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Abstract

The ventral visual pathway is directly involved in the perception and recognition of

objects. However, the extent to which the neural representation of objects in this region

reflects low-level or high-level properties remains unresolved. A problem in resolving this

issue is that only a small proportion of the objects experienced during natural viewing

can be shownduring a typical experiment. This can lead to an uneven sampling of objects

that biases our understanding of how they are represented. To address this issue, we

developed a data-driven approach to stimulus selection that involved describing a large

number objects in terms of their image properties. In the first experiment, clusters of

objects were evenly selected from this multi-dimensional image space. Although the

clusters did not have any consistent semantic features, each elicited a distinct pattern of

neural response. In the second experiment, we asked whether high-level, category-

selective patterns of response could be elicited by objects from other categories, but

with similar image properties. Object clusters were selected based on the similarity of

their image properties to objects from five different categories (bottle, chair, face, house,

and shoe). The pattern of response to each metameric object cluster was similar to the

pattern elicited by objects from the corresponding category. For example, the pattern

for bottles was similar to the pattern for objects with similar image properties to bottles.

In both experiments, the patterns of response were consistent across participants pro-

viding evidence for common organising principles. This study provides a more ecological

approach to understanding the perceptual representations of objects and reveals the

importance of image properties.
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1 | INTRODUCTION

Visual areas involved in object perception form a ventral processing

pathway that projects from the occipital toward the temporal lobe

(Milner & Goodale, 1995; Ungerleider & Mishkin, 1982). Lesions to

different regions of the ventral visual pathway can produce selective

deficits in the perception and recognition of different objects

(McNeil & Warrington, 1993; Moscovitch, Winocur, & Behrmann,

1997). Consistent with these neuropsychological reports, neuroimag-

ing studies have revealed discrete regions that are specialised for
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different categories of objects (Cohen et al., 2000; Downing, Jiang,

Shuman, & Kanwisher, 2001; Epstein & Kanwisher, 1998; Kanwisher,

McDermott, & Chun, 1997; McCarthy, Puce, Gore, & Truett, 1997).

Although specialised regions have only been reported for a limited

number of categories (Downing, Chan, Peelen, Dodds, & Kanwisher,

2006; Vul, Lashkari, Hsieh, Golland, & Kanwisher, 2012), multivariate

analyses have shown that the spatial pattern of neural response is

able to discriminate a greater range of object categories (Haxby et al.,

2001; Kriegeskorte et al., 2008). These distributed patterns of

response shown in these multivariate studies are thought to reflect a

topographic organisation of objects that is analogous to that found in

early visual areas, where the topography is tightly linked to basic

visual properties (Bonhoeffer & Grinvald, 1991; Engel et al., 1994;

Hubel & Wiesel, 1968; Wandell & Winawer, 2011). However, it

remains unclear what organising principles might underpin the topo-

graphic representations of objects in higher visual areas.

Understanding these organising principles is challenging, because

high-level and low-level properties often covary in natural objects

(Malcolm et al., 2016; Rice,Watson, Hartley, & Andrews, 2014). Patterns

of response in higher-visual areas of the ventral visual pathway have

been linked to higher-level properties of objects, such as category

(Connolly et al., 2012; Haxby et al., 2001), animacy (Kriegeskorte et al.,

2008), semantics (Naselaris, Prenger, Kay, Oliver, & Gallant, 2009) and

real-world size (Konkle & Oliva, 2012). However, it remains unclear how

these representations emerge from the image-based representations

found in early visual areas. One possibility is that the patterns of

response in high-level visual areas reflect an underlying representation

that is based on more fundamental properties of the stimulus (Andrews,

Watson, Rice, & Hartley, 2015). Electrophysiological studies in

nonhuman primates also suggest that the topography of higher visual

areas is based on a continuous mapping of image features rather than

discrete object representations (Tanaka, 1996). However, the sparse

nature of these recordings makes it difficult to determine with certainty

the critical dimensions alongwhich information is represented. Neuroim-

aging studies have also shown that differences in the visual properties of

objects can explain a significant amount of the variance in high-level

regions of visual cortex (Coggan et al., 2019; Levy et al., 2001; Rice et al.,

2014; Nasr et al., 2014; Watson, Hartley, & Andrews, 2014; Watson,

Young, & Andrews, 2016; Sormaz et al., 2016). For example, category-

selective patterns of response are still evident when images have been

scrambled in a way that preserves some of their visual properties, but

removes their semantic properties (Andrews et al., 2010; Coggan,

Baker, & Andrews, 2016; Coggan, Liu, Baker, & Andrews, 2016; Long,

Yu, & Konkle, 2018; Watson, Andrews, & Hartley, 2017). A number of

neuroimaging studies have directly compared the influence of low-level

and high-level properties on patterns of response to objects

(Kriegeskorte et al., 2008; Lescroat and Gallant, 2019; Naselaris et al.,

2009; Clarke & Tyler, 2014; Bracci & Op de Beeck, 2016; Proklova, Kai-

ser, & Peelen, 2016; Jozwik, Kriegeskorte, & Mur, 2016). It is becoming

clear from these studies that the representation across the ventral

stream reflects both high-level and low-level representations. Neverthe-

less, these studies vary in the extent to which they support the impor-

tance of low-level and high-level properties.

Key to understanding how objects are represented in the brain is the

ability to uniformly sample the vast number of objects we encounter dur-

ing a lifetime of natural viewing. In a typical neuroimaging experiment,

only a finite number of images can be presented. This can lead to experi-

mental designs that compare responses to relatively small numbers of

F IGURE 1 GIST descriptor (Oliva &
Torralba, 2001) applied to an example
image. The 64 Gabor filters (shown here
in Fourier space) were constructed across
factorial combinations of eight spatial
frequencies and eight orientations. Each
filter was applied to the image in turn,
resulting in 64 filtered images. Each
filtered image was then windowed into an
8 × 8 grid and pixel intensities within each
window were averaged. These were then
concatenated into a single vector of 4,096
values that describes the spatial
frequency and orientation information
present across the image [Color figure can
be viewed at wileyonlinelibrary.com]
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objects from experimenter-defined stimulus conditions, which makes it

difficult to disentangle the subjective manipulation of higher-level dimen-

sions of the stimulus from those driven by correlated lower-level dimen-

sions. To understand how the neural representation of objects might

emerge, it is necessary to develop methods to sample objects in a more

objective, ecologically valid way and then determine how they affect pat-

terns of response across visual cortex. In this study, we used a data-driven

approach to select stimuli (Watson et al., 2017), and measured neural

responses to these images using fMRI. Images from a large object data-

base were described in terms of their image properties and clustering

algorithmswere used to evenly sample clusters of objects from this image

space. Our rationale is that these object clusters will provide a good first

approximation to the diversity of objects that an individual will be

exposed to during a lifetime of natural viewing and avoids the need to

impose any additional higher-level constraints on stimulus selection.

Our aimwas to determine whether clusters of objects defined purely

by their image properties would generate distinct patterns of response in

the ventral stream in the same way as is typically observed for subjec-

tively defined image categories. If this were the case, this would suggest

that the neural representation of objects was to some degree based on

their underlying image properties. As a further test of the role of low-

level properties in the organisation of the ventral visual pathway, we

askedwhether high-level representations of category could be explained

by low-level properties. Clusters of objects were selected from the data-

base based on their similarity to objects from commonly used object cat-

egories (bottle, chair, face, house, and shoe). Our aim was to determine

whether these object clusters would elicit similar patterns of response to

objects defined by object category. For example, is the pattern of

response to chairs similar to the pattern of response to objects that have

similar image properties to chairs? Patterns of neural response were

compared across participants to determine inter-subject consistency

(see Coggan et al., 2017; Flack et al., 2015; Rice et al., 2014; Watson

et al., 2014; Weibert, Flack, Young, & Andrews, 2018). This is important

as it tests whether common organising principles underpin the topogra-

phy of the response across participants.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-one participants took part in Experiment 1 (11 male, mean

age = 23, SD = 2.7 years). Twenty-eight participants took part in

Experiment 2, with data from three participants removed for exces-

sive movement during the scan (final sample: 16 male, mean age = 25.7,

SD = 7.0 years). Sample size was based on previous studies using simi-

lar designs (Coggan, Baker, & Andrews, 2016; Watson et al., 2017). All

participants were right-handed, had normal or corrected-to-normal

vision and no history of mental illness. Each gave their informed, writ-

ten consent and the study was approved by the York Neuroimaging

Centre (YNiC) Ethics Committee and adhered to the original wording

of the Declaration of Helsinki. Stimuli were back-projected onto a

custom in-bore acrylic screen and viewed via a mirror placed above

the subject's head. Viewing distance was approximately 57 cm. All

objects were presented within a 15 × 15� frame, though the objects

themselves subtended a smaller visual angle than this. Stimuli were

presented using Psychopy (Peirce, 2007).

2.2 | Image properties

In order to obtain a realistic range of real-world objects, we used all

images contained in the Bank of Standardised Stimuli (Brodeur,

Dionne-Dostie, Montreuil, & Lepage, 2010) as this comprises a large

and diverse range of objects (2,761 objects at the time of selection)

taken from a range of categories that includes: food, tool, musical

instruments, vehicles, weapons, animals, body parts, buildings, cloth-

ing, electronic devices, furniture, games, jewellery, kitchen utensils,

medical instruments, sports items, bathroom items, stationary (see

table 2 of Brodeur et al., 2010). Images were converted to greyscale

and then measured with the GIST descriptor (Oliva & Torralba, 2001),

which describes the spatial frequency and orientation information

present at different spatial locations across the image as a numerical

vector (Figure 1). We configured the descriptor to measure the energy

at eight spatial frequencies across eight orientations and 64 spatial

subdivisions (8 × 8) of the image, resulting in a vector of 4,096 values

that described each image. GIST vectors were then normalised by first

scaling each component of the vectors to sum to one across images,

and second by scaling each vector to have a magnitude of one. Our

motivation for using GIST is primarily that we have used this method

with success in a number of previous studies in this area (Rice et al.,

2014; Watson et al., 2014; Watson et al., 2016; Watson et al., 2017;

Weibert et al., 2018). An advantage of this method is that it makes

minimal assumptions about the way image properties are represented.

2.3 | Experiment 1

2.3.1 | Image selection

A k-means clustering algorithm was used to evenly select clusters of

objects with similar image properties from different regions of the object

space defined by the 4,096 dimensions of the GIST descriptor. Attempting

to apply clustering algorithms in a high-dimensional space can be problem-

atic and can result in slowor unreliable clustering leading to the selection of

atypical or outlier objects (Bellman, 1961). So we first reduced the dimen-

sionality using principal components analysis (PCA). We used the first

20 principal components, which explained 58.0% of the variance of the

original components (see Watson et al., 2017). We applied the k-Means

clustering algorithm (k = 10; Euclidean distance metric) to identify 10 cen-

troids within this space. We then selected the 24 images nearest the cen-

troid of each cluster as measured by Euclidean distance, such that images

within a cluster have similar visual properties to one another.

This process of image selection is shown in Figure 2. The choice

of cluster number and the number of images were chosen to fit within

the constraints of a neuroimaging study, rather than to fit any

assumptions about the structure of the image space. We would pre-

dict that a similar pattern of results would be evident with a different

value of k, provided there was sufficient power in fMRI analysis. PCA

COGGAN ET AL. 3



F IGURE 2 Data-driven image selection in Experiment 1. (a) GIST descriptions were generated for each image in the BOSS database (see
Figure 1). PCA was used to reduce the dimensionality of the data, with the first 20 PCs selected. Ten distinct clusters within this feature space
were then defined through k-means clustering, with the 24 most proximate images to each cluster centroid selected to represent each cluster.
(b) Multidimensional scaling plot approximating the locations of the selected images within the feature space. (c) Examples of stimuli from each of
the 10 clusters on a uniform, mid-grey background (‘untextured’ condition). (d) The same stimulus set was also superimposed on a pink noise
background (‘textured’ condition) [Color figure can be viewed at wileyonlinelibrary.com]
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and k-Means algorithms were implemented using the Python Scikit-

learn toolbox (Pedregosa et al., 2011). Multidimensional scaling was

also used to visualise the locations of images in each cluster in a 2D

approximation of the principal component feature-space (Figure 2b).

The mean distance between exemplars and the centroid in this plot

was similar across clusters (01:0.26 ± 0.13; 02:0.14 ± 0.07; 03:0.19

± 0.07; 04:0.13 ± 0.07; 05:0.07 ± 0.04; 06:0.09 ± 0.05; 07:0.18

± 0.07; 08:0.22 ± 0.08; 09:0.17 0.09; 10:0.31 ± 0.11; AU ± SD).

Two versions of this stimulus set were then created by applying a

uniform, mid-grey background (untextured condition, Figure 2c) and a

unique, pink noise (1/f) background (textured condition, Figure 2d) to

each of the 240 images. All images are shown in Figure S1. The ratio-

nale for the textured background was that images rarely appear in isola-

tion, so we were interested to know if a similar pattern of response

was evident when images were presented on uniform compared to a

textured background. The textured backgrounds were designed to pro-

vide visual stimulation across the extent of the image, which emulates

the 1/f amplitude energy distribution found in most natural images,

without conveying any confounding visual or semantic information.

2.3.2 | Design and procedure

The fMRI experiment consisted of two scans. Images with untextured

and textured backgrounds were presented in different scans, the

order of which was counterbalanced across subjects. In each scan,

objects from the 10 clusters were presented in 6 s blocks. In each

block, six objects from the same cluster were presented individually

for 800 ms, with a 200 ms inter-stimulus-interval. This was followed

by a fixation cross lasting 9 s. Images from each cluster were shown

four times, giving a total of 40 blocks. The order of the blocks was

randomised. Participants performed a task whilst viewing images,

designed to maintain attention for the duration of the scan. The task

consisted of pressing a button on a response box whenever a red dot

appeared on an image. Red dots were randomly placed on 40 of the

240 images presented throughout the scan.

2.4 | Experiment 2

2.4.1 | Image selection

The procedure for image selection in Experiment 2 is shown in

Figure 3. Image clusters were selected based on their image similarity

(GIST vector) to images from five categories that are commonly used

to test the response of objects in the ventral visual pathway (Haxby

et al., 2001; Rice et al., 2014). The five categories were bottles, chairs,

faces, houses, and shoes. The GIST descriptor was applied to

36 images from each object category that have been used in previous

experiments (Coggan, Liu, et al., 2016; Rice et al., 2014; Watson et al.,

2016). From these images, an average GIST descriptor was calculated

for each category. The average GIST vector for each category was

correlated with the GIST vectors from each image in the BOSS data-

base. For each of the five categories, all objects in the BOSS database

were ranked based on correlation. For each category, 36 images with

the highest correlation values were selected, excluding those images

that had an obvious semantic relationship with any of the five original

object categories. All images are shown in Figure S2.

2.4.2 | Design and procedure

The fMRI experiment had 10 conditions. Five conditions contained

images from five object categories (bottle, chair, face, house, and shoe).

The other five conditions had images with similar image properties to

bottles, chairs, faces, houses, and shoes. In each scan, objects from the

10 conditions were presented in 6 s blocks. In each block, six objects

from the same cluster were presented individually for 800 ms, with a

200 ms inter-stimulus-interval. This was followed by a fixation cross

lasting 9 s. Images from each cluster were shown six times, giving a

total of 60 blocks. The order of the blocks was randomized. Again, par-

ticipants performed an orthogonal task designed to maintain attention.

For this experiment, subjects had to respond whenever the fixation

cross changed from black to green, which occurred on average once

per block, randomly distributed throughout the scan duration.

2.5 | Data acquisition

fMRI data for both experiments were acquired with a General Electric 3 T

HD Excite MRI scanner at YNiC at the University of York, fitted with an

eight-channel, phased-array, head-dedicated gradient insert coil tuned to

127.4 MHz. A gradient-echo echo-planar imaging (EPI) sequence was

used to collect data from 38 contiguous axial slices (TR = 3,000 ms,

TE = 32.7 ms, FOV = 288 × 288 mm, matrix size = 128 × 128, voxel

dimensions = 2.25 × 2.25 × 3 mm, flip angle = 90�). The fMRI data were

analysed with FEAT v5.98 (http://www.fmrib.ox.ac.uk/fsl). In all scans,

the initial 9 s of datawere removed to reduce the effects of magnetic sat-

uration. Motion correction (MCFLIRT, FSL) and slice-timing correction

were applied, followed by temporal high-pass filtering (Gaussian-

weighted least-squares straight line fitting, sigma = 50 s). Gaussian spatial

smoothing was applied at 6 mm FWHM. Parameter estimates were gen-

erated for each cluster by regressing the hemodynamic response of each

voxel against a box-car function convolved with a single-gamma HRF.

Functional data were first registered to a low-resolution T1-anatomical

image oriented in the same plane as the EPI (TR = 2.5 s, TE = 9.98 ms,

FOV = 288 × 288 mm, matrix size = 512 × 512, voxel dimen-

sions = 0.56 × 0.56 × 3 mm, flip angle = 90�), then to a high-resolution

T1-anatomical image (TR = 7.96 ms, TE = 3.05 ms, FOV= 290 × 290 mm,

matrix size = 256 × 256, voxel dimensions = 1.13 × 1.13 × 1 mm, flip

angle = 20�) and finally onto the standardMNI brain (ICBM152).

2.6 | Regions of interest

The ventral stream regions of interest (ROIs) is shown in Figure 4. To

construct a mask of the ventral visual pathway, we selected a series of

anatomical ROIs from the Harvard-Oxford cortical atlas based on the

physical limits of ventral temporal cortex described by Grill-Spector and

Weiner (Grill-Spector & Weiner, 2014). Specifically, these regions were:

COGGAN ET AL. 5
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inferior temporal gyrus (temporo-occipital portion), temporal–occipital

fusiform cortex, occipital fusiform gyrus, and lingual gyrus.

2.7 | Multi-voxel pattern analysis

The reliability of patterns of neural response to each condition was tested

using a leave-one-participant-out (LOPO) cross-validation paradigm

(Poldrack, Halchenko, & Hanson, 2009; Rice et al., 2014), which allows us

tomeasure the consistency of the pattern of response across participants.

Parameter estimates to each condition were normalised by subtracting

the mean response per voxel per participant across all categories. These

data were then submitted to a correlation-based multi-voxel pattern ana-

lyses (MVPA, Hanson, Matsuka, & Haxby, 2004; Haxby et al., 2001)

implemented using the PyMVPA toolbox (Hanke et al., 2009). For

each unique combination of conditions, the LOPO analysis compares

the patterns of response in each participant with a corresponding

group parameter estimate determined using a higher-level analysis of

the remaining participants. This was repeated for each participant.

F IGURE 3 Image selection in Experiment 2. For each original category, 36 images were selected. Each image was then described by the GIST
descriptor, as shown in Figure 1. GIST vectors were averaged across the 36 images to give a single vector for the category. This was then
compared through correlation to GIST vectors generated for each object image in the Bank of Standardized Stimuli (BOSS). BOSS images were

then ranked by their correlation coefficient and the top 36 images were selected. BOSS images containing objects from or closely related to any
of the original categories were excluded. This resulted in 36 images with similar GIST vectors to the original category [Color figure can be viewed
at wileyonlinelibrary.com]
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The correlation coefficients were then used to populate a representa-

tional similarity matrix, which shows the relative similarity of patterns

of response to different object clusters. A Fisher's Z-transformation

was then applied to the correlations prior to further statistical analy-

sis. To determine whether there were reliable patterns of response to

each object cluster, the within-cluster correlations (e.g., cluster 1 vs.

cluster 1) were compared to the relevant between-cluster correlations

(e.g., cluster 1 vs. cluster 2, cluster 1 vs. cluster 3, etc.).

2.8 | Semantic similarity analysis

To generate a model of the similarity between object clusters based on

semantic properties, we used WordNet—a lexical database of English

(Miller, 1995).WordNet represents conceptual relations amongst nouns,

including hyponymy (super- and subordinate categorical relations;

e.g., between ‘chair’ and ‘furniture’) andmeronymy (part-whole relations;

e.g., between ‘leg’ and ‘chair’), in a hierarchical taxonomy. The semantic

similarity between a word pair can be estimated through their proximity

in the taxonomy. This is illustrated in Figure 5a. We identified nouns in

WordNet that corresponded to each image in our stimulus set, and gen-

erated semantic similarity estimates between all pairwise combinations.

These estimates were then averaged for each pairwise combination of

clusters to generate the similarity matrices shown in Figure 5b,c for

Experiments 1 and 2, respectively. In Experiment 1 (Figure 5b),

the semantic similarity was not significantly different for objects

within an image cluster compared to objects in different object clusters

(t[9] = 1.70, Cohen's d = 0.54, p = .123). In Experiment 2 (Figure 5c), not

surprisingly, the semantic properties of objects chosen based on their

category were more similar to each other than objects from different

object categories (t[9] = 113.81, Cohen's d = 43.25, p < .001). However,

semantic similarity was not significantly greater for objects within

corresponding metameric clusters defined by image properties com-

pared to objects from different metameric clusters (t[5.15] = 113.81,

Cohen's d = 1.04, p = .34). There was also no semantic similarity

between object clusters defined by category and metameric object clus-

ters defined by image properties (t[6.79] = 0.29, Cohen's d = 0.13,

p = .78). Together, these results show that object clusters defined by

image properties did not have any consistent semantic properties.

3 | RESULTS

3.1 | Experiment 1

In Experiment 1, we measured the response to object clusters defined

only by their image properties (see Figure 2). Figure 6a and Figure S3

F IGURE 4 Ventral stream mask, projected onto a ventral view of
inflated cortex [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Semantic similarity analysis. (a) simplified illustration of Wordnet taxonomy structure. Semantic similarity is estimated by
measuring the shortest number of connections between two words. For instance, ‘hatchback’ and ‘compact’ are separated by two connections,
whereas ‘hatchback’ and ‘truck’ are separated by three. The former pair would therefore be estimated as more semantically similar than the latter.
Matrices in b and c show average semantic similarity between conditions in Experiments 1 and 2, respectively. There was no consistency in the
semantic properties of the images chosen based on their image properties [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 MVPA for Experiment 1. (a) Patterns of neural response in the ventral visual pathway to different object clusters with untextured
and textured backgrounds. Patterns of response were normalised for each background type by subtracting the voxel-wise mean response across
all 10 clusters from the response to each cluster. Axial slices are located at z = −16 (ICBM-MNI 152). (b) Group mean neural matrices showing
correlations between neural responses within and between the different object clusters for untextured and textured conditions. Despite the
difference in magnitude of the correlations in the untextured and textured matrices, there was a strong correlation between them (r = 0.89,
p < .001; between-cluster correlations only). (c) Bar plot showing higher within-cluster compared to between-cluster correlations (Z-transformed)
for textured and untextured conditions. (d) Bar plots showing the difference in within- and between-cluster correlations (Z-transformed) for each
cluster. For all bar plots, error bars represent ±1 SE of the mean. A similar pattern of results was evident when the data were analysed using a
permutation test (Table S1). *p < .05, **p < .01, ***p < .001 [Color figure can be viewed at wileyonlinelibrary.com]
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show the average pattern of response to each of the object clusters in

the ventral visual pathway ROI. Figure 6b shows the similarity in pat-

terns of neural response within cluster (diagonal values) and between

clusters (off-diagonal values). To determine whether each object clus-

ter generated a distinct pattern of response, we compared the within-

cluster (i.e., same condition) correlations with the between-cluster

(i.e., different condition) correlations. This was performed separately

for each background condition (textured, untextured). Distinct pat-

terns of response to a cluster are demonstrated by higher within-

cluster than between-cluster correlations.

We found that different object clusters evoked distinct patterns

of neural response across the ventral visual ROI. A three-way analysis

of variance (ANOVA), with background (untextured, textured), cluster

(1–10) and comparison (within-cluster, between-cluster) as repeated

measures showed a main effect of comparison (F[9,180] = 173.59,

ηG2 = 0.52, p < .001), with within-cluster correlations being higher

than between-cluster correlations. However, there was an interaction

with background (F[1,20] = 99.22, ηG2 = 0.21, p < .001), suggesting

that the distinctiveness of cluster-specific patterns differed across

background types (Figure 6c). Post hoc analysis revealed higher

within-cluster than between-cluster correlations for both untextured

(t[20] = 13.95, Cohen's d = 3.04, p < .001) and textured backgrounds

(t[20] = 8.88, Cohen's d = 1.94, p < .001), but a stronger effect for

untextured images (t[20] = 10.25, Cohen's d = 2.24, p < .001).

There was a two-way interaction between comparison and cluster

(F[9,180] = 3.80, ηG2 = 0.04, p < .001) and a three-way interaction

between background, cluster, and comparison (F[9,180] = 2.04,

ηG2 = 0.021, p = .037). This shows that the distinctiveness of the

neural patterns of response varies across clusters (Figure 6d). To

investigate these effects, post hoc pairwise comparisons of the

F IGURE 7 MVPA for Experiment
2. (a) Patterns of neural response in the
ventral visual pathway to different object
conditions. Patterns of response were
normalised for each image type (row) by
subtracting the voxel-wise mean response
across five categories from the response
to each category. Axial slices are located
at z = −16 (ICBM-MNI 152). (b) Group
mean neural matrices showing
correlations between neural responses
within and between the different object
conditions. In the right matrix, correlations
were performed across the ‘category’ and
‘image’ conditions. (c) Bar plot showing
within-minus between-category
correlations (Z-transformed) for each
image type. Error bars represent standard
error of the mean. A similar pattern of
results was evident when the data were
analysed using a permutation test
(Table S2). *p < .05, **p < .01, ***p < .001
[Color figure can be viewed at
wileyonlinelibrary.com]
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within-cluster and between-cluster correlations were determined for

each background-cluster combination. For the untextured back-

ground, there were significantly higher within-cluster than between-

cluster correlations for all clusters (t[20] > 6.5, Cohen's d > 1.53,

p < .001). For the textured background, nine of the 10 clusters

showed higher within- than between-cluster correlations (t[20] > 2.3,

Cohen's d > 0.41, p < .022 for 9 significant clusters. For the nonsignif-

icant cluster (cluster 2), t(20) = 1.75, p = .081).

3.2 | Experiment 2

Experiment 2 compared the patterns of response to objects from five

different categories (bottle, chair, face, house, and shoe) with the pat-

terns of response to objects from other categories, but with similar

image properties. Figure 7a and Figure S4 show the average pattern

of response to each condition in Experiment 2. Figure 7b (left panel;

category) shows the similarity in patterns of response within and

between conditions to objects defined by category. Figure 7b (middle

panel; image) shows the similarity in the patterns of response to meta-

meric object clusters defined by image properties. Figure 7b (right

panel; category vs. image) directly compares the similarity in the pat-

terns of response to objects defined by category with the patterns of

response to metameric object clusters defined by their image

properties.

To determine whether the patterns of neural response to each

object cluster were reliable, we compared the within-cluster

correlations (on-diagonal values) with the between-cluster

correlations (off-diagonal values). Distinct patterns of response to a

cluster are demonstrated by higher within-cluster than between-

cluster correlations. This effect of Comparison (within-cluster,

between-cluster) was performed separately for each Image Type (cat-

egory, image, and category/image) and for each Category (bottle,

chair, face, house, and shoe).

A three-way analysis of variance (ANOVA), with Comparison,

Image Type and Category as repeated measures showed a main effect

of Comparison (F[1,29] = 157.88, ηG2 = 0.45, p < .001), due to within-

cluster correlations being higher than between-cluster correlations.

Figure 7c (left panel) shows higher within-condition compared to

between-condition for all comparisons between objects defined by

category (bottle: t[24] = 15.09, Cohen's d = 3.02, p < .001; chair: t

[24] = 8.34, Cohen's d = 1.67, p < .001; face: t(24) = 14.35, Cohen's

d = 2.87, p < .001; house: t(24) = 15.54, Cohen's d = 3.10, p < .001;

shoe: t(24) = 6.55, Cohen's d = 1.31, p < .001). Figure 7c (middle

panel) also showed higher within-condition compared to between-

condition comparisons for objects defined by image properties (bottle:

t(24) = 13.93, Cohen's d = 2.79, p < .001; chair: t(24) = 6.74, Cohen's

d = 1.35, p < .001; face: t(24) = 6.39, Cohen's d = 1.28, p < .001;

house: t(24) = 9.50, Cohen's d = 1.90, p < .001; shoe: t(24) = 8.87,

Cohen's d = 1.77, p < .001). Finally, Figure 7c (right panel) showed

higher within-condition compared to between-condition comparisons

for the cross-decoding of objects defined by category compared to

objects defined by image properties (bottle: t(24) = 15.41, Cohen's

d = 3.08, p < .001; chair: t(24) = 8.10, Cohen's d = 1.62, p < .001; face:

t(24) = 4.52, Cohen's d = 0.90, p < .001; house: t(24) = 11.15, Cohen's

d = 2.23, p < .001; shoe: t(24) = 4.45, Cohen's d = 0.89, p < .001).

There was an interaction between Comparison, Image Type and Cat-

egory (F[1,20] = 91.20, ηG2 = 0.17, p < .001). This may reflect the lower

correlations in the category versus image comparison (see Figure 7c),

particularly the smaller effect of comparison for faces. One possible rea-

son for this could be that image properties of the object clusters defined

by image properties were similar, but not identical to the object clusters

defined by category. To determine whether this could explain the varia-

tion in the neural similarity measures, we determined the mean correla-

tion in image properties between objects defined by category and

objects defined by image properties independently for each object cate-

gory (see Figure 3). These five correlation values on image similarity were

then compared to the similarity in the pattern of response across

corresponding object clusters [e.g., bottle (category) vs. bottle (image)]. A

regression analysis across participants showed that the similarity in

image properties significantly predicted the neural similarity between

the patterns of response between the category and image conditions (t

(24) = 9.07, Cohen's d = 1.81, p < .001).

3.3 | Can image properties predict patterns of
response in the ventral visual pathway?

Our next analysis investigated the extent to which the pattern of neu-

ral response in the ventral visual pathway could be predicted by the

visual properties of the image clusters (Figure 8 and Figure S5-S6).

This analysis was restricted to the between-condition values. In

Experiment 1, there were significant, positive correlations between

the neural correlation matrix and the image properties (untextured:

r = .43, p = .003; textured: r = .41, p = .005), suggesting that clusters

with more similar image properties were also likely to elicit more simi-

lar patterns of neural response (Figure 8a). Similarly, in Experiment

2, there was a significant positive correlation between image proper-

ties and patterns of neural response (r = .74, p = .001).

To determine the extent to which GIST descriptor explains all the

variance in the neural data, we performed an additional hierarchical

regression on the neural data shown in Figures 6b and 7b. Our aim

was to establish if there was any residual within vs between condition

variance, after removing the variance that could be explained by GIST.

To do this, we first used GIST as a model, followed by a Within-

Between model with values of 1 for within-condition comparisons

and values of 0 for between-condition comparisons. In Experiment

1, there was a significant effect of the GIST model (untextured: mean

β = 0.397, t(20) = 14.0, p < .001; textured: mean β = 0.142,

t(20) = 8.88, p < .001). After accounting for GIST, there was a small

but significant effect of the Within-Between model (untextured: mean

β = 0.034, t(20) = 6.79, p < .001; textured: mean β = 0.015,

t(20) = 2.63, p = .016). In Experiment 2, we ran a similar analysis on

the category conditions. Again, there was a significant effect of the

GIST model (mean β = 1.239, t(20) = 19.17, p < .001) and, after

accounting for GIST there was a small, but significant effect of the
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Within-Between model (mean β = 0.134, t(24) = 9.88, p < .001). These

analyses show that GIST does not predict all of the variance in the

neural data. Given that this residual variance was evident in both

Experiment 1 and 2, this suggests that the neural response is selective

to image properties that are not fully captured by the GIST.

3.4 | The representation of objects across visual
cortex

To explore how the neural representation of the object clusters chan-

ged along the visual processing hierarchy, we used probabilistic visual

field map ROIs (Wang, Mruczek, Arcaro, & Kastner, 2015). These

maps extend from early visual areas in the posterior occipital lobe to

ventral and lateral regions of the temporal lobe. These ROIs allowed

to us to perform a more fine-grained analysis of how image properties

are represented across visual cortex, as compared to the ventral

stream mask that may contain both mid- and high-level visual regions.

We compared patterns of response to each image cluster to generate

a similarity matrix for each region. This generated similarity matrices

for the neural response to different object clusters across all the

regions (cf. Figures 6b, 7b). For each region, the between-cluster simi-

larity matrix was compared to each of the other regions. This

was done separately for Experiment 1 (Figure 7a) and Experiment

2 (Figure 7b) to create similarity matrices across regions. To determine

how the regions were inter-connected a hierarchical clustering analy-

sis was performed using an unweighted average distance method for

computing the distance between clusters and 1—correlation value as

the distance metric. This shows a division between the ‘low-level’ and

‘high-level’ visual regions, showing the emergence of a different

neural representation of objects in ‘high-level’ regions. There was a

significant correlation between the values across Experiment 1 and

2 (r = .58, p < .001).

4 | DISCUSSION

The aim of this study was to compare how objects are represented in

the ventral visual pathway. A key feature of our approach to this

question is the use of data-driven methods for image selection. During

a life-time of natural viewing, a person encounters a vast number of

objects. However, during a typical neuroimaging experiment, only a

finite number of images can be presented. Thus, the stimuli selected

may not sample image space in a uniform and objective way, making it

difficult to separate the effects of arbitrary and subjective

F IGURE 8 Representational similarity analysis between neural response and image properties for Experiment 1 (a) and Experiment 2 (b).
Scatterplots show correlation between models and the neural matrices. Blue shaded region represents 95% confidence intervals. Prior to
correlation, values in the image and neural matrices were Z-transformed and within-cluster correlations were removed. *p < .05, **p < .01,
***p < .001 [Color figure can be viewed at wileyonlinelibrary.com]
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manipulations of stimulus conditions from those driven by the funda-

mental underlying dimensions. To address this issue, we used a data-

driven approach in which a clustering algorithm was used to evenly

sample clusters of objects from a large database of images. Images

were defined based on their image properties to avoid the need to

impose any additional higher-level constraints. Our rationale is that

these object clusters will provide a good first approximation to the

diversity of objects that an individual has been exposed to during a

lifetime of natural viewing.

We found that object clusters with similar image properties gave

rise to distinct patterns of neural response in the ventral visual path-

way. This is consistent with previous studies showing that image

properties predict patterns of response to objects in the ventral visual

pathway (Andrews et al., 2015; Rice et al., 2014; Watson et al., 2016).

In these previous studies, the image conditions were from the same

category, so it is possible that the similarity in image properties could

have been confounded with correlated differences in semantic prop-

erties. In this study, the images in each cluster did not have any con-

sistent semantic properties, which reinforce the importance of image

properties in the neural representation of this region. Another impor-

tant aspect of the analysis was that the similarity in the patterns of

response in the ventral visual pathway could be predicted by the simi-

larity in their image properties. This strong linkage shown in Figure 8

provides a strong test of the hypothesis that an image-based repre-

sentation of objects is evident in this region.

Cluster-specific patterns of neural response in the ventral visual

pathway were less distinct when images were imposed on a textured

background, relative to an untextured background (see Figure 6c). An

important difference between these two conditions is the contrast-

defined spatial envelope or outline of the object. In the untextured con-

dition, this is identical to the spatial boundary of the object, which differs

systematically across object clusters. However, all objects in the textured

condition were presented within a square of pink noise, reducing the

salience of this diagnostic cue. The textured backgrounds were designed

to provide visual stimulation across the extent of the image and emulate

the 1/f amplitude energy distribution found in most natural images. The

reduction in the distinctiveness of cluster-specific responses when a tex-

tured background is added suggests that the spatial envelope is an

important visual feature in determining the topographic response of the

ventral visual pathway (Bracci & Op de Beeck, 2016; Vernon, Gouws,

Lawrence, Wade, & Morland, 2016; Watson et al., 2016). Although the

use of these textured backgrounds avoids conveying any confounding

information, we expect that presenting objects on structured back-

grounds that are randomly selected would have given similar results, due

to suppression of the spatial envelope (Yamins et al., 2014). Neverthe-

less, the similarity matrix for objects on untextured and textured back-

grounds was highly correlated. This, along with the persistence of

attenuated, but distinctive, cluster responses in the presence of a tex-

tured background suggests that the neural patterns to untextured

images generalise to natural images inwhich the ability to separate figure

and ground is likely to be an important processing step (Rubin, 2001).

As a further test of an image-based representation, we asked

whether category-selective patterns of response in the ventral visual

pathway could be generated by objects from different categories, but

with similar image properties. In other words, is the pattern of

response to bottles similar to the pattern of response to objects that

have similar image properties to bottles. To do this, we measured the

image properties from exemplars of different categories (bottles,

chairs, faces, houses, and shoes) and then selected objects with similar

image properties (excluding any objects from the original categories).

Although the objects in each metameric cluster did not have any con-

sistent semantic properties, we found that they elicited distinct pat-

terns of response in the ventral visual pathway. Moreover, the pattern

of response to each metameric object cluster was similar to the pat-

tern of response elicited by the corresponding category-defined,

object cluster. For example, the pattern of response to chairs was sim-

ilar to the pattern of response to objects that had similar image prop-

erties to chairs. We found that the ability to find objects that had

similar image properties to a category, but were not a member of that

category varied for different categories. For some natural categories,

such as faces, visual properties are more distinctive and consistent

than others, meaning that degree of similarity between the matched

images varied across conditions. Interestingly, this variation predicted

similarity in the pattern of neural response; images with more similar

properties generated more similar patterns of neural response.

The fact that low-level properties of objects can predict patterns of

response in ‘high-level’ regions does not imply that information is repre-

sented in a similar way to ‘low-level’ or early visual areas. In fact, our

data clearly shows that the neural representation changes along the

visual hierarchy (see Figure 9). An important property of natural images

is that they contain strong statistical dependencies, such as location-

specific combinations of orientation and spatial frequency

corresponding to image features such as edges. Indeed, the character

and extent of these statistical dependencies are likely to be diagnostic

for different classes of objects (Geisler, 2008; Oppenheim & Lim, 1981;

Sigman, Cecchi, Gilbert, & Magnasco, 2001; Thomson, 1999). Although

we found that GIST was able to predict the majority of the variance in

the patterns of neural response in the ventral visual pathway, a hierar-

chical regression analysis found that there was some within-condition

variance in the neural patterns that was not explained. Given this, it is

possible that other models that incorporate mid-level representations

of objects may predict patterns of neural response more accurately

than GIST (Guclu & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte,

2014; Leeds, Seibert, Pyles, & Tarr, 2013; Long et al., 2018; Yamins

et al., 2014). This is consistent with models of object processing in

which selectivity for objects emerges through the superposition of

topographically organised maps representing lower-level properties

(Andrews et al., 2015; Op de Beeck, Haushofer, & Kanwisher, 2008).

The response to particular object categories may reflect the conver-

gence of selectivity for particular combinations of image properties that

are diagnostic of that object category. The image properties of objects

that are more commonly seen may be over-represented in high-level

regions in the same way that the central visual field is over-represented

in low-level visual regions.

An obvious advantage of a relatively image-based representation

in high-level visual cortex is that it can be used more flexibly in the
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processing of objects. Previous studies have shown that patterns of

neural response in the ventral visual pathway can discriminate higher-

level properties of objects (Grill-Spector & Weiner, 2014), such as cat-

egory (Connolly et al., 2012; Haxby et al., 2001; Kriegeskorte et al.,

2008; Naselaris et al., 2009), animacy (Chao, Haxby, & Martin, 1999;

Kriegeskorte et al., 2008) and real-world size (Konkle & Oliva, 2012).

Our results suggest that these higher-level representations are linked

to correlated variation in low-level properties of objects. This implies

that the ventral visual pathway could have a fundamentally image-

based representation, albeit biassed toward those features that are

critical for perception. A more fine-grained analysis of how the neural

representation of image properties changes from low- to mid- to high-

level regions is shown in Figure 9. This analysis shows that image

properties are represented differently in different regions along the

visual hierarchy. This presumably reflects differences in the complex-

ity of the image based representation. So, rather than a transition

from low-level to high-level properties, there is a gradual change in

the complexity by which image properties are represented (see

F IGURE 9 Comparison of retinotopic regions for Experiment 1 (a) and Experiment 2 (b). Matrices show representational similarity of
retinotopic regions based on the neural similarity matrices. Dendrograms show hierarchical clustering of regions based on maximum distance
[Color figure can be viewed at wileyonlinelibrary.com]
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Coggan et al., 2017). This may covary with higher-level dimensions,

particularly in more anterior regions. However, a fundamentally

image-based representation would allow for the extraction of differ-

ent information depending on the task.

An important feature of our findings is that the spatial patterns of

response to different object clusters generalised across participants.

Neuroimaging studies have shown that the locations of category-

selective regions in the ventral visual pathway are broadly consistent

across individuals (Kanwisher, 2010). This implies that common princi-

ples may well underpin the organisation of these regions. In many

neuroimaging studies, MVPA is performed at the individual participant

level. This approach is often grounded in an assumption of substantial

differences between individual brains, and contrasts with the across-

participant analysis used in the current study. In our analysis, we com-

pared the pattern of response in individual participants with the pat-

tern from a group analysis in which that participant was left out

(Coggan et al., 2017; Flack et al., 2015; Rice et al., 2014; Watson

et al., 2014; Weibert et al., 2018). The success of this approach shows

that much of the topographic pattern of response to natural images is

consistent across individuals. These observations are significant in

that they suggest that our findings reflect the operation of large-scale

organising principles that are consistent across different individuals.

In summary, we used a data-driven approach to group images of

objects into different clusters based on their visual properties. This cir-

cumvents the limitations associated with subjectively allocating stimuli

to predefined categories. Although the clusters did not correspond to

typical object categories, we found that they elicited distinct patterns of

response in the ventral visual pathway. The results also show how

category-selective patterns of response can be explained by the image

properties of objects. Interestingly, the representational structure found

in ‘high-level’ regions was not the same as that found in ‘low-level’

regions. This suggests the emergence of an image-based representation

in high-level visual cortex that is based on the statistical properties of

objects. Although we have used image properties to select images, it

would also be possible to extend this approach to the selection of objects

based on other low-, mid-, or high-level properties.
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