
Eur J Neurosci. 2019;1–10. wileyonlinelibrary.com/journal/ejn   |  1© 2018 Federation of European Neuroscience Societies 
and John Wiley & Sons Ltd

1 |  INTRODUCTION

Brain regions involved in object perception form a ventral 
visual pathway that projects from the occipital to the tempo-
ral lobe (Milner & Goodale, 1995; Ungerleider & Mishkin, 
1982). Damage to these regions often results in deficits in 
the recognition and perception of specific categories of ob-
jects (McNeil & Warrington, 1993; Moscovitch, Winocur, & 
Behrmann, 1997). Consistent with these neuropsychological 

studies, neuroimaging studies have shown that discrete re-
gions of this pathway respond selectively to different catego-
ries of objects Kanwisher, 2010. For example, the fusiform 
face area (FFA) has been shown to respond more to images of 
faces than to non- face images (Allison et al., 1994; Kanwisher, 
McDermott, & Chun, 1997; McCarthy, Puce, Gore, & Truett, 
1997), whereas the parahippocampal place area (PPA) re-
sponds more to images of places than non- place images 
(Aguirre & D'Esposito, 1997; Epstein & Kanwisher, 1998).

Although these findings suggest specialization within 
the ventral temporal lobe, the extent to which this reflects 
an underlying selectivity to higher- level semantic properties 
or lower- level image properties remains unclear. This is be-
cause images from different object categories also have dif-
ferent image properties (Andrews, Watson, Rice, & Hartley, 
2015; Rice, Watson, Hartley, & Andrews, 2014; Watson, 
Hartley, & Andrews, 2014; Watson, Young, & Andrews, 
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Regions in the ventral visual pathway, such as the fusiform face area (FFA) and para-
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ries. Yet images from different object categories differ in their image properties. To 
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compared neural responses to locally- SCRAMBLED images (in which mid- level, 
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and PPA to images from the preferred CATEGORY relative to their non- preferred 
category for the scrambled conditions. However, there was a greater selectivity for 
locally- scrambled compared to globally- scrambled images. Next, we compared the 
magnitude of fMR- adaptation to intact and scrambled images. fMR- adaptation was 
evident to locally- scrambled images from the preferred category. However, there 
was no adaptation to globally- scrambled images from the preferred category. These 
results show that the selectivity to faces and places in the FFA and PPA is dependent 
on mid- level properties of the image that are preserved by local-scrambling.
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2016). Evidence that category- selective regions, such as the 
FFA and the PPA are sensitive to low- level image properties 
is shown by higher responses to low- level properties (such 
as orientation and spatial frequency) that are typical of the 
preferred category (Goffaux, Duecker, Hausfeld, Schiltz, & 
Goebel, 2016; Nasr & Tootell, 2012; Rajimehr, Devaney, 
Bilenko, Young, & Tootell, 2011). Other studies have used 
Fourier scrambled images to investigate selectivity to low- 
level properties in these regions (Andrews, Clarke, Pell, & 
Hartley, 2010; Rossion, Hanseeuw, & Dricot, 2012). The ra-
tionale for using scrambled images is that they contain many 
of the image properties found in intact images, but do not 
convey the same categorical or semantic information, thus 
providing a dissociation between higher- level and lower- 
level information. These studies have found mixed results. 

One study found selectivity to scrambled houses in the PPA, 
but not to scrambled faces in the FFA (Andrews et al., 2010). 
However, another study found selectivity to scrambled faces 
in the FFA and other face- selective regions (Rossion et al., 
2012).

The aim of this study was to use different methods of 
image scrambling to understand which image properties are 
important in the neural representations found in category- 
selective regions. To address this question, we compared 
the neural response in the FFA and PPA to intact images of 
faces and places with locally-scrambled and globally-scram-
bled versions of these images (Figure 1). Globally- scrambled 
images were generated using a typical Fourier- scramble, 
i.e. keeping the global power of each two- dimensional fre-
quency component constant while randomizing the phase 

F I G U R E  1  Stimulus set containing intact, locally-scrambled and globally-scrambled versions of six face and six house images
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of the components. Locally- scrambled images were gener-
ated by windowing the original image into an 8 × 8 grid in 
image space and applying a phase- scramble to each window 
independently. A key difference between these methods of 
scrambling is that local-scrambling preserves the low- level 
properties in their approximate original spatial location. This 
preserves some of the mid- level properties (such as the spa-
tial envelope – the region of the image taken up by the ob-
ject), which may play an important role in the representation 
of objects. In a previous study, we found that both global-  and 
local- SCRAMBLING rendered the images unrecognizable 
(Coggan, Liu, Baker, & Andrews, 2016). Despite the fact that 
images were unrecognizable, locally- scrambled images, but 
not globally-scrambled images, were found to elicit similar 
category- selective patterns of response across the ventral vi-
sual pathway (Coggan, Baker, & Andrews, 2016; Coggan, 
Liu et al., 2016). More recently, Long, Yu, and Konkle 
(2018) showed that images that preserve mid- level properties 
of objects, but were not recognizable elicited patterns of neu-
ral response to variation in animacy and real- world size that 
were comparable to intact objects.

Here, we ask whether there is a difference in the mag-
nitude of response to locally- scrambled and globally- 
scrambled faces and places in the FFA and PPA. If selectivity 
is more evident to faces and places when they have been  
locally-scrambled compared with global-scrambled, then 
this shows that the magnitude of response in these regions 
can be explained in part by a sensitivity to the mid- level 
properties preserved by locally-scrambled images. If there 
is no difference between locally- scrambled and globally- 
scrambled images then this suggests that the selectivity found 
in scrambled images is due to the amplitude spectrum of the 
image. We also compared adaptation to faces and places 
with locally- scrambled and globally- scrambled images. 
The basis of fMRI adaptation is that repetition of a stimu-
lus causes a reduction in the neural response, which leads 
to a lower fMRI signal (Andrews, Baseler, Jenkins, Burton, 
& Young, 2016; Andrews & Ewbank, 2004; Andrews et al., 
2010; Avidan, Hasson, Hendler, Zohary, & Malach, 2002; 
Epstein, Graham, & Downing, 2003; Ewbank, Schluppeck, 
& Andrews, 2005; Grill- Spector & Malach, 2001; Psalta, 
Young, Thompson, & Andrews, 2014). Brain regions se-
lective for a particular stimulus property will show greater 
adaptation (i.e. signal reduction) for a repeated stimulus 
than for a sequence in which the stimuli vary, whereas non- 
selective regions will show similar responses regardless of 
the sequence. The sensitivity of the neural representation 
can therefore be compared for different manipulations of 
the stimulus. If the underlying neural representation is in-
sensitive to a particular type of manipulation in the stimulus 
(i.e. local-  or global- scrambling), the adaptation of the fMRI 
signal will be similar to that produced by unchanged (in this 
case, intact) images.

2 |  MATERIALS AND METHODS

2.1 | Participants
Twenty participants were recruited for the fMRI experi-
ment (12 female, mean age = 29.0 years, median = 23, 
min = 16, max = 66, SD = 12.7). Participants were consti-
tuted by graduate students and staff of the Department of 
Psychology at the University of York, as well as members 
of the public responding to a participant mailing list held by 
York Neuroimaging Centre (YNiC). The study was approved 
by the YNiC Ethics Committee and adhered to the original 
wording of the Declaration of Helsinki. All participants re-
ported that they had normal or corrected- to- normal vision 
and gave their informed, written consent.

2.2 | Stimuli

Twenty four face and 24 house images were taken from a 
database of objects (Rice et al., 2014). Images were grey- 
scale, superimposed on a mid- grey background and had a 
resolution of 720 × 720 pixels. Face images originated from 
the Radboud face database (Langner et al., 2010). Six face 
and six house images were selected for adaptation scans, 
with the remaining images used in a localizer scan. For ex-
perimental scans, two different phase- scrambled versions 
of each image were generated. Global- scrambling involved 
a typical Fourier- scramble, i.e. keeping the global power of 
each two- dimensional frequency component constant while 
randomizing the phase of the components. Local- scrambling 
involved windowing the original image into an 8 × 8 grid in 
image space and applying a phase- scramble to each window 
independently. Images subtended a maximum retinal angle 
of approximately 15° and were viewed on a screen at the 
rear of the scanner via a mirror placed immediately above 
the participant's head. Examples of the images are shown in 
Figure 1. The images used in this study have been validated 
by a behavioural study (Coggan, Liu et al., 2016) in which 
participants were asked to name each image. The results of 
the naming task show that accuracy was at ceiling for intact 
images. However, local-  and global- scrambling renders the 
images unrecognizable.

2.3 | Design and procedure

There were 12 conditions in the experimental scan: two catego-
ries (face, house) × three image types (intact, locally-scrambled, 
globally-scrambled) × two adaptation sequences (same image, 
different images). The experiment was divided into three scan 
runs each lasting 8 min, with globally-scrambled images pre-
sented in the first run, locally-scrambled images presented in 
the second run and intact images presented in the third run. 
Scrambled images were presented before the intact images to 
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prevent any potential category priming effects. Images were 
presented in 6 s blocks. In each stimulus block, six images from 
a condition were presented for 800 ms with a 200 ms inter- 
stimulus- interval. In the “same image” condition, six identical 
images were shown. A fixation cross was presented for 9 s after 
each block. There were eight repetitions of each condition in 
each scan.

To maintain attention, participants were instructed to 
press a button when a red dot appeared on any of the images. 
Subjects responded with a mean response latency of 423 ms 
(SEM = 10 ms). The number of correct responses was at ceil-
ing for intact (mean = 99.0%, SEM = 0.4%), locally-scram-
bled (mean = 99.5%, SEM = 0.2%) and globally-scrambled 
(mean = 100%, SEM = 0%) conditions. Response latencies 
were entered into a one- way analysis of variance (ANOVA), 
which showed no effect of level of scrambling (F2,34 = 0.62, 
η2 = 0.03, p = 0.5460).

2.4 | Data acquisition and analysis
fMRI data were acquired using a GE 3T HD Excite MRI scan-
ner at YNiC at the University of York, fitted with an eight- 
channel, phased- array, head- dedicated gradient insert coil tuned 
to 127.4 MHz. A gradient- echo echo- planar imaging (EPI) se-
quence was used to collect data from 38 contiguous axial slices 
(TR = 3,000 ms, TE = 32.7 ms, FOV = 288 × 288 mm, matrix 
size = 128 × 128, slice thickness = 3 mm). The fMRI data from 
the localizer and experimental scans were initially analysed 
with FEAT v5.98 (http://www.fmrib.ox.ac.uk/fsl). In all scans, 
the initial 9 s of data were removed to reduce the effects of mag-
netic saturation. Motion correction (MCFLIRT, FSL) and slice- 
timing correction were applied followed by temporal high- pass 
filtering (Gaussian- weighted least- squares straight line fitting, 
σ = 50 s). Gaussian spatial smoothing was applied at 6 mm 
FWHM.

A localizer scan was performed after the experimental scan 
to localize the FFA and PPA in each individual. This involved 
a block- design paradigm with the same temporal parameters as 
the adaptation scans. Intact faces and houses were presented in 
alternate blocks, with six repetitions of each category. Images 
were different to those used in the adaptation experiment. Face-  
and place- selective voxels were identified using face > house 
and house > face contrasts respectively. The resulting statistical 

maps were thresholded at z > 2.3. Within the anatomical loca-
tion of the FFA and PPA, a flood- filling algorithm was used 
to define 100 spatially contiguous voxels in each hemisphere. 
The voxel with the highest z- score for each contrast was located. 
Then, voxels contiguous to that voxel with the highest z- score 
were iteratively added to generate a progressively larger mask. 
This process continued until 100 voxels had been reached or 
there were no more significant contiguous voxels. It was not 
possible to identify the FFA and PPA in three participants (three 
males aged 66, 33 and 24), so they were removed from further 
analyses. The final sample consisted of 17 subjects (12 female, 
mean age = 26.9 years, median = 23, min = 16, max = 56, 
SD = 9.9). The average location of the FFA and PPA across 
participants is shown in Table 1.

2.5 | Experimental scan
To compare the magnitude of response to each condition, pa-
rameter estimates were generated by regressing the haemo-
dynamic response of each voxel against a boxcar function 
convolved with a single- gamma HRF. Responses from each 
voxel were averaged within each region of interest (ROI) 
and converted to percent signal change. A repeated- measures 
analysis of variance (ANOVA) was then used to determine 
the effect of ROI (FFA, PPA), Image Type (intact, locally-
scrambled, globally-scrambled), Adaptation (same, different) 
and Preferred Category (FFA: preferred = face, non- preferred 
= house; PPA: preferred = house, non- preferred = face). 
An FDR correction for multiple comparisons Benjamini & 
Hochberg, 1995 was applied to all post- hoc, pairwise com-
parisons. All comparisons were two- tailed. FSL's featquery 
was used to obtain signal change estimates in each ROI. 
From there, the ANOVA, post- hoc tests and plotting were all 
performed using R (https://www.r-project.org). The R code 
and signal change estimates are available at https://github.
com/ddcoggan/p004. Statistical analyses were performed on 
the mean values across participants.

3 |  RESULTS

First, the selectivity for the preferred object category 
(faces for FFA, houses for PPA) was measured with intact, 

ROI Hemisphere

Peak coordinates

Voxels Zx y z

FFA Left −42 (4.3) −58 (1.0) −23 (5.4) 88 (22) 4.0 (1.0)

Right 41 (4.2) −53 (7.3) −25 (4.8) 87 (15) 4.4 (1.2)

PPA Left −27 (3.5) −54 (5.7) −14 (2.7) 95 (21) 4.8 (1.2)

Right 28 (3.2) −55 (9.0) −14 (5.1) 99 (5) 5.2 (1.3)

Note. ROIs were transformed from individual- space into MNI152 2 mm space for the purpose of this table.

T A B L E  1  Group means (N = 17) and 
standard deviations (in parentheses) for peak 
coordinates, number of voxels and average 
Z- score for each ROI in the localization 
contrast

http://www.fmrib.ox.ac.uk/fsl
https://www.r-project.org
https://github.com/ddcoggan/p004
https://github.com/ddcoggan/p004
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locally- scrambled and globally- scrambled images. The mag-
nitude of response to intact and scrambled faces and houses 
to the preferred and non- preferred categories is shown in 
Figure 2. There were main effects of Preferred Category 
(F1,16 = 384.41, partial η2 = 0.96, p < 0.0001) and Image 
Type (F2,32 = 42.48, partial η2 = 0.73, p < 0.0001). The ef-
fect of Preferred Category was due to a higher response to 
the preferred compared to the non- preferred stimulus with in-
tact (t(16) = 18.94, mean difference = 0.78 [95% CI = 0.69, 
0.86], Cohen's d = 4.59, p < 0.0001), locally- scrambled 
(t(16) = 7.55, mean difference = 0.19 [0.14, 0.25], Cohen's 
d = 1.83, p < 0.0001) and globally- scrambled (t(16) = 2.72, 
mean difference = 0.03 [0.01, 0.06], Cohen's d = 0.66, 
p = 0.0229) images.

There was a two- way interaction between Preferred 
Category and Image Type (F2,32 = 189.74, partial η2 = 0.92, 
p < 0.0001). The interaction suggests that selectivity for 
the preferred category varies for different image types. To 
test this, we compared the difference between the preferred 
and non- preferred category for each image type. The dif-
ference between the preferred and non- preferred category 
was greater for intact images compared to both locally- 
scrambled (t(16) = 12.27, mean difference = 0.58 [0.48, 
0.68], Cohen's d = 2.97, p < 0.0001) and globally- scrambled 
(t(16) = 18.14, mean difference = 0.74 [0.66, 0.83], Cohen's 
d = 4.40, p < 0.0001) images. However, there was also a big-
ger difference between the preferred and non- preferred stim-
ulus for locally- scrambled compared to globally- scrambled 
images (t(16) = 5.38, mean difference = 0.16 [0.10, 0.23], 
Cohen's d = 1.30, p < 0.0001). There was no significant in-
teraction between Preferred Category, Image Type and ROI 
(F2,32 = 1.38, partial η2 = 0.08, p = 0.27). Consistent with 
the ROI analysis, Figure 3 shows a whole- brain analysis of 

the relative response to faces and houses which is similar for 
intact and locally- scrambled images. However, a different 
pattern of response is evident to the globally- scrambled im-
ages (Coggan, Baker et al., 2016; Coggan, Liu et al., 2016).

Next, we asked whether the FFA and PPA would show 
fMR- adaptation to intact, locally-scrambled and global-
ly-scrambled images of preferred and non- preferred cate-
gories (Figure 4). There was a main effect of Adaptation 
(F1,16 = 36.98, partial η2 = 0.70, p < 0.0001) and a three- way 
interaction between Preferred Category, Image Type and 
Adaptation (F2,32 = 11.49, partial η2 = 0.42, p = 0.0002). 
This indicates that the level of adaptation varied with the pre-
ferred stimulus and level of scrambling (Figure 5).

Pairwise comparisons revealed significant adapta-
tion (different > same) to the preferred category for in-
tact (t(16) = 8.38, mean difference = 0.28 [0.21, 0.35], 
Cohen's d = 2.03, p < 0.0001) and locally-scrambled images 
(t(16) = 5.09, mean difference = 0.12 [0.07, 0.16], Cohen's 
d = 1.24, p = 0.0002), but not to globally-scrambled images 
(t(16) = 0.44, mean difference = 0.01 [−0.03, 0.06], Cohen's 
d = 0.11, p = 0.7199). The magnitude of the adaptation to 
the preferred category was bigger for intact images compared 
to locally- scrambled (t(16) = 4.39, mean difference = 0.16 
[0.08, 0.24], Cohen's d = 1.06, p = 0.0015) and globally- 
scrambled (t(16) = 6.63, mean difference = 0.27 [0.18, 0.36], 
Cohen's d = 1.61, p < 0.0001) images. The magnitude of the 
adaptation to the preferred category was bigger for locally- 
scrambled images compared to globally- scrambled images 
(t(16) = 3.02, mean difference = 0.11 [0.03, 0.18], Cohen's 
d = 0.73, p = 0.0182). In contrast, there was only an effect of 
adaptation for the non- preferred category with intact images 
(t(16) = 2.43, mean difference = 0.10 [0.01, 0.19], Cohen's 
d = 0.59, p = 0.0465) and no significant effect for locally- 
scrambled (t(16) = 1.60, mean difference = 0.05 [−0.02, 
0.11], Cohen's d = 0.39, p = 0.1673) or globally- scrambled 
(t(16) = 0.20, mean difference = 0.01 [−0.05, 0.07], Cohen's 
d = 0.02, p = 0.8622) images. Finally, there was no sig-
nificant interaction between Preferred Category, Image 
Type, Adaptation and ROI (F2,32 = 0.90, partial η2 = 0.05, 
p = 0.42), again demonstrating that these effects generalize 
across regions.

Finally, we investigated whether the results described 
above were inherited from responses to the images in early 
visual cortex (Figure 6). To address this, we registered 
individual- level data into a standard space (MNI152) and 
restricted our analysis to a V1 mask taken from a probabi-
listic atlas of retinotopic regions Wang, Mruczek, Arcaro, 
& Kastner, 2015. A three- way repeated- measures ANOVA 
revealed the main effects of Image Type (F2,32 = 27.6, par-
tial η2 = 0.63, p < 0.001), Category (F1,16 = 28.7, partial 
η2 = 0.64, p < 0.001) and Adaptation (F1,16 = 25.2, partial 
η2 = 0.61, p < 0.001). In contrast to the responses in higher- 
level regions, the effect of Image Type in V1 was due to 

F I G U R E  2  Percent signal change in category- selective regions 
(collapsed across fusiform face area and parahippocampal place 
area) to intact, locally-scrambled and globally-scrambled images of 
their preferred (P) and non- preferred (NP) categories. Colours reflect 
different subjects, with the group mean shown in black. Grey surrounds 
are symmetrical kernel density estimates reflecting distribution of 
values 
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higher responses to globally- scrambled compared to both 
locally- scrambled (t(16) = 2.94, mean difference = 0.27 
[0.07, 0.46], Cohen's d = 0.71, p = 0.0096) and intact 
(t(16) = 6.80, mean difference = 0.71 [0.49, 0.94], Cohen's 
d = 1.65, p < 0.0001) images. There was a higher response to 
locally- scrambled compared to intact images (t(16) = 4.71, 
mean difference = 0.45 [0.25, 0.65], Cohen's d = 1.14, 
p = 0.0004). The effect of category was due a higher response 
to houses compared to faces (t(16) = 5.36, mean differ-
ence = 0.17 [0.10–0.24], Cohen's d = 1.30, p < 0.0001). The 
effect of Adaptation was due to sequences of different images 
eliciting greater response than sequences of the same image. 
There were no significant interactions between Image Type 
and Adaptation (F2,32 = 2.09, partial η2 = 0.12, p = 0.139), 
Category and Adaptation (F1,16 = 3.29, partial η2 = 0.17, 
p = 0.088) or between Image Type, Category and Adaptation 
(F2,32 = 0.13, partial η2 = 0.01, p = 0.878). Taken together, 
this shows that adaptation in V1 was not significantly differ-
ent across Image Type or Category.

4 |  DISCUSSION

The aim of this study was to explore the sensitivity of 
category- selective regions in the ventral stream to low- 
level image properties. To test this, neural responses to in-
tact, locally- scrambled and globally- scrambled images of 
faces and houses were compared in the face- selective FFA 
and place- selective PPA. The rationale for using scrambled 

images is that they contain many of the image properties 
found in intact images, but do not convey the same cat-
egorical or semantic information, thus providing a disso-
ciation between higher- level and lower- level information. 
The major difference between the locally- scrambled and 
globally- scrambled images is that some of the mid- level, 
spatial properties of the image are preserved in the locally- 
scrambled images, but not in the globally- scrambled im-
ages. The key finding from this study is that selectivity and 

F I G U R E  3  Axial slices showing group- level z statistics for a face > house contrast for each Image Type in 2 mm MNI space. For each image 
type, data were collapsed across “different” and “same” sequence types to form one parameter estimate per category. Red/yellow regions were more 
responsive to faces; blue regions were more responsive to houses 

F I G U R E  4  Percent signal change in category- selective regions 
(collapsed across fusiform face area and parahippocampal place area) 
in response to intact, locally-scrambled and globally-scrambled images 
of their preferred and non- preferred categories, presented as a sequence 
of different images or the same image repeated. Colours reflect 
different subjects, with the group mean shown in black
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adaptation to the preferred category in the FFA and PPA 
were greater for the locally- scrambled images compared to 
the globally- scrambled images.

The selectivity to locally- scrambled objects in the 
FFA and PPA complement recent multivariate studies in 
which the pattern of neural response in the ventral visual 
pathway to intact images is shown to be more similar to  
locally-scrambled compared to globally-scrambled images 
Coggan, Baker et al., 2016; Coggan, Liu et al., 2016. These 
results show that the selectivity to faces and places in the 
FFA and PPA is to some extent determined by the image 
properties that are preserved by local- scrambling, such 
as the spatial envelope of the image. This fits with previ-
ous studies that have demonstrated selectivity in higher- 
level regions of the ventral stream to spatial properties 
of the image (Bracci & Op de Beeck, 2016; Cichy et al., 
2013; Golomb & Kanwisher, 2012; Levy, Hasson, Avidan, 
Hendler, & Malach, 2001; Ponce, Sturmfels, & Trager, 
2017; Watson et al., 2016). More generally, these results are 
consistent with previous studies that have shown that pat-
terns of response in high- level visual regions are sensitive 
to image properties (Rice et al., 2014; Watson et al., 2016; 
Xu, Yue, Lescroart, Biederman, & Kim, 2009; Yue, Tjan, 
& Biederman, 2006). For example, patterns of response in 
the fusiform gyrus to faces can be predicted by their image 
properties (Rice et al., 2014). Moreover, equivalent changes 
in the image statistics that result in either a change in iden-
tity or no change in identity lead to an equivalent release 
from adaptation in regions such as the occipital face area 
(OFA) and FFA (Xu et al., 2009; Yue et al., 2006).

One potential issue with the interpretation of these re-
sults is that local- scrambling affects the amplitude spec-
trum of the image. Applying a grid to the image prior to 

scrambling introduces horizontal and vertical edges to the 
image. These are known to affect the processing of faces 
and scenes (Dakin & Watt, 2009; Goffaux & Dakin, 2010; 
Hansen, Essock, Zheng, & Deford, 2003; Pachai, Sekuler, 
& Bennett, 2013). However, the key statistics we report are 
the contrasts between locally- scrambled conditions (e.g. pre-
ferred vs. non- preferred or different vs. same). If the artefacts 
created by local-scrambling do have some effect, this effect 
should cancel in these comparisons. On the other hand, if  
local-scrambling has a disproportionate effect on face or 
scene processing then this should be reflected in an interac-
tion between preferred Category, Image Type and Region and 
this is not evident in our analysis. This suggests that the selec-
tivity to the preferred category in locally- scrambled images is 
not an artefact of the image generation.

The selectivity and adaptation for the preferred category 
was greater in intact images compared to locally-scrambled 
images. One possible explanation for this difference is that 
the neural representation is selective for higher- level, seman-
tic information about the image that is only available from 
the intact images (Kanwisher, 2010). However, an alternative 
possibility is that unexplained variance might reflect image 
properties disrupted by the scrambling process. An import-
ant feature of intact images is the strong statistical depen-
dencies between features, such as specific combinations of 
spatial frequency and orientation at particular locations in 
the image. Indeed, the behavioural sensitivity to these reg-
ularities in intact objects suggests that they play an import-
ant role in differentiating between different classes of images 
(Loschky & Larson, 2010; Loschky et al., 2007). It is pos-
sible that these mid- level properties also contribute to the 
patterns of response in category- selective regions. Recently, 
images that preserve mid- level properties of objects, but were 
not recognizable, elicited similar patterns of neural response 

F I G U R E  5  Adaptation index (different–same) in category- 
selective regions (collapsed across fusiform face area and 
parahippocampal place area) in response to intact, locally-scrambled 
and globally-scrambled images of their preferred and non- preferred 
categories. Colours reflect different subjects, with the group mean 
shown in black

F I G U R E  6  Signal change in V1 in response to sequences 
of different and same images for each Image Type and Category. 
Adaptation (different–same) changed very little across categories or 
image types. Colours reflect different subjects, with the group mean 
shown in black
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to animacy and real- world size found for intact objects (Long 
et al., 2018). When evaluating these possibilities, it is import-
ant to recognize that high- level, mid- level and low- level con-
tributions to the observed representational structure are not 
mutually exclusive. The extraction of any high- level features 
depends on the availability of relevant mid- level features and 
the extraction of any mid- level features depends on the avail-
ability of relevant low- level features.

Although adaptation was most evident to images from 
the preferred category, we also found significant adapta-
tion to intact images from the non- preferred category. This 
finding is relevant to recent accounts that have attempted 
to explain the organization of the occipital–temporal cortex 
(Behrmann & Plaut, 2013). The domain- specific approach 
suggests that discrete cortical regions are selective for the 
processing of specific categories of objects (Kanwisher, 
2010). In contrast, the domain- general approach suggests a 
distributed and overlapping representation of visual infor-
mation along the ventral visual pathway (Haxby et al., 2001). 
Neuropsychological studies are often used as evidence for 
a domain- specific representation (McNeil & Warrington, 
1993; Moscovitch et al., 1997). Our finding of adaptation 
to the non- preferred object category is consistent with pre-
vious studies that have found adaptation to non- preferred 
stimuli in category- selective regions (Ewbank et al., 2005). 
This suggests that the representation of objects and places is 
not restricted to those regions that respond maximally, but 
is distributed across the ventral visual pathway. However, it 
is also important to reiterate that the magnitude of the ad-
aptation was much greater for the preferred compared to the 
non- preferred category.

Finally, we asked whether the pattern of results found in 
higher- level regions reflected responses at early stages of 
processing. The pattern of response in V1 was quite differ-
ent to that found in the category- selective regions. We found 
the highest response to globally-scrambled images, which 
presumably reflects differences in the amount of the visual 
field that was stimulated (Grill- Spector, Kushnir, Edelman, 
Itzchak, & Malach, 1998). Although there was adaptation to 
repetitions of the same object, this was not significantly dif-
ferent for intact or scrambled images. This demonstrates that 
the responses in the FFA and PPA are emergent properties of 
the visual system.

In conclusion, we have shown that the selectivity to ob-
jects in category- selective regions is also evident to local-
ly-scrambled objects in which the spatial properties of the 
image are preserved, but is less evident to globally-scram-
bled objects in which spatial properties are disrupted. This 
suggests that the neural representation in high- level visual 
cortex is particularly sensitive to the spatial properties of the 
stimulus. Nevertheless, it is clear that the selectivity and ad-
aptation demonstrated by scrambled images does not explain 
all of the variance in the intact images. Further studies will 

be needed to understand the relative role of image proper-
ties not preserved by scrambling and higher- level semantic 
properties in the neural representation of category- selective 
regions.
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