length).
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perceptually more salient and more readily identified as
perceptual Bunits[ (Figure 2b).

Part salience as independence

The fact that parts within the same level of a shape’s
hierarchy can have very different perceptual salience
implies that a discrete representational format such as a
hierarchical tree must be supplemented with graded
information. A commonway of thinking about part salience
is in terms of the representational strength of a part in a
shape’s description: The higher the part’s salience is, the
stronger is its representation (e.g., Hoffman & Singh,
1997; Rom & Medioni, 1993; Siddiqi & Kimia, 1995).
Such a view is consistent with claims in the literature that
perceptually salient parts enjoy special status, in terms of
being remembered, attended, or named more readily (e.g.,
Bower & Glass, 1976; Hoffman & Singh, 1997; Palmer,
1977; Reed, 1974).
A complementary way of viewing part salience is in

terms of part independence: Highly salient parts have a
higher likelihood of being segmented and are, thus, more

readily perceived as independent units. Under the part-
independence interpretation, part salience may be con-
strued as the extent to which a part’s representation is
perceptually separable from the rest of shape. Parts with
sharper turning angles at their boundaries, for instance, are
more likely to be perceptually segmented and represented
as distinct units.
Part independence is a complementary aspect of part

salienceVone that highlights a somewhat different con-
sequence. Whereas previous work has generally empha-
sized that more salient parts receive increased processing
resources (in terms of attention, memory, etc.), part
salience may have a somewhat different effect in contexts
involving the visual estimation of a global property of a
complex shape (i.e., when integration over the entire
shape is required). A highly salient part is likely to be
perceived as more separate from the rest of the shape.
Hence, it is likely to be weighted less strongly in the
estimation of a global property because its contribution is
less compatible with the bulk of the shape.
These considerations suggest the hypothesis that a

part’s salience should systematically influence observers’
ability to integrate the part into a global shape estimate:
The higher a part’s salience is, the more weakly the
part’s contribution should be incorporated into the global
estimate. In the experiments reported here, we tested this
hypothesis in the context of visual estimation of shape
orientation.

Perception of orientation

Orientation is one of the basic summary descriptors of
an object’s geometry. Apart from location and size, the
orientation of an object in the environment is one of its
most salient attributes and one that is crucial for
interaction and manipulation (such as determining grip
position or anticipating motion). Whereas the localization
of an object is determined based on its first-order
statisticsVthe mean of the coordinates of its interior
points (namely, its center of mass4)Vthe orientation is
determined by its second-order statisticsVthat is, the
Bspread[ of its points around the center of mass. Specif-
ically, it is computed based on the direction of the first
principal axis (i.e., the eigenvector of the covariance matrix
corresponding to the largest eigenvalue). This is equivalent
to the direction of the line that minimizes the sum of the
squared (perpendicular) distances to all points that con-
stitute the interior of the shape.5

The principal axis has been shown to provide a
perceptually valid measure of orientation for simple
shapes and dot clusters, in the context of both perception
(e.g., Boutsen & Marendaz, 2001; Lansky, Yakimoff,
Radil, & Mitrani, 1989; Li & Westheimer, 1997) and object
manipulation (e.g., Turvey, Burton, Pagano, Solomon,
& Runeson, 1992). Studies using dot clusters have shown
that the principal axis (which corresponds to their least

Figure 2. Illustration of the method and results from Cohen and
Singh (2004). (a) The trial sequence. Observers identified the
location of a contour segment on a previously presented shape by
choosing one of the four screen quadrants. (b) Results showed
that accuracy in the 4AFC task increases systematically with the
turning angles at the part boundaries. (The results also demon-
strated a systematic influence of segment length and part
protrusionVnot shown here).
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squares line; see footnote 5) consistently predicts their
perceived orientation (Lansky, Yakimoff, & Radil, 1987;
Lansky et al. 1989). The precision with which observers
estimate cluster orientation was found to depend on the
correlation strength around the least squares line: The
stronger the correlation, the more precisely observers
identified that direction. Nevertheless, observers exhibited a
high degree of accuracy in estimating the orientation (i.e.,
without systematic bias from the principal axis) even for
weakly defined axes (e.g., with correlation coefficients G.23).
Li and Westheimer (1997) showed that observers are

sensitive to the implicit orientation6 of simple symmetric
shapes (such as ellipses or the letter BX[) and that
estimates of implicit orientation exhibit many of the same
characteristics as the explicit orientation of a line segment.
For instance, implicit orientation was shown to produce an
oblique effect (see also Liu, Dijkstra, & Oomes, 2002).
Orientation was perceived with the greatest speed and
accuracy when the shape was vertical or horizontal,
despite the presence of oblique edges within the shape.
(Note that the implicit orientation of an ellipse, or the
letter BX,[ corresponds precisely to the direction of its
principal axis.) Based on their results, Li and Westheimer
suggested that the automatic computation of global shape
orientation may be performed by mechanisms closely
related to those computing the explicit orientation of a line
segment. Consistent with this suggestion, Boutsen and
Marendaz (2001) have shown, using a visual-search
paradigm, that the principal axis of a complex shape
(with a clear dominant axis but no salient part structure) is
computed sufficiently early to produce pop-out effects
based on orientation differences.
Given that cells in early visual cortical areas exhibit

orientation tuning for local edges, a particularly simple
neural model of shape orientation could be based simply
on pooling all local orientation measurements along a
shape’s bounding contour. Burbeck and Zauberman
(1997) examined this hypothesis by studying orientation
discrimination of rectangular shapes whose longer sides
were modulated sinusoidally. Bias in determining the
shapes’ orientation was found to depend on the relative
phase of the sinusoidal modulations on the two sides and,
moreover, for the in-phase modulations, on their spatial
frequency as well. Burbeck and Zauberman reasoned that
edge-based models cannot account for this influence of
relative phase because, in their stimuli, the mean edge
orientation was unaffected by their phase manipulation.
Moreover, they argued that the influence of edge-modu-
lation frequency also rules out a model based on the
responses of large-scale units whose receptive fields
encompass the entire shape: If a receptive field is large
enough to cover the entire shape, changes in the frequency
of modulation of its bounding contour should not affect its
response. Based on these results, Burbeck and Zauberman
proposed that the medial axisVinstantiated in terms of the
core model (see Burbeck & Pizer, 1995)Vmust play a role
in the perception of object orientation. (Their manipula-

tion of relative phase and spatial frequency had a system-
atic influence on the medial axis). Although Burbeck
and Zauberman did not consider such a model, the
computation of principal axis also predicts an influence
of relative phase and frequency modulation in their
shapes. (Appendix A shows the results of the principal-
axis computation applied to their shapes.)
Oomes and Dijkstra (2002) investigated the perceived

orientation of ellipsoids and other simple three-dimen-
sional (3D) shapes, presented stereoscopically. Observers
adjusted the orientation of a 3D crossVcomprising three
mutually perpendicular linesVto match the perceived
orientation of a 3D shape. Observers’ settings were found
to be precise, but in many cases, they exhibited large
deviations (up to 25 deg) from the 3D principal axis. By
decomposing observers’ 3D orientation settings into slant
(orientation in depth) and tilt (orientation in the image
plane), Oomes and Dijkstra found that the errors arose
almost entirely from the settings of slant. Observers’
orientation estimates were thus strongly biased toward
the principal axis of the projected silhouette of the 3D
objects.
The above studies indicate that human vision is

proficient at using the principal axis (at least in the
image plane) to compute overall orientation for a variety
of stimuli. Previous studies have, however, mostly used
relatively simple shapes that lack salient part structure.
In particular, the influence of clearly demarcated
component parts on the perceived orientation of complex
multipart shapes has not been directly investigated. In
this study, we begin this investigation by focusing on the
context of two-part shapes in which the parts are
arranged in a simple hierarchical relationship: a small
part protruding out from a larger base (see Figure 3). We
address the questions of how the global orientation of
such shapes is visually determined and with what degree
of precision it is represented.
There are two natural hypotheses concerning how global

orientation might be computed for shapes with multiple
parts. The firstVhomogenous computation hypothesisV
postulates that all points within a shape are treated
uniformly in computing the principal axis, irrespective of
part structure. In other words, the computation of principal
axis proceeds just as it does for simpler shapes. According
to the secondVpart-based computation hypothesisVthe
computation of shape orientation explicitly takes into
account the decomposition of the shape into parts. Principal
axes may be computed separately for individual parts and
then integrated into a global orientation estimate or the
principal-axis computation may proceed by assigning
different weights to different points within the shape,
depending on which part they belong to.
In the following experiments, we tested the Bnull[

hypothesis of the homogenous computation of orientation
in the context of two-part shapes: a small part protruding
out of a dominant base. We investigated how the decom-
position of a shape into partsVin particular, the perceptual
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salience of the attached partVinfluences the perceived
overall orientation of the shape. To this effect, we
manipulated two geometric properties of the two-part
shapes: the size of the smaller (attached) part and the
turning angles at its part boundaries. Perceived shape
orientation was measured using a method of adjustment
(Experiment 1) and a 2AFC task (Experiment 2).

Experiment 1

Method
Observers

Sixteen undergraduate students at Rutgers University
served as naive observers, in exchange for course credit.

Stimuli

Test shapes were constructed using two overlapping
ellipses of different sizes, a base part and an attached part
(see Figure 3). The size of the base part was fixed (major
axis = 5.34 deg of visual angle; minor axis = 2.67 deg of

visual angle). The attached part had the same aspect ratio
as the base part; its major axis could take one of four
lengths: 19%, 23%, 27%, or 31% of the major axis of the
larger part. The ellipse corresponding to the attached part
was centered on the bounding contour of the larger ellipse,
at a polar angle of 45, 135, 225, or 315 deg, measured from
the center of the larger ellipse. The smaller ellipse was
oriented orthogonally to the larger one. Multiple variants of
the composite shape were created by introducing random
perturbations to points on the boundary of each ellipse.
The bounding contour of each ellipse was sampled at 12

points, uniformly spaced in polar angle. The location of
each point was then perturbed using an angular perturbation
drawn from a uniform distribution on [j5 deg, 5 deg], and a
radial perturbation drawn from a uniform distribution on
[jr/15, r/15], where r is the radial distance of the point
from the center of the ellipse.
Part-boundary strength was manipulated by varying the

magnitude of turning angles at the negative minima of
curvature. These could take four values: 10, 30, 50, and
70 deg. The turning angles were varied by shifting each
negative minimum along the bisector line of the angle
formed by its closest neighbors. Finally, a smoothing
operation was applied to the bounding contours by fine
sampling and convolving with a 1D Gaussian filter (see,
e.g., Mokhtarian and Mackworth, 1992). The smoothed
shape was filled in with uniform gray (18 cd/m2) and
presented against a black background (0.03 cd/m2).
Sixteen instances were generated for each of the 16 shape
types, yielding a total of 256 test shapes. Figure 4 shows
an instance of a shape for each of the 4 � 4 combinations
of turning angle and part size.
The test shapes were interleaved with randomly gen-

erated shapes, which comprised one third of the stimuli.
The random shapes were generated as 11-point polygons
and then smoothed by fine sampling and convolving with a
1D Gaussian. The location of each vertex was selected by
first projecting 11 equally spaced radial axes from the
center of the screen, with radial distance drawn from a
uniform distribution on [1.07, 7.12] deg of visual angle. A
random angular offset was then applied to each vertex
(uniformly distributed on [j5.5 deg, 5.5 deg]). The
random shapes contained between one and five parts.
The data from the random shapes were not analyzed. Their
purpose was to prevent overlearning of the test stimuli and
discourage the development of specific strategies for the
test shapes.

Design and procedure

Two independent variables were manipulated: part size
and turning angle at the part boundaries, each with four
levels (see Stimuli section). Thus, 16 shape types were
possible.
The experiment was divided into blocks of 24 trials each.

Each observer ran 16 experimental blocks, for a total of 384
adjustments. These were preceded by 2 practice blocks.

Figure 3. Demonstration of the construction of the test shapes.
Shapes were generated using two ellipses with random perturba-
tions added to their boundariesVa base part and an attached
part. Part-boundary strength was varied by manipulating the
turning angles at the part boundaries. The ‘‘maximal impact’’
was defined as the difference between the shape’s principal axis
orientation and the orientation of the base part. Observer settings
were measured relative to the principal axis. Angular deviations in
the direction of the base part were designated as positive.
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On each trial, the observer was presented with the
following sequence: (1) a study shape for 1,000 ms, (2) a
mask for 500 ms, and (3) an adjustable probe line. The
observers’ task was to adjust the orientation of the probe
line using a track ball. They were instructed as follows:
BRotate the red probe line to match the perceived
orientation of the entire shape. If you see multiple possible
orientations, choose the strongest one. There is no right or
wrong answer.[ Shapes were presented at random orienta-
tions, rotated about their center of mass. They were
presented centered on the screen (again, with respect to
their center of mass). After the presentation of the shape
and mask, the red probe line was displayed at the center of
the screen. Its initial orientation was randomly determined
on each trial.

Results

Each orientation setting was encoded in terms of its
angular deviation from the principal axis of the shape.
Because the attached part could occupy one of four
positions with respect to the base part and because the
entire shape could be presented at any orientation,
the raw orientation data were first transformed into a

canonical coordinate framework. Deviations from the
principal axis toward the base-part orientation were
designated positive; those toward the smaller, attached
part were designated negative (see Figure 3). Initial
data analysis revealed no systematic influence of
shape handedness (the position of the attached part
relative to the base part) on orientation settings. The data
were thus collapsed over left-handed and right-handed
shapes.
Figure 5a plots the mean orientation settings, expressed

as angular deviations from the principal axis, with error
bars depicting standard errors.7 The orientation settings
exhibited a significant dependence on turning angle at the
part boundaries, F(3, 45) = 42.29, p G .0001. As
the turning angles at the part boundaries increase,
observers’ orientation settings deviate increasingly
from the shape’s principal axis, in the direction of the
base-part axis. The settings also exhibited a systematic
dependence on part size, F(3, 45) = 21.35, p G .0001.
The larger the attached part is, the greater is the
deviation of perceived orientation from the shape’s
principal axis.
Additionally, the interaction between part-boundary

strength and part size was also significant, F(9, 135) =
8.73, p G .0001. As is evident in Figure 5a, the influence of

Figure 4. Stimulus design in Experiment 1: For each of the 4 � 4 combinations of turning angle and part size, 16 different shapes were
generated, with small random variations (see text for details). This figure shows one shape instance for each combination of the two
variables.
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turning angle on observers’ settings is considerably greater
for larger parts. (See Appendix B for polar histograms of
observers’ orientation settings, for each of the 16
conditions.)
Although both turning angle and part size had a

significant effect on observers’ orientation settings, whether

these effects constitute genuine perceptual influences of
these variables on orientation estimates is not evident from
the above tests. It is possible, in particular, that these effects
simply reflect the geometric influence that these variables
have on the principal-axis orientationVin particular, on
the angular separation between the principal axis and the
base-part axis. As part size increases, for instance, the
principal-axis orientation deviates increasingly from the
base-part orientation. Thus, if observers’ orientation
settings corresponded to the orientation of the base part,
for instance, their settings expressed as deviations from
the principal axis would exhibit a systematic increase with
part size. This would clearly not constitute a genuine
perceptual influence of part size on shape orientation,
however, beyond simply its geometric influence on the
shape’s principal axis.
To test whether turning angle and part size have a

genuine perceptual influence, we normalized the orienta-
tion settings in Figure 5a by the respective angular
separations between principal-axis and base-part orienta-
tion (i.e., by the geometric influence that the presence of
the part has on the shape’s principal axis, or Bmaximal
impact[). Figure 5b plots the data from Experiment 1 in
terms of this normalized orientation.
Along the Bnormalized orientation[ scale on the y-axis, 0

corresponds to the orientation of the principal axis and 1
to the orientation of the base-part axis.8 When the analyses
were performed on normalized orientation, the influence
of part size became marginal, F(3, 45) = 2.84, p = .0485.
Thus, part size does not exert a reliable influence on
perceived orientation, beyond its geometric influence on
the principal axis. The influence of turning angle,
however, continued to be highly significant, F(3, 45) =
10.469, p G .0001. This indicates that turning angle at the
part boundaries has a genuine perceptual influence on
orientation estimates, beyond any geometric influence.9

Finally, the interaction between turning angle and part size
was significant, F(9, 135) = 2.83, p G .005. The influence
of turning angle on normalized orientation tends to be
greater for larger parts.
To examine trends in setting variability, we performed

tests of heteroscedasticity on individual observers’ data.
These tests revealed a significant influence of part size
on setting variance for 11 of the 16 observers and a
significant influence of turning angle for 6 observers.
Increase in part size tended to increase setting variance,
whereas increase in boundary turning angle tended to
decrease setting variance.

Discussion

The results of Experiment 1 demonstrate that turning
angles at part boundaries exert a strong influence on the
perceived orientation of two-part shapes. With increase in
turning angles, orientation settings deviate increasingly
from the principal axis and approach the axis of the base

Figure 5. (a) Mean orientation settings in Experiment 1, measured
as angular deviations from the principal axis, plotted as a function
of boundary turning angle and part size. Shifts in the positive
direction correspond to shifts in perceived orientation toward the
base-part axis. Error bars indicate standard errors of the mean.
(b) Mean orientation settings normalized by the maximal impact of
the partVthat is, its geometric influence on the orientation of the
principal axis. In the normalized plots, 0 on the y-axis corresponds
to the principal-axis orientation and 1 corresponds to the base-
part orientation.
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part. These results are consistent with the interpretation of
part salience as independence: Increase in the strength of
the part boundaries increases the percept of a more
separate/independent perceptual unit, and the part is then
weighted more weakly in the overall computation of
orientationVor, loosely speaking, Bignored[ to a greater
extent. (We will return to this point in greater detail in
the General discussion section.) This is also consistent
with the decreasing trend in setting variability associated
with increasing boundary strength: The computation of
orientation is more precise when it is driven mostly by the
base part because this is simply an ellipse with small
random perturbations. With increase in part size, orienta-
tion settings were pulled more toward the attached part.
However, part size cannot be said to have a genuine
perceptual influence: Its effect on perceived orientation
largely disappeared once its geometric influence on the
principal axis was factored out. The increase in setting
variability with increasing part size is to be expected for a
number of reasons, including an increase in total shape
area and a decrease in overall elongation (defined by the
ratio of the eigenvalues associated with the two eigenvec-
tors). The ratio of the two eigenvalues (lower to higher)
increased systematically, becoming closer to 1, with
increasing part sizeVthe mean values for the four part
sizes being .36, .40, .43, and .45. (A ratio of 1 corresponds
to a shape having no dominant axis.)10

Experiment 2

This experiment used a 2AFC task to further investigate
the influence of turning angles at part boundaries on
perceived orientation. Observers viewed two-part shapes
presented at random orientations followed by a probe line.
Their task was to indicate the direction of the probe’s
angular offset (clockwise or counterclockwise) relative to
the perceived orientation of the shape. The point of
subjective equality (PSE; 50% threshold) was used to
estimate the perceived orientation, and the slope of a
Weibull fit was used to estimate precision. Part size was
fixed at the largest size used in Experiment 1. A turning
angle of 0 deg was added to the design, yielding five
levels of turning angle. Five hundred distinct instances
were generated for each value of turning angle, for a total
of 2,500 shapes.

Methods
Observers

Four experienced observers with normal or corrected-to-
normal visual acuity participated in the experiment. Three
were naive to the purpose of the experiment; the fourth was
author E.C. (observer O2).

Stimuli

The generation scheme for the test shapes and the
parameters of the base part were identical to Experiment 1.
The size of the attached part was fixed at the largest value
used in Experiment 1 (the length of the major axis of the
smaller ellipse was 31% of the major axis of the base
ellipse). Five values of turning angle were used. Four were
the same as the values used in Experiment 1 (10, 30, 50,
and 70 deg). An additional value of 0 deg of turning angle
was included (which smoothed out the boundaries
between the two parts). Five hundred instances of test
shapes were generated for each level of turning angle.
Each shape was presented only once to an observer. Only
the two-part test shapes were used (random shapes were
not included).

Design and procedure

On each trial, the observer was presented with the
following sequence: (1) a test shape for 500 ms, (2) a mask
for 250 ms, and (3) a probe line presented until response
(see Figure 6). Observers’ 2AFC task was to indicate the
direction of the probe’s angular offset relative to the
shapeVthat is, in which direction (clockwise or counter-
clockwise) the probe should be rotated to align with the
perceived orientation of the shape.
Probe lines were presented at 1 of 10 orientations relative

to the principal axis of the test shape: ranging from j30 to
51 deg, in steps of 9 deg. (As before, positive angles refer to
rotations toward the base part of the shape, whereas
negative angles refer to rotations toward the smaller
attached part; see Figure 3). These angular offsets were
chosen to encompass the entire range of orientations
between the principal axis (by convention, 0 deg) and the
axis of the base part (mean orientation = 30.28 deg). Each
combination of turning angle (5 values) and angular offset
from principal axis (10 values) was repeated in 50 trials,
yielding a total of 2,500 experimental trials per observer.

Figure 6. The trial sequence for Experiment 2.
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Each observer participated in five experimental sessions,
preceded by one practice session. Each session contained
500 trials.

Results and discussion

Figure 7 shows the psychometric fits to individual
observers’ data for each turning-angle condition. Weibull
functions were fit using the psignifit software, version
2.5.6 for Matlab (see Wichmann & Hill, 2001). The PSE
(50% threshold) was used to measure perceived orienta-
tion, and the slope of the Weibull fit was used to measure
the precision of the orientation estimate.
All observers exhibited a significant increase in PSE with

turning angles at the boundaries (Figure 8a). As the turning
angles increased, perceived orientation shifted systemati-
cally away from the principal axis (by convention, 0 deg)
and approached that of the base part (mean = 30.28 deg).
As in Experiment 1, these estimates of perceived
orientation were normalized by their respective geometric
impacts (i.e., the angular separation between the base-part
axis and principal axis; see Figure 8b). Turning angle
continued to have a significant effect, even with the
geometric influence of the part factored out. This again
indicates that the observed effect of turning angle
constitutes a genuine perceptual influence on shape
orientationVone that is not reducible to its geometric
influence. (Note that the normalized PSEs are shown only

for the nonzero values of turning angle because, when
turning angles are zero, the difference between base-part
and principal-axis orientation is equal to zero, and
thus, normalized PSEs are undefined.) As before, this
shift toward the base-part axis suggests that, as the smaller
part becomes more distinctive, it is treated as more
independent and separable and weighted more weakly in
the computation of orientation.11

In addition to the shift in PSE, turning angle also
influenced the precision of the orientation estimates. With
increase in turning angle at the part boundaries, the slope of
the Weibull fit exhibited an increasing trend for three of the
observersVindicating a greater precision for shapes with
more distinctive parts (see Figure 9). The increase in
precision is naturally seen as reflecting the fact that, as the
attached part becomes more distinctive, the computation
of orientation is driven to a greater extent by the base part,
which has a well-defined axis of elongation.

General discussion

The results of both experiments revealed a systematic
influence of part salience on the perceived orientation of
two-part shapes. For sharply defined part boundaries
(large turning angles), perceived orientation deviated
maximally from the principal axis and was approximated
instead by the axis of the base partVsuggesting that the

 

Figure 7. Weibull fits to the 2AFC data for each boundary-strength condition in Experiment 2, shown for the four observers. The thresholds
and slopes derived from these fits are shown in Figures 8 and 9.
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attached part is largely ignored in computing orientation
in these cases. With decreasing strength of the part
boundaries (shallower turning angles), the perceived
orientation gradually approached the direction of the
principal axis, reflecting that both parts were being taken
into account. Normalization of the orientation data
showed that this influence of turning angle constitutes a
genuine perceptual effect; the effect of turning angle
remained highly significant even when its geometric
influence on the principal axis was factored out.
Consistent with this pattern of bias, the precision also
tended to be highest for sharply defined boundariesV
when only the base part was utilized.
These results thus argue against the homogenous

computation hypothesis for the visual estimation of
orientation. The visual system does not treat all points
within a shape uniformly in computing its orientation.
Rather, it explicitly takes into account the structural

decomposition of the shape into parts and treats points
within the two parts differently. We have suggested that
part salience may be naturally interpreted in terms of
perceptual independence. A highly salient part is
perceptually more independent (or separable) from the
rest of the shape; hence, its contribution is weighted
more weakly in the visual estimation of the shape
orientation. A low-salience part is less separable (i.e.,
more integrated into the shape), and its influence is
therefore more on an equal footing with the rest of the
shape.

Differentially weighted principal-axis
computation

A natural way to quantify the observed influence of part
salience is in terms of a differential weighting assigned to

Figure 8. (a) PSEs obtained from the 50% thresholds of the psychometric fits. These indicate the perceived orientation for each turning-
angle condition, measured as angular deviation (in degrees) from the overall principal axis. (b) The PSEs normalized by the geometric
impact of the part for each respective turning-angle condition. On the normalized scale, 0 indicates principal-axis orientation and 1
indicates base-part orientation. (The normalized PSEs are shown only for the nonzero values of turning angle because they are undefined
for shapes without part structure.) Error bars indicate 95% confidence intervals.
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the attached part, in the principal-axis computation. In other
words, the principal axis may be computed with points
within the base part assigned a Bfull[ weight of 1, and
points within the attached part assigned a partial weight of
w (where 0 e w e 1). When w = 1, points within the
attached part are on an equal footing with the base part
and, as a result, the computed orientation coincides simply
with that of the standard principal axis of the entire shape
(see Figure 10a).
When w = 0, the attached part is entirely deweighted

and not used at all (or ignored) in the principal-axis
computation; the computed orientation thus coincides with
the principal axis of the base part alone. As the weight w
decreases from 1 to 0, the computed orientation shifts
gradually from the principal axis of the entire shape to that
of the base part alone (see Figure 10a).
With such a computation in mind, one may recharac-

terize the orientation data in terms of the relative weight
of the attached part that would generate the observed
orientation for any given shape. Figure 10b shows the
result of such a recoding of the Experiment 1 data. For each
of the 256 experimental shapes used in Experiment 1, we
computed the value of relative weight w for the attached
part, which, when used in a differentially weighted
principal-axis computation for that shape, would generate
the observed orientation. We then collapsed these com-
puted weights across all shape instances within a
given condition (i.e., a combination of turning angle and
part size).
The resulting plot (Figure 10b) looks similar to the

normalized orientation plot in Figure 5b, although it
should be noted that the scales of the y-axis in the two
cases have different meanings. The normalized orientation

data in Figure 5b indicate where the observed orientation
falls on the unit scale between the principal-axis orienta-
tion and base-part orientation, whereas the values on the
y-axis of Figure 10b indicate the differential weight to
points within the attached part, necessary in a principal-
axis computation, to generate that observed orientation.12

Nevertheless, the basic conclusion remains unchanged:
Turning angle at the part boundaries has a genuine
perceptual influence on perceived orientation that is
not reducible to a geometric influence on the principal
axis.

Part decomposition and Robust Statistics

The above scheme involving the differential weight-
ing of distinct parts within a shape, to estimate its
overall orientation, is analogous to the Robust Statistics
approach to statistical estimation. This branch of statis-
tics aims to develop estimators that are robust against
violations of one’s assumptions concerning the under-
lying model (e.g., the data points being sampled inde-
pendently from a single Gaussian distribution). The
methods developed allow for principled ways to deal
with the presence of outliersVdata points that either
involve gross errors (e.g., in entry or coding) or were
otherwise generated from a different process than the one
under study.
Treating such points uniformly with the rest of the

data can lead to large errors in estimation (linear
regression, for instance, is notorious for its sensitivity
to outliers). Although outliers are sometimes identified
and removed by visual inspection, this approach is

Figure 9. Slopes of the Weibull fits for each boundary-strength condition and observer. Error bars indicate 95% confidence intervals.
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problematic because it can force researchers to make
hard decisions early on, based on ill-defined criteria.
Robust methods adopt the more principled approach of
weighting data points differently based on some
quantity that reflects (implicitly or explicitly) the like-
lihood that the data arose from the same generative
process as the bulk of the data. Thus, rather than
making a binary choice between including or excluding
a potential outlier, its contribution is down-weighted
(ignored) to varying extents, depending on how likely it
is that the data point arose from a different generative

process (see, e.g., Hampel, 1974; Landy, Maloney,
Johnston, & Young, 1995).
What is the significance of Robust Statistics for visual

processing? Any estimation of a visual property (e.g.,
location, orientation, motion, or depth) requires pooling
information over an extended image region. However,
such pooling is meaningful only if it is performed over
an appropriately defined region that includes precisely
those points that correspond to the relevant object or
surface being estimated. Mixing in the motion signals
from two different surfaces, for instance, will generally
lead to a poor motion estimate for both (e.g., McDermott &
Adelson, 2004). Successful visual estimation thus depends
critically on perceptual segmentation of the image into
appropriate unitsVwithin which information may be
meaningfully combined.
Although, from a physical point of view, objects and

surfaces may be treated as essentially discrete entities, the
same is not true of perception. Given the ambiguity and
uncertainty that the visual system faces in computing
object and surface boundaries from image data (arising
from the multiplicity of interpretations, as well as from the
noisy measurements), perceptual segmentation is more
naturally regarded as probabilistic Binference[ (see, e.g.,
Elder & Goldberg, 2002; Feldman, 2001; Geisler, Perry,
Super, & Gallogly, 2001; Hon, Maloney, & Landy 1997;
Yuille, Fang, Schrater, & Kersten, 2004, for the proba-
bilistic approach applied to curve integration). Probabil-
ities are assigned to segmentation/grouping hypotheses
reflecting the degree of Bconfidence[ that a certain image
region corresponds to the same contour/surface as
another. We suggest that this approach is likely to be
useful in the study of perceptual part segmentation as
well.
In this article, we investigated the visual segmentation

of parts within a single object. Specifically, we examined
how the perceptual salience, or distinctiveness, of a part
within a shape influences the perceived overall orienta-
tion of the shape. We found that, as the part becomes
more distinctive (via an increase in the turning angles at
its boundaries), the perceived orientation of the shape
deviates increasingly from its principal axis and
approaches the orientation of the base part. This result
is consistent with a differentially weighted computation
of principal axis, in which points within the attached part
are given systematically lower weights relative to the
base part, as the salience of the attached part increases.
This strategy suggests that a Robust Statistics approach
is being employed by the visual system in the compu-
tation of object orientation: The higher the part’s
salience isVthe greater its perceptual independence from
the rest of the shapeVthe lower is its contribution to the
orientation estimate. (The probability p reflecting the
perceptual independence of a part may be quantified
simply as p = 1 j w, where w is the relative weight
assigned to it in the differentially weighted principal-

Figure 10. (a) Demonstration of the result of a differentially weighted
principal-axis computation. Points within the small attached part are
assigned partial weights, w, ranging from 0 to 1, relative to those
within the base part. When w = 1, the attached part is on an equal
footing with the base part, and the computed orientation coincides
with the standard principal axis. As w approaches 0, the computed
orientation shifts systematically toward the orientation of the base
part. (b) The data from Experiment 1 recoded in terms of the
relative weight, w, of the attached part necessary to generate the
observed orientation for any given shape.
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axis scheme.) Robust Statistics is thus likely to provide
a useful quantitative framework within which to capture
the influence of perceptual segmentation on visual
estimation.

Conclusions

In investigating the influence of local geometric
propertiesVturning angles at part boundariesVon over-
all perceived orientation, this study used the context of
two-part shapes in which the parts are arranged in a
simple hierarchical relationship: a small part protruding
out of a larger base. Orientation estimates using both a
method of adjustment (Experiment 1) and a 2AFC task
(Experiment 2) showed that perceived orientation for
these shapes is predicted by a differentially weighted
principal-axis computation in which points with the
smaller part are given a systematically lower weight with
increasing turning angles at the part boundariesV hence,
increasing perceptual distinctiveness of the part.
The shapes used in the present experiments were

designed to exhibit a clear dominance hierarchy between
the partsVwith one part clearly seen as the dominant base.
One part was noticeably larger in size, and its edges leading
to the part boundaries exhibited Bgood continuation[ with
each other (consistent with the definition of Blimb[ by
Siddiqi & Kimia, 1995). These factors led to the
natural interpretation of the larger part being the base,
with the smaller one branching out of it. How the
visual system determines the dominance hierarchy of
parts in general, however, remains an open question. In
particular, how do relative size and local Bbranching[
cues combine to determine perceived dominance
hierarchyVespecially when they are inconsistent with
one another? How large must one part be, relative to
the other, to generate a clear dominance hierarchy? For
instance, if the size of the smaller part were to be
gradually increased, how would the weighting assigned
to the smaller part in a differentially weighted compu-
tation be affected? These and other interesting questions
on geometric properties that determine the perceived
dominance hierarchy of parts, as well as their influence
on the visual estimation of global shape properties,
await systematic investigation.

Appendix A: Principal-axis
computation on shapes from
Burbeck and Zauberman (1997)

This appendix briefly describes the results of principal-axis
computation on Burbeck and Zauberman’s (1997) shapes.

Their shapes were generated from rectangles whose longer
sides were modulated sinusoidally. The aspect ratio of the
underlying rectangles was 5:2, and the amplitude of the
sinusoidal modulation was 25% of the rectangles’ width.
The shapes varied in the frequency of the sinusoidal
modulation (1, 2, 4, or 8 cycles per length of rectangle), as
well as the relative phase of modulation across the two sides
(in-phase or out of phase; see Figure A1). The orientation of
the principal axis of each shape was measured relative to
orientation of the underlying rectangle.
The results demonstrate that principal-axis computation

predicts a systematic influence of relative phase on overall
orientation. The deviations of the computed orientation
from the underlying rectangle were consistently larger for
the shapes with in-phase modulations (Figure A1; bottom
row). Moreover, in the case of in-phase modulations,
the computed orientation also exhibited a systematic
dependence on the frequency of modulation. Both of these
effects mirror the psychophysical results of Burbeck and
Zauberman (1997). Thus, although the medial axis (or the
core model) may well turn out to play a role in the
perception of shape orientation more generally, resorting
to it is not necessary to explain their specific findings.

Figure A1. The orientation of the principal axis (in degrees,
measured from the major axis of the underlying rectangle) for the
shape manipulations used by Burbeck and Zauberman (1997).
The predictions of the principal-axis computation mirror the
influence of relative phase and frequency of modulation observed
in their experiment.
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Figure B1. Pooled histograms of observer responses in Experiment 1, shown in polar coordinates. Each histogram panel includes data
from all 16 shapes within a condition and shows one representative shape (of the 16 variants) from that condition. The orientations are
plotted as angular deviations from the principal axis of the entire shape (the vertical dashed line). The orientation of the base part (mean
for the 16 variants) is indicated by the oblique solid line. The increased tilt of the base part with increasing part size reflects the fact that
larger attached parts have a greater geometric impact on the principal axis of the shape.
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Footnotes

1Structural descriptions have sometimes been taken to
be synonymous with volumetric-component approaches to
object recognition (e.g., Biederman, 1987; Marr &
Nishihara, 1978). The notion of a structural description
is considerably more general, however, and does not
logically entail either that the parts be three-dimensional
or that they belong to a predefined class of shape
primitives (such as generalized cones).

2
Treating part boundaries as smoothed versions

of transversal intersections of surfaces leads to the 3D
version of the minima rule: Part boundaries are defined
by loci of negative minima of curvature along a set of lines
of curvature on a smooth surface. Taking the projection
onto an image plane gives the 2D version of the
minima rule (see Hoffman & Richards, 1984), which we
use here.

3
For a smooth negative minimum, the part-boundary

strength is determined by the normalized curvature at the
point of minimum and by the turning angle within a local
region containing the negative minimaVdefined by the
nearest inflection point along the contour on each side (see
Hoffman & Singh, 1997).

4
Recent work has shown that the Baveraging[ performed

by the visual system, to localize a shape, is not based simply
on the distribution of luminance values or contrast energy
but is strongly influenced by the shape denoted by the
distribution (see Melcher & Kowler, 1999; Vishwanath &
Kowler, 2003).

5
Throughout, we will use Bprincipal axis[ to refer to

the Bfirst principal axis.[ It should be noted that
computing the principal-axis direction is similar to
mutual regression, in that the squared errors to be
minimized are measured perpendicular to the candidate
line, rather than in a fixed Bvertical[ direction as in
standard linear regression (i.e., the squared residuals
(µ j y)2 of the predicted variable).

6
By the implicit orientation of a shape, Li and West-

heimer simply mean the perceived orientation that does not
correspond to the orientation of any of its constituent edges.
To use one of their examples, the shape of the letter BX[ is
perceived to be vertical although all of its local edges are
oblique.

7
Means and standard deviations for individual observers

were first computed using both standard (linear) and
circular statistics (see, e.g., Mardia, 1972). Values obtained
with the two methods were very strongly correlated (r2 =
.996 for means, r2 = .998 for standard deviations), which
is to be expected given the small angular range within
which the measurements fall. We thus report only the
standard statistics throughout.

8
It should be noted that, when expressed in normalized

terms, the data for the smallest part-size condition become
intrinsically more variable because of the small angular

difference (mean = 9.3 deg) between the principal axis and
base-part axis in this case. As a result, small variations in
computed orientation due to random variations in the
bounding contour of the shapes translate into large
differences on the normalized scale ranging, as it does
from the principal-axis orientation (0) to the base-part
orientation (1).

9
In fact, the angular separation between principal-axis

orientation and base-part orientation was found to not differ
significantly across the different values of turning angle.

10
Variations in turning angle, on the other hand, did not

produce a systematic change in overall elongation: The
mean ratios of eigenvalues for increasing turning angles
were .42, .40, .41, and .41.

11
In postexperimental interview, Observer 4 revealed

that she had been explicitly attempting to locate the
principal axis for each shape (which she referred to as Bthe
line on which the shape could be balanced[). Although
effects were somewhat diminished for this observer, the
influence of increasing turning angles was still evident (see
Figure 8b). The fact that her strategy was specifically
geared toward ignoring part structure makes the influence
of part structure on her orientation estimates that much
more convincing.

12
Note that the scale in Figure 10b is reversed relative to

Figure 5b because the relative weighting of the attached
part is inversely related to part salienceVand, hence, to
the angular deviation of the orientation settings from the
global principal axis. As in Figure 5b, however, the data
corresponding to the smallest part size are intrinsically
more variable because of the small angular difference
between the principal-axis and base-part orientation in this
case. In particular, the small variations in computed
orientation due to random variations in the bounding
contour of the shapes translate into large differences on
the normalized scale.
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