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Abstract

Considerable information about mental states can be decoded from
noninvasive measures of human brain activity. Analyses of brain activ-
ity patterns can reveal what a person is seeing, perceiving, attending
to, or remembering. Moreover, multidimensional models can be used
to investigate how the brain encodes complex visual scenes or abstract
semantic information. Such feats of “brain reading” or “mind read-
ing,” though impressive, raise important conceptual, methodological,
and ethical issues. What does successful decoding reveal about the cog-
nitive functions performed by a brain region? How should brain signals
be spatially selected and mathematically combined to ensure that de-
coding reflects inherent computations of the brain rather than those
performed by the decoder? We highlight recent advances and describe
how multivoxel pattern analysis can provide a window into mind-brain
relationships with unprecedented specificity, when carefully applied.
However, as brain-reading technology advances, issues of neuroethics
and mental privacy will be important to consider.
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Decoding: neural
decoding involves
determining what
stimuli or mental
states are represented
by an observed pattern
of neural activity
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INTRODUCTION

Imagine that it is the future, an unknown year
in the twenty-first century. A participant is
brought into a neuroimaging lab and asked
to lie back comfortably on a padded bed ta-
ble, which is slowly glided into a brain scan-
ner. The participant watches a brightly colored
display as it provides a virtual tour of every
painting in the Musée d’Orsay. All the while,

noninvasive measures of that person’s brain ac-
tivity are discretely taken, and the arrays of
numbers are quickly transferred to the mem-
ory banks of a high-speed digital computer.
After hours of brain scanning and computer
analysis, the real scientific test begins. A ran-
domly drawn painting is shown again to the
observer. The computer analyzes the incom-
ing patterns of brain activity from the partic-
ipant’s visual cortex and makes the following
prediction with 99% confidence: She is look-
ing at painting #1023, Cézanne’s Still Life with
Apples and Oranges. The experimenter turns to
look at the computer screen, and indeed, the
participant is looking at a plateful of pastel-
colored red and yellow apples, and ripe or-
anges stacked in a porcelain bowl, all care-
fully arranged in the thick folds of a tousled
white tablecloth. Another randomly drawn pic-
ture is shown, and the computer correctly pre-
dicts Landscape with Green Trees by Maurice
Denis.

What does this remarkable scientific
demonstration reveal—successful mind read-
ing? Have the neuroscientists effectively
cracked the brain’s internal code for vision,
such that they now understand how features
and objects are represented in the mind’s
internal eye? We will refer to this as Science
Fiction Story #1.

The lab volunteer has kindly offered to par-
ticipate in a second experiment. This time she
is shown two paintings in quick succession
(Bedroom in Arles, The White Horse) and then is
asked to pick one and hold that image in mind
for several seconds. She imagines a horse stand-
ing in a shallow river, head bent low as if look-
ing at its own reflection in the slowly flowing
stream. The computer quickly scans the matrix
of numbers streaming in. Although brain activ-
ity levels are substantially weaker as she gazes
steadily at the blank screen, compared to mo-
ments ago, a pattern begins to emerge from her
visual cortex. The computer announces, with
85% confidence, that the participant is imag-
ining the second painting, The White Horse.
Would successful decoding in this case indi-
cate that the neural codes for imagination and
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internal visual thoughts have been successfully
decoded? More generally, what would such a
demonstration reveal about the visual and cog-
nitive functions performed by the brain? We
will refer to this as Science Fiction Story #2.

In reality, these stories represent more fact
than fiction. A simplified version of Science
Fiction Story #1 was carried out at the start of
the twenty-first century in a pioneering study
by Haxby and colleagues (2001). The authors
used functional magnetic resonance imaging
(fMRI) to measure patterns of blood level
oxygen–dependent (BOLD) activity, focusing
on object-responsive regions in the ventral
temporal cortex. By comparing the similarity
of brain activity patterns between the first and
second half of the experiment, the authors
showed that these high-level object areas could
accurately predict whether participants were
viewing pictures of faces, houses, chairs, cats,
bottles, shoes, scissors, or scrambled stimuli
(Figure 1a). The use of more sophisticated
pattern-classification algorithms (Figure 1b)
greatly improved researchers’ ability to predict
what object categories people were viewing
(Carlson et al. 2003, Cox & Savoy 2003). Sub-
sequently, Kamitani & Tong (2005) discovered
that it was possible to decode orientation- and
direction-selective responses with surprising
accuracy (Figure 2), even though such feature-
selective information is primarily organized at
the scale of submillimeter columns in the visual
cortex. Thus, fMRI pattern analysis could re-
veal cortical information that would otherwise
fail to be detected. Perhaps the most striking
demonstration of Science Fiction Story #1
comes from the work of Kay et al. (2008). They
presented more than 1,000 natural images to
observers and then characterized the response
preferences of each voxel in the visual cortex,
specifying their selectivity for retinotopic posi-
tion, spatial frequency, and orientation. When
the observers were shown a new set of 120
pictures, each of a different real-world scene,
the authors could accurately predict which new
image was being viewed by finding the best
match between the observed pattern of activity

and the predicted activity of these modeled
voxels.

These studies reveal an unprecedented abil-
ity to predict the basic visual features, com-
plex objects, or natural scenes that are being
viewed by the participant. By combining fMRI
with sensitive pattern-analysis methods, accu-
rate predictions about the viewed stimulus can
be made. Yet it would be a mistake to con-
sider such feats as examples of mind reading.
Why? Because the experimenter does not need
a mind-reading device to achieve this perfor-
mance. The same result could be achieved by
simply looking over the participant’s shoul-
der, “Oh, she is looking at painting #1023,
Cezanne’s Still Life with Apples and Oranges.”
Put another way, one could perform these same
feats by reading out the activity patterns formed
on the retina even though conscious processing
of the image has yet to take place. Activity pat-
terns on the retina would remain robust even
if the person were anesthetized or fell into a
deep coma. So instead, Science Fiction Story
#1 should be considered an example of brain
reading.

Science Fiction Story #2 can be better justi-
fied as a demonstration of mind reading. Here,
information that is fundamentally private and
subjective is being decoded from the person’s
brain; the only alternative would be to ask the
participant directly about what she is thinking
and to hope for an honest reply. Ongoing re-
search is just beginning to probe the possibili-
ties and limits of reading out subjective infor-
mation from the human brain.

In this review, we discuss recent advances
in brain reading and mind reading, and we
consider important conceptual and method-
ological issues regarding how to apply these
techniques to the study of human cognition.
The brain reading approach has revealed
how different types of stimulus information
are represented in specific brain areas, and
some studies provide clues to the functional
organization of these representations. Pattern
analysis of brain activity can also be adapted
to perform feats of mind reading to extract
information about a person’s subjective mental
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Encoding: how a
stimulus or mental
state is encoded or
represented by specific
patterns of neural
activity

state or cognitive goal. We consider whether
such feats of mind reading should be likened to
fancy parlor tricks that require the assistance of
a brain scanner or whether these methods can
be used to genuinely advance our understand-
ing of brain function. Studies employing this
mind-reading approach have revealed how par-
ticular representations are activated or called
upon during conscious perception, attentional
selection, imagery, memory maintenance and
retrieval, and decision making. As will be
seen, careful consideration of experimental
design, analysis, and interpretation of the data
is essential when adopting powerful pattern
analysis algorithms to probe the functions that
might be carried out by a brain area. As these
methodologies continue to advance, it will
become increasingly important to consider the
ethical implications of this technology.

There have been previous reviews on the
topic of fMRI decoding (sometimes called
multivoxel pattern analysis, or MVPA (Haynes
& Rees 2006, Norman et al. 2006), as well as
more in-depth reviews on the technical aspects
of decoding and encoding (Kriegeskorte 2011,
Naselaris et al. 2011, O’Toole et al. 2007,
Pereira et al. 2009). In this review, we highlight
recent studies and discuss key issues regarding
how fMRI pattern analysis can be used to
advance understanding of the bases of human
cognition.

BRIEF TUTORIAL ON
MULTIVOXEL PATTERN
ANALYSIS

Traditional methods of fMRI analysis treat each
voxel as an independent piece of data, using sta-
tistical tests to determine whether that voxel re-
sponded more in some experimental conditions
than in others. Such analyses are univariate: the
analysis of one voxel has no impact on the anal-
ysis of any other. By contrast, multivariate pat-
tern analysis extracts the information contained
in the patterns of activity among multiple vox-
els so that the relative differences in activity
between voxels can provide relevant informa-
tion. Whereas univariate statistical analyses are

designed to test whether some voxels respond
more to one condition than another, multivari-
ate analyses are designed to test whether two
(or more) experimental conditions can be dis-
tinguished from one another on the basis of
the activity patterns observed in a set of vox-
els. Critically, multivariate methods might be
able to tell apart the activity patterns for two
different conditions even if the average level of
activity does not differ between conditions.

Figure 1b illustrates the simplest example
of multivariate pattern analysis involving two
experimental conditions (shown in red and
green) and just two voxels, with the response
amplitude of each voxel shown on separate
axes. Each dot corresponds to a single activity
pattern or data sample, with its position
indicating the strength of the response for
voxels 1 and 2. The Gaussian density plots in
the margins indicate that either voxel alone
does a rather poor job of separating the two
experimental conditions. Nevertheless, the two
conditions can be well separated by considering
the pattern of responses to both voxels, as
indicated by the separating boundary line.
In this particular example, the responses of
voxels 1 and 2 are positively correlated, and the
classification boundary helps to remove this
correlated “noise” to better separate the two
experimental conditions. If there were three
voxels, a third dimension would be added;
the red dots and greens dots would form two
largely separated (but still overlapping) clouds
of points, and the classification boundary
would consist of a linear plane that best divides
those two clouds. Typically, anywhere from a
few dozen to several thousand voxels might be
used for fMRI pattern analysis, so an activity
pattern with N voxels would be represented
in an N-dimensional space, and clouds of dots
representing the two classes would be separated
by a linear hyperplane. (Multiclass classifi-
cation analysis involves calculating multiple
hyperplanes to carve up this multidimensional
space among three or more conditions.)

The goal of linear pattern classification
algorithms, such as support vector machines
(SVM), linear discriminant analysis (LDA),
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or logistic regression, is to find the linear hy-
perplane that best separates the two (or more)
conditions in this multidimensional voxel space.
The accuracy of classification performance is
usually assessed using cross-validation, which
involves dividing the full set of data samples
into separate sets for training and testing the
classifier. Typically, an entire fMRI run or
perhaps just one sample from each condition
is reserved for the test set. The classifier is
trained with the remaining data to obtain the
classification boundary, which is then used to
predict the class of each data sample (e.g., “red”
or “green”) in the test set. This procedure can
be done iteratively so that every sample in the
data set is tested and an overall measure of clas-
sification accuracy is obtained. Classification
accuracy reflects the amount of information
available in a set of voxels for discriminating
between the experimental conditions tested.

Here, we focus on linear pattern classifica-
tion, since the performance of nonlinear classi-
fiers applied to a brain region could potentially
reflect computations performed by the classifier
rather than by brain itself (Kamitani & Tong
2005). For example, if one were to apply suffi-
ciently complex nonlinear classifiers to the pat-
terns of activity observed on the retina, it would
be possible to construct the functional equiva-
lent of receptive fields with position-invariant
tuning to visual orientation, curved lines, sharp
corners, or even a smiley face cartoon of Bart
Simpson, despite the lack of any such pattern
detectors in the human retina. All brain pro-
cesses essentially reflect a series of nonlinear
computations; therefore, to characterize the in-
formation processed by a brain region, we be-
lieve it is important to avoid adding additional
nonlinear steps.

The reliability of linear classification per-
formance depends on several factors: (a) the
degree of separation between the two classes
of data samples (i.e., pattern separability or
signal-to-noise ratio), (b) the number of data
samples available for analysis, since having
more samples will allow for better estimation
of the optimal classification hyperplane, (c) the
choice of classification algorithm and its suit-

ability for the data set to be analyzed (Misaki
et al. 2010), and (d ) the voxels used for pattern
analysis. Adding more voxels should lead
to better classification performance if those
voxels contain some relevant information that
can be used to better distinguish between the
two conditions. However, if these additional
voxels are uninformative, they may simply add
noise or unwanted variability to the activity
patterns and could thereby impair classification
performance (Yamashita et al. 2008).

REVIEW OF FUNCTIONAL
MAGNETIC RESONANCE
IMAGING STUDIES

Decoding Visual Features

In their original study of orientation decod-
ing, Kamitani & Tong (2005) found that
activity patterns in early visual areas could
predict which of several oriented gratings
was being viewed with remarkable accuracy
(Figure 2a). How was this possible, given that
BOLD responses were sampled from the visual
cortex using 3mm-wide voxels, whereas orien-
tation columns are organized at submillimeter
spatial scales (Obermayer & Blasdel 1993,
Yacoub et al. 2008)? The authors performed
simulations to show that random local vari-
ations in cortical organization could lead to
weak orientation biases in individual voxels. By
pooling the information available from many
independent voxels, a pattern classifier could
achieve robust predictions of what orientation
was being presented in the visual field. In
subsequent work, high-resolution functional
imaging studies of the cat and human visual
cortices have provided support for this hypoth-
esis (Swisher et al. 2010). These experiments
show that orientation information exists at
multiple spatial scales, extending from that
of submillimeter cortical columns to several
millimeters across the cortex (Figure 2b). In
effect, variability in columnar organization at a
submillimeter scale appears to lead to modest
feature biases at coarser spatial scales on the
order of millimeters. It should be noted that
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studies find the presence of some global pref-
erence for orientations radiating outward from
the fovea as well (Freeman et al. 2011, Sasaki
et al. 2006), but when such radial biases are
controlled for, substantial orientation informa-
tion can still be extracted from the visual cortex
(Harrison & Tong 2009, Mannion et al. 2009).

These orientation-decoding studies suggest
that pattern analysis can be used to detect
signals of columnar origin by pooling weakly
feature-selective signals that can be found at the
scale of millimeters, presumably due to variabil-
ity in the organization of the columns. Thus,
fMRI pattern analysis could be used to reveal
hidden signals originating from fine-scale cor-
tical columns that would otherwise be difficult
or impossible to isolate with noninvasive imag-
ing. Previously, researchers had to rely on fMRI
measures of visual adaptation to assess the fea-
ture selectivity of responses in the human vi-
sual cortex (Boynton & Finney 2003, Engel &
Furmanski 2001).

This decoding approach has been used to in-
vestigate cortical responses to many basic visual
features. Studies have revealed how the human
visual system responds selectively to motion
direction (Kamitani & Tong 2006), color
(Brouwer & Heeger 2009, Goddard et al. 2010,
Sumner et al. 2008), eye-of-origin information
(Haynes et al. 2005, Shmuel et al. 2010), and
binocular disparity (Preston et al. 2008). The
reliability of feature decoding depends on
the strength of the sensory signal; for example,
the orientation of high-contrast gratings can
be decoded more readily than low-contrast
gratings (Smith et al. 2011). Moreover, the am-
plitude of the stimulus-driven BOLD response
serves as a good predictor of how much feature-
selective information can be extracted from the
detailed pattern of activity found in a given vi-
sual area. Pattern classification has also revealed
sensitivity to more complex visual features. For
example, sensitivity to orientations defined by
motion boundaries and by illusory contours
has been found in early visual areas, including
the human primary visual cortex (Clifford
et al. 2009). It has also been used to show
that motion patterns that are more difficult

to see, namely second-order texture-defined
motion, lead to direction-selective patterns
of activity in the human visual cortex that are
similar to basic first-order motion (Hong et al.
2011).

The feature-decoding approach has also
been used to test for selectivity to conjunc-
tions of features (Seymour et al. 2009, 2010).
For example, Seymour et al. (2009) tested for
sensitivity to conjunctions of color and motion
by presenting observers with compound dis-
plays consisting of red dots moving clockwise
and overlapping with green dots moving coun-
terclockwise, or green dots moving clockwise
paired with red dots moving counterclockwise.
Activity patterns in early visual areas could dis-
criminate between these different combinations
of color and motion, implying that these areas
contain neurons sensitive to the conjunction of
these features. These findings inform current
theories of perceptual binding, which have de-
bated whether top-down attentional processes
are required to represent conjunctions of fea-
tures (Treisman 1996).

What are the underlying neural sources of
these feature-selective responses in the human
visual cortex? In the case of orientation or
eye-of-origin signals, these feature-selective
responses appear to reflect local biases in
columnar organization to a considerable
extent (Shmuel et al. 2010, Swisher et al.
2010). In other cases, feature selectivity might
reflect random variations in the distribution of
feature-selective neurons (Kamitani & Tong
2006) or more global biases such as a preference
for radial patterns or radial motions across
the retinotopic visual cortex (Clifford et al.
2009, Sasaki et al. 2006). For example, optical
imaging has revealed the presence of ocular
dominance columns, orientation columns, and
color-sensitive blobs in the primary visual
cortex (V1) of monkeys, but no evidence of
direction-selective columns (Lu et al. 2010).
Nonetheless, it is possible to decode strong
direction-selective responses from human V1
(Kamitani & Tong 2006). Multiple factors
can contribute to the spatial distribution of
these feature preferences in the cortex, and
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these factors could have a strong impact on
the efficacy of fMRI pattern analysis. In many
cases, future studies using high-resolution
fMRI in humans or optical imaging in animals
will be required to map the feature-selective
properties of the visual cortex.

Decoding Visual Perception

In the study by Kamitani & Tong (2005), a ma-
jor goal was to extend the pattern-classification
approach from the problem of brain reading
to that of mind reading, which had not been
demonstrated before. They reported the results
of a visual mind-reading experiment, showing
that it is possible to decode whether an observer
is covertly attending to one set of oriented lines
or the other when viewing an ambiguous plaid
display. Activity patterns in early visual areas
(V1–V4) allowed for reliable prediction of the
observer’s attentional state (∼80% accuracy).
Moreover, decoding of the attended orienta-
tion was successful even in V1 alone, indicating
that feature-based attention can bias orienta-
tion processing at the earliest possible cortical
site.

Encouraged by these findings, several
research groups began to pursue fMRI pattern
classification methods to investigate the neural
underpinnings of subjective perceptual and
cognitive states. Haynes & Rees (2005b)
showed that fMRI pattern classification can
effectively decode which of two stimuli are per-
ceptually dominant during binocular rivalry,
with perceptual alternations occurring every
several seconds. Similarly, they found that
orientation-selective responses were disrupted
by backward visual masking, although a small
amount of orientation information could still
be detected in V1 for unseen visual orientations
(Haynes & Rees 2005a). Perhaps most striking,
they were able to apply these methods to
extract monocular responses in the lateral
geniculate nucleus (Figure 3) and showed that
binocular rivalry leads to modulations at this
very early site of visual processing (Haynes
et al. 2005, see also Wunderlich et al. 2005).
This latter study provided novel evidence to

inform neural models of binocular rivalry
(Blake & Logothetis 2002, Tong et al. 2006).
Other research groups demonstrated that the
perception of ambiguous motion displays could
be decoded at greater-than-chance levels from
human motion area MT+ and other dorsal
visual areas (Brouwer & van Ee 2007, Serences
& Boynton 2007b).

An intriguing study by Scolari & Serences
(2010) revealed that these feature-selective
responses can also be linked to the accuracy
of behavioral performance. The researchers
first characterized the very modest orientation
preference of every voxel in the visual cortex.
Next, they tested whether voxel responses to a
particular orientation might be boosted on tri-
als in which observers correctly discriminate a
small change in visual orientation, as compared
to incorrect trials. When observers correctly
discriminated a change in orientation centered
around, say, 45◦, responses in V1 were not
enhanced for voxels tuned specifically to 45◦;
instead, they were enhanced for voxels that
preferred neighboring orientations (∼10◦ and
80◦). This counterintuitive result is predicted
by models of optimal visual coding, which
propose that discrimination performance will
be most improved by enhancing neighboring
off-channel responses.

Decoding Visual Objects

The pioneering work by Haxby et al. (2001)
suggested that categorical information about
objects is represented in a distributed manner
throughout the ventral temporal lobe. Activity
patterns in this region could accurately dis-
criminate between multiple object categories,
even when the most strongly category-selective
voxels were removed from the analysis. In
effect, the authors could perform “virtual
lesions” on these activity patterns, and they
thereby revealed the distributed nature of
object information (but see also Spiridon
& Kanwisher 2002). Curiously, however,
subsequent studies found that activity patterns
in low-level visual areas could outperform
high-level object areas at telling apart viewed
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objects (Cox & Savoy 2003). How was this
possible, given that low-level visual areas are
primarily tuned to the retinotopic position of
low-level features? These results indicate that
the images in each object category differed
in some of their low-level properties and that
these low-level confounds can persist even
when multiple images are shown in a stimulus
block. Although low-level confounds can be
reduced by manipulations of object size or 3D
vantage point, they might not be eliminated,
as indicated by the fact that early visual areas
can still classify an object across changes in size
and 3D viewpoint (Eger et al. 2008).

These findings reveal a core challenge for
fMRI decoding studies. Pattern classifiers are
quite powerful and will try to leverage any dis-
criminating information that is present in brain
activity patterns. Even if a brain area can dis-
tinguish between certain object images, how
can one go further to show that a brain area is
genuinely sensitive to object properties and not
simply the low-level features of those objects?

Work by Kanwisher and colleagues has
provided several lines of evidence linking the
activity patterns in object-selective areas to
object perception. In a study of backward visual
masking, they found that activity patterns in
object-selective areas were severely disrupted
on trials in which the observer failed to
recognize a briefly presented target (Williams
et al. 2007). By contrast, activity patterns re-
mained stable in early visual areas, despite the
participant’s impaired performance. Another
study manipulated the physical similarity of
simple 2D shapes and estimated the perceptual
similarity between pairs of stimuli based on
the confusion errors that participants made
with visually masked stimulus presentations.
Multivariate pattern analysis revealed a striking
dissociation: Activity patterns in the lateral
occipital area reflected the physical similarity
of the images, whereas those in the ventral
temporal cortex correlated with perceptual
similarity (Haushofer et al. 2008). However,
other studies have found that activity patterns
in the lateral occipital area reflect the perceived
3D shape of “bumps” and “dimples” conveyed

by shape-from-shading cues, even when the
physical image is greatly altered by changes
in the source of illumination (Gerardin et al.
2010).

Activity patterns in the lateral occipital and
ventral temporal cortices show strong position-
invariant selectivity and remain quite stable
for a particular object across changes in retinal
position (Schwarzlose et al. 2008). However,
these areas show some evidence of position
selectivity as well. Face- and body-selective ar-
eas can better discriminate between pictures of
different body parts if those parts are presented
at a familiar location (Chan et al. 2010). For
example, a front-view image of a person’s right
shoulder will lead to more reliable activity
patterns if the stimulus appears to the left of
fixation, as it would if one were looking at the
head or chest, than if it appears to the right
of fixation. It is also possible to decode the
retinotopic position of an object from activity
patterns in high-level object areas. Moreover,
perceptual illusions that lead to shifts in
apparent position are better predicted by the
position information contained in the activity
patterns in high-level object areas than those
in the early visual areas (Fischer et al. 2011).

When objects are subliminally presented to
an observer, activity in object-selective areas
is greatly attenuated, but somewhat greater-
than-chance-level decoding is still possible,
indicating the presence of some unconscious
visual information in these areas (Sterzer et al.
2008). Subliminal stimuli also appear to evoke
more variable patterns of activity in object-
selective areas across repeated presentations,
which partly accounts for the poorer decoding
of subliminal stimuli (Schurger et al. 2010).

A major challenge in object recognition
concerns the ability to distinguish a partic-
ular exemplar from other items in the same
category. In an ambitious study, Kriegeskorte
and colleagues (2008) presented 92 images of
different real-world objects and assessed which
images tended to evoke more similar patterns
of activity. Images of animate and inanimate
stimuli led to broadly distinctive patterns of
activity in the human ventral temporal cortex,
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and a similar animate/inanimate distinction
was observed when analyzing neuronal activity
patterns obtained from single-unit recordings
in monkeys (Kiani et al. 2007). This study also
found evidence of exemplar-specific activity.
Activity patterns in the human inferotemporal
cortex were better at discriminating between
images of different human faces than between
the faces of nonhuman primates, whereas a
trend toward the opposite pattern of results
was observed in the monkey data.

Attempts to isolate exemplar-specific in-
formation from small cortical regions have
met with limited success, with decoding per-
formance reaching levels just slightly greater
than chance (Kaul et al. 2011, Kriegeskorte
et al. 2007). When large portions of the ventral
temporal cortex are pooled for analysis, then
considerably better decoding of specific faces
can be obtained (Kriegeskorte et al. 2008, Natu
et al. 2010). However, it remains to be seen
whether these large-scale distributed repre-
sentations are truly important for representing
individual faces or whether the diverse shape
codes throughout this region simply provide
more information for the classifier to capitalize
upon when performing these subtle discrim-
inations. Single-unit recordings from isolated
face-selective patches in the monkey indicate
that a cluster of a few hundred neighboring
neurons can provide remarkably detailed infor-
mation for distinguishing between individual
faces (Freiwald et al. 2009, Freiwald & Tsao
2010, Tsao et al. 2006). However, current
fMRI technology cannot isolate information at
this level of detail.

Identifying and Reconstructing
Novel Visual Scenes

Decoding algorithms can classify a person’s
brain state as belonging to the same category
as a previously recorded brain state, but these
methods lack the flexibility to identify novel
brain states. To address this, Kay and col-
leagues (2008) devised a visual encoding model
to predict how early visual areas should re-
spond to novel pictures of complex real-world

scenes. First, they presented 1,750 different
images to observers, and from the resulting
fMRI data, they were able to characterize the
response preferences of each voxel in visual
cortex, specifying its preference for particular
retinotopic locations, spatial frequencies, and
orientations. When the observers were later
shown a new set of 120 pictures, the model
predicted how these voxels should respond to
each new image. By comparing the predicted
and actual patterns of activity, the model
correctly identified 110 out of 120 test images
for one participant. In a follow-up experiment,
the observer was tested with 1,000 new images,
of which 820 were correctly identified.

This level of identification performance is
akin to Science Fiction Story #1, identifying
which painting the participant is viewing at the
Musée d’Orsay. An even loftier goal would be
to reconstruct the painting, using only the brain
activity that results from viewing that work of
art. An early attempt at fMRI reconstruction
met with limited success—only small portions
of the simple shapes that were viewed could
be reconstructed with some degree of accuracy
(Thirion et al. 2006). In a more recent fMRI
study, observers were presented with hundreds
of different random patterns of flickering
checks placed within a 10x10 square grid, and
pattern analysis was used to predict whether
or not any given tile of the grid was flickering
(Miyawaki et al. 2008). Using this model, the
authors could effectively reconstruct novel
stimuli shown to the participant, includ-
ing simple shapes and letters (Figure 4a).
Moreover, the authors could reconstruct the
viewed stimulus from single brain volumes to
show how this information evolved over the
time course of the BOLD response (Figure 4b).
Extending the work of Kay et al. (2008),
Naselaris et al. (2009) attempted to reconstruct
complex natural scenes using local-feature
models and were able to capture regions of
high contrast and some of the “blurry” low-
spatial-frequency components of the image
(Figure 4c). By incorporating the category-
specific information available in higher-level
object areas, they could also select an image
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(from a set of 6 million possible images) that
best matched the visual features and category
properties evoked by the original viewed image
(“natural image prior” condition).

Decoding Top-Down
Attentional Processes

The ability to decode feature-selective re-
sponses has helped advance the study of visual
attention and, in particular, feature-based
attention. Kamitani & Tong (2005) showed
that the activity patterns evoked by single ori-
entations can predict which of two overlapping
orientations is being attended by an observer.
Similar results were obtained in studies of atten-
tion to overlapping motion stimuli (Kamitani
& Tong 2006). These findings indicate that
top-down attention can bias the strength
of feature-selective responses in early visual
areas, consistent with models of early atten-
tional selection. Serences & Boynton (2007a)
demonstrated that attending to one of two
overlapping sets of moving dots leads to biased
direction-selective responses not only at the
site of the attended stimulus, but also in
unstimulated portions of the visual field. Such
spatial spreading of feature-based attention is
consistent with neurophysiological studies in
monkeys (Treue & Maunsell 1996). A recent
study found that spatial and feature-based
attention can lead to distinct effects in the
visual cortex ( Jehee et al. 2011). When spatial
attention was directed to one of two laterally
presented gratings, overall BOLD activity was
enhanced for the attended stimulus, and yet
the orientation-selective component of these
responses improved only when observers fo-
cused on discriminating the orientation of the
stimulus rather than its contrast. This suggests
that enhanced processing of a specific visual
feature may depend more on feature-based
attention than on spatial attention ( Jehee et al.
2011, but see also Saproo & Serences 2010).

Recent studies have also investigated the
possible top-down sources of these attentional
signals. Activity patterns in posterior parietal
areas and the frontal eye fields contain reliable

information about whether participants are
attending to features or spatial locations
(Greenberg et al. 2010) and can even discrimi-
nate which of two features or locations is being
attended (Liu et al. 2011). These parietal and
frontal areas could serve as plausible sources of
attentional feedback to early visual areas.

Multivariate pattern analysis has also been
used to quantify the extent to which spatial
attention can bias activity in category-selective
object areas, for example, when face and
house stimuli are simultaneously presented in
different locations (Reddy et al. 2009). When
observers view overlapping face-house stimuli,
it is possible to decode the focus of object-based
attention from activity patterns in high-level
object areas as well as in early visual areas,
indicating that top-down feedback serves to
enhance the local visual features belonging to
the attended object (E.H. Cohen & F. Tong,
manuscript under review). Interestingly, at-
tending to objects in the periphery leads to
pattern-specific bias effects in the foveal repre-
sentation of early visual areas, perhaps suggest-
ing some type of remapping of visual infor-
mation or reliance on foveal representations to
recognize peripheral stimuli (Williams et al.
2008). Pattern classification has also been
used to investigate visual search for objects in
complex scenes. Activity patterns in the lateral
occipital complex can reveal what object cate-
gory participants are actively searching for, as
well as those occasions when the target object
briefly appears at an attended or unattended
location (Peelen et al. 2009). Overall, fMRI
pattern classification has greatly expanded
the possibilities for studies of visual attention
by providing an effective tool to measure
attention-specific signals in multiple brain
areas, including parietal and frontal areas.

Decoding Imagery and
Working Memory

In an early fMRI study of mental imagery,
O’Craven & Kanwisher (2000) showed that
it was possible to predict with 85% accuracy
whether a person was imagining a famous face
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or place by inspecting the strength of activity
in the fusiform face area and parahippocampal
place area. A more recent study used MVPA and
found that activity patterns in the ventral tem-
poral cortex could predict whether participants
were imagining famous faces, famous buildings,
tools, or food items with reasonable accuracy
(Reddy et al. 2010). Similar results have been re-
ported in studies of working memory for faces,
places, and common objects (Lewis-Peacock &
Postle 2008). It is also possible to decode the im-
agery of simple shapes such as an X or O from
these object-sensitive visual areas (Stokes et al.
2009). In these studies, the activity patterns
observed during imagery or working memory
were very similar to those observed during per-
ception, consistent with perception-based the-
ories of imagery (Kosslyn et al. 2001). Interest-
ingly, it is also possible to distinguish silent clips
of movies that imply distinctive sounds (e.g.,
howling dog, violin being played) from activ-
ity patterns in the auditory cortex, presumably
because these visual stimuli elicit spontaneous
auditory imagery (Meyer et al. 2010).

Although early visual areas have been impli-
cated in visual imagery (Kosslyn & Thompson
2003), these areas typically show little evidence
of sustained BOLD activity during visual
working memory tasks (Offen et al. 2008).
However, recent fMRI decoding studies have
provided novel evidence to suggest that early
visual areas are important for retaining precise
information about visual features (Harrison
& Tong 2009, Serences et al. 2009). Serences
and colleagues cued participants in advance to
remember either the color or orientation of a
grating, and after a 10-second delay, presented
a second grating to evaluate working memory
for the cued feature. They found that activity
patterns in V1 allowed for prediction of the
task-relevant feature (∼60% accuracy) but
not of the task-irrelevant feature; information
in extrastriate visual areas proved unreliable.
Harrison & Tong (2009) used a postcueing
method to isolate memory-specific activity by
presenting two near-orthogonal gratings at the
beginning of each trial, followed by a cue indi-
cating which orientation to retain in working

memory [for a timeline of trial events, refer to
Figure 5a]. Activity patterns in areas V1–V4
allowed for reliable decoding of the remem-
bered orientation (mean accuracy of 83%),
and reliable working memory information was
found in each visual area, including V1 (∼70%
to 75% accuracy). Moreover, they found
evidence of a striking dissociation between the
overall amplitude of BOLD activity and the
decoded information contained at individual
fMRI time points. Whereas BOLD activity fell
over time (Figure 5a), information about the
remembered grating was sustained throughout
the delay period (Figure 5b). In half of their
participants, activity in V1 fell to baseline
levels, equivalent to viewing a blank screen, yet
decoding of the retained orientation proved
as effective for these participants as for those
who showed significantly elevated activity late
in the delay period. These results suggest that
visually precise information can be retained
in early visual areas with very little overall
increase in metabolic activity, due to subtle
shifts in the patterns of activity in these areas.

Decoding Episodic Memory

Although long-term memories are stored
via modified synaptic connections in the
hippocampus and cortex in their inactive state,
it is possible to decode these memories when
they are actively recalled or reinstated by
the participant (for an in-depth review, see
Rissman & Wagner 2012). Polyn et al. (2005)
had participants study images of famous faces,
famous places, and common objects in the
MRI scanner and trained pattern classifiers on
whole-brain activity to discriminate between
these categories. When participants were later
asked to freely recall these items, the classifier
readily tracked the category that was being re-
called from memory (Figure 5c). Remarkably,
this category-selective activity emerged several
seconds before participants switched to report-
ing items from a new category, suggesting that
this categorical information might have served
as a reinstated contextual cue to facilitate
memory retrieval (Howard & Kahana 1999,
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Tulving & Thomson 1973). Evidence of con-
textual reinstatement has even been observed
when participants fail to recall the studied
context ( Johnson et al. 2009). Whole-brain
activity patterns could predict which of three
different encoding tasks was performed on an
item at study, based on the reinstated patterns
of activity that were later observed during
a recognition memory test. Task-specific
patterns of activity were found for correctly
recognized items, and this proved true even
for items that were rated as merely familiar,
despite participants’ reports that they could not
recollect any details surrounding the time of
studying the target item. These findings argue
against proposed dissociations between con-
scious recollection and feelings of familiarity,
and further suggest that cortical reinstatement
of the studied context might not be sufficient
for experiencing explicit recollection (McDuff
et al. 2009). Decoding can also reliably predict
whether an item will be judged as old or new.
When participants performed a recognition
memory task involving faces, multiple brain re-
gions responded more strongly to items judged
as old than new, including the lateral and
medial prefrontal cortex and posterior parietal
cortex (Rissman et al. 2010). The pooled
information from these regions could reliably
distinguish between correctly recognized or
correctly rejected items with 83% mean accu-
racy but failed to distinguish missed items from
correctly rejected items. Explicit performance
of these recognition memory judgments was
necessary for decoding, as the classifier could
no longer distinguish between old and new
items when participants instead performed a
gender discrimination task. The studies de-
scribed above reveal how fMRI pattern analysis
can provide a powerful tool for investigating
item-specific memory processing at the time of
study and test and how such data can be used to
address prevalent theories of memory function.

Decoding can also be used to isolate
content-specific information from fine-scale
activity patterns in the human hippocampus.
After participants learn the spatial layout
of a virtual environment, decoding applied

to hippocampal activity can reveal some
reliable information about the participant’s
current location in that learned environment
(Morgan et al. 2011, Rodriguez 2010). It has
also been shown that activity patterns in the
hippocampus can predict which of three short
movie clips a participant is engaged in recall-
ing from episodic memory (Chadwick et al.
2010). Although decoding performance for the
hippocampus was modest (∼60% accuracy),
activity patterns in this region were found to
perform significantly better than neighboring
regions of the entorhinal cortex or the posterior
parahippocampal gyrus. The ability to target
specific episodic memories in the hippocampus
may greatly extend the possibilities for future
studies of human long-term memory.

Extracting Semantic Knowledge

Semantic knowledge is fundamentally multi-
dimensional and often multimodal, consisting
of both specific sensory-motor associations and
more abstracted knowledge. For example, we
know that a rose is usually red, has soft petals but
sharp thorns, smells sweetly fragrant, and that
the flowers of this plant make for an excellent
gift on Valentine’s Day. Given the multidimen-
sional nature of semantic information, multi-
variate pattern analysis might be well suited to
probe its neural bases.

An early fMRI study demonstrated that it
was possible to decode whether participants
were viewing words belonging to 1 of 12 pos-
sible semantic categories, such as four-legged
animals, fish, tools, or dwellings (Mitchell et al.
2003). Subsequent studies have consistently
found that animate and inanimate visual objects
lead to highly differentiated patterns of activ-
ity in the ventral temporal cortex (Kriegeskorte
et al. 2008, Naselaris et al. 2009). Remarkably,
people who have been blind since birth exhibit
a similar animate/inanimate distinction in the
ventral temporal cortex when presented with
tactile objects (Mahon et al. 2009, Pietrini et al.
2004), leading to the proposal that this seman-
tic differentiation might be innately determined
rather than driven by visual experience (Mahon
& Caramazza 2011).

494 Tong · Pratte

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

01
2.

63
:4

83
-5

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
 o

n 
11

/3
0/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PS63CH19-Tong ARI 19 November 2011 9:21

How might one characterize the broader se-
mantic organization of the brain or predict how
the brain might respond to any item based on
its many semantic properties? Mitchell et al.
(2008) developed a multidimensional seman-
tic feature model to address this issue. They
tried to predict brain responses to novel nouns
by first quantifying how strongly these nouns
were associated with a basis set of semantic fea-
tures, consisting of 25 verbs (e.g., see, hear,
touch, taste, smell, eat, run). In essence, these
semantic features served as intermediate vari-
ables to map between novel stimuli and pre-
dicted brain activity (cf. Kay et al. 2008). The
strength of the semantic association between
any noun and these verbs could be estimated on
the basis of their frequency of co-occurrence,
from analyzing a trillion-word text corpus pro-
vided by Google Inc. Using fMRI activity pat-
terns elicited by 60 different nouns, the authors
characterized the distinct patterns of activity
associated with each verb and could then pre-
dict brain responses to novel nouns by assum-
ing that the resulting pattern of activity should
reflect a weighted sum of the noun’s associa-
tion to each of the verbs (Figure 6). Using
this method, Mitchell et al. could predict which
of two nouns (excluded from the training set)
was being viewed with 77% accuracy and could
even distinguish between two nouns belong-
ing to the same semantic category with 62%
accuracy. The activity patterns for particular
verbs often revealed strong sensorimotor asso-
ciations. For example, “eat” predicted positive
activity in frontal regions associated with mouth
movements and taste, whereas “run” predicted
activity in the superior temporal sulcus asso-
ciated with the perception of biological mo-
tion. These findings are quite consistent with
the predictions of neural network models of se-
mantic processing, in which specific items are
linked to multiple associated features through
learning, and semantically related items are rep-
resented by more similar patterns of activated
features (McClelland & Rogers 2003).

Decoding has also been applied to other
domains of knowledge such as numerical
processing. One study found that activity

patterns in the parietal cortex reflected not
only spatial attention directed to the left or
right side of space, but this spatial bias also
could be used to predict whether participants
were engaged in a subtraction or addition
task (Knops et al. 2009). Another study found
that activity patterns in the parietal cortex
could distinguish between different numbers,
whether conveyed by digit symbols or dot
patterns (Eger et al. 2009). In general, these
studies are consistent with the proposal that
number representations are strongly associated
with the parietal lobe and may be represented
according to an implicit spatial representation
of a number line (Hubbard et al. 2005).

Decoding Phonological
Representations and
Language Processing

Some recent studies have begun to use fMRI
decoding methods to investigate the neural
underpinnings of phonological and language
processing. In one study, participants were pre-
sented with audio clips of three different speak-
ers uttering each of three different vowel sounds
(Formisano et al. 2008). Activity patterns in the
auditory cortex could successfully discriminate
which vowel was heard even when the classifier
was tested on a voice not included in the training
set. Likewise, pattern classifiers could identify
the speaker at above-chance levels even when
tested with vowels not included in the training
set. Another study showed that activity patterns
in the auditory cortex can distinguish between
normal speech and temporally reordered
versions of these stimuli, implying sensitivity
to speech-specific content (Abrams et al. 2011).

Another fruitful approach has been to inves-
tigate the role of experience in the development
of phonological representations. An analysis of
activity patterns in the auditory cortex revealed
better discrimination of the syllables /ra/ or /la/
in native English speakers than in Japanese par-
ticipants who often have difficulty distinguish-
ing between these phonemes (Raizada et al.
2010). Moreover, the authors found evidence
of a correlation within each group, between an
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individual’s decoding performance and his or
her behavioral ability to distinguish between
these phonemes, suggesting that fMRI decod-
ing may be sensitive to individual differences in
language processing. A recent study of reading
ability provides further evidence for this view
(Hoeft et al. 2011). The authors instructed chil-
dren with dyslexia to perform a phonological
processing task in the scanner and later assessed
whether their reading skills had improved two
and a half years later. Although purely behav-
ioral measures taken in the first session failed to
predict which children would improve in read-
ing skills over time, a pattern classifier trained
on the whole-brain data was able to predict im-
provement with over 90% accuracy. These re-
sults raise the exciting possibility of using fMRI
pattern analysis for diagnostic purposes with
respect to language processing.

Decoding Decisions in the Brain

Decoding has revealed that it is possible to pre-
dict the decisions that people are likely to make,
even in advance of their actual choices. For ex-
ample, activity in the anterior cingulate cortex,
medial prefrontal cortex, and the ventral stria-
tum is predictive of the participants’ choices
in a reward-learning paradigm (Hampton
& O’Doherty 2007). Here, one of two stimuli
is associated with a higher likelihood of reward
and the other with a lower likelihood, but
these reward probabilities are reversed at
unpredictable times. Activity in these areas is
highly predictive of whether participants will
switch their choice of stimulus on a given trial,
and activity on the trial prior to a switch is also
somewhat predictive, indicating an accrual of
information over time regarding whether the
current regime should be preferred or not. Such
valuation responses can also be observed in the
insula and medial prefrontal cortex for unat-
tended stimuli, and these decoded responses
correspond quite well to the participants’
valuation of as item, such as a particular model
of car (Tusche et al. 2010). fMRI decoding can
even predict participants’ choices of real-world
products at greater-than-chance levels. In these

experiments, participants were offered the op-
portunity to purchase or decline to purchase
a variety of discounted items ranging in value
from $8 to $80, with the foreknowledge that
two of their purchase choices would be realized
at the end of the experiment (Knutson et al.
2007). In studies of arbitrary decisions, such
as deciding to press a button with one’s left
or right hand at an arbitrary time, participants
show evidence of preparatory activity in motor
and supplementary motor areas a few seconds in
advance of their action. Remarkably, however,
a small but statistically reliable bias in activity
can be observed in the frontopolar cortex up to
10 seconds prior to the participant’s response,
suggesting some form of preconscious bias in
the decision-making process (Soon et al. 2008).

CONCEPTUAL AND
METHODOLOGICAL ISSUES

Whenever a new methodology is developed,
important conceptual and methodological is-
sues can emerge regarding how the data should
be analyzed, interpreted, and understood. Pat-
tern classification algorithms are statistically
powerful and quite robust. However, these
very strengths can pose a challenge, as the
algorithms are designed to leverage whatever
information is potentially available in a brain
region to make better predictions about a stim-
ulus, experimental condition, mental state, or
behavioral response. An example of unwanted
leveraging was apparent in one of the reported
results of the 2006 Pittsburgh Brain Competi-
tion (http://pbc.lrdc.pitt.edu/), an open com-
petition that was designed to challenge research
groups to develop state-of-the-art analytic
methods for the purposes of brain reading and
mind reading. This competition assessed the
accuracy of decoding the presence of particular
actors, objects, spatial locations, and periods
of humor from the time series of fMRI data
collected while participants watched episodes
of the TV series “Home Improvement.” To
decode scenes containing humorous events,
it turned out that the ventricles proved to be
the most informative region of the brain—this
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high-contrast region in the functional images
tended to jiggle whenever the participant felt an
urge to laugh. Despite the remarkable accuracy
of decoding periods of mirth from this region,
it would clearly be wrong to conclude that
this brain structure has a functional role in the
cognitive processing of humorous information.
If the accuracy of decoding is not sufficient for
establishing function, then how can one deter-
mine precisely what information is processed
by a brain region? Below, we consider these and
other conceptual and methodological issues.

What Is Being Decoded?

A long-standing problem in fMRI research con-
cerns the potential pitfalls of reverse inference.
As an example, it is well established that the hu-
man amygdala responds more strongly to fear-
related stimuli than to neutral stimuli, but it
does not logically follow that if the amygdala is
more active in a given situation that the person
is necessarily experiencing fear (Adolphs 2010,
Phelps 2006). If the amygdala’s response varies
along other dimensions as well, such as the emo-
tional intensity, ambiguity, or predictive value
of a stimulus, then it will be difficult to make
strong inferences from the level of amygdala
activity alone.

A conceptually related problem emerges in
fMRI decoding studies when one identifies a
brain region that can reliably discriminate be-
tween two particular sensory stimuli or two cog-
nitive tasks. For example, Haxby et al. (2001)
showed that activity patterns in the human
ventral temporal cortex were reliably different
when participants viewed images of different
object categories. The authors interpreted this
decoding result to suggest that the ventral tem-
poral object areas are sensitive to complex ob-
ject properties. However, subsequent studies
revealed that early visual areas could discrim-
inate between the object categories just as well
as or better than the high-level object areas
because of the pervasiveness of low-level dif-
ferences between the object categories (Cox &
Savoy 2003). Therefore, successful decoding of
a particular property from a brain region, such

as object category, does not necessarily indi-
cate that the region in question is truly selective
for that property. The inferences one can make
with multivariate pattern analysis still depend
on strong experimental design, and in many
cases multiple experiments may be needed to
rule out potential confounding factors.

One approach for determining the func-
tional relevance of a particular brain area is
to test for links between behavioral perfor-
mance and decoding performance. For exam-
ple, if one compares correct versus incorrect
trials in a fine-grained orientation discrimina-
tion task, greater activity in the primary visual
cortex is found specifically in those voxels tuned
to orientations neighboring the target orienta-
tion (Scolari & Serences 2010). Similarly, de-
coding of object-specific information from the
lateral occipital complex is much better on tri-
als with successful than unsuccessful recogni-
tion (Williams et al. 2007). Related studies have
found that functional activity patterns in the
ventral temporal object areas are more reliable
and reproducible when a stimulus can be con-
sciously perceived than when it is subliminally
presented (Schurger et al. 2010). Interestingly,
when participants must study a list of items on
multiple occasions, items that evoke more sim-
ilar activity patterns across repeated presenta-
tions are also more likely to be remembered
(Xue et al. 2010).

Because of the high-dimensional nature of
visual input, it is possible to investigate the
similarity of cortical activity patterns across
a variety of stimulus conditions to assess the
properties they might be attuned to. For ex-
ample, similar orientations evoke more similar
activity patterns in early visual areas (Kamitani
& Tong 2005), and similar colors have been
found to do so in visual area V4 (Brouwer
& Heeger 2009). However, the similarity
relationships of responses to objects are quite
different in early visual areas and high-level
object areas, with the object areas exhibiting a
sharp distinction in their activity patterns for
animate and inanimate objects (Kriegeskorte
et al. 2008, Naselaris et al. 2009). Studies of
olfactory perception have revealed comparable
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findings in the posterior piriform cortex, with
more similar odors leading to more similar
patterns of fMRI activity (Howard et al. 2009).
Thus, if neural activity patterns share the
similarity structure of perceptual judgments,
this can provide strong evidence to implicate
the functional role of a brain area.

One can further investigate the functional
tuning properties of a brain area by assessing
generalization performance: Do the activity
patterns observed in a brain area generalize to
very different stimulus conditions or behavioral
tasks? In Harrison & Tong’s (2009) study of
visual working memory, the authors trained
a classifier on visual cortical activity patterns
elicited by unattended gratings and tested
whether these stimulus-driven responses might
be able to predict which of two orientations
was being maintained in working memory
while participants viewed a blank screen.
Successful generalization was found despite
the differences in both stimulus and task across
the experiments, thereby strengthening the
inference that orientation-specific information
was being maintained in the visual cortex
during the working memory task. In a study
of auditory perception, classifiers trained using
phonemes pronounced by one speaker could
successfully generalize to the corresponding
phonemes spoken by another speaker, despite
changes in the auditory frequency content
(Formisano et al. 2008). Perhaps the most
rigorous test of generalization performance
comes from demonstrations of the ability to
predict brain responses to novel stimuli, as
has been shown by Kay and Gallant’s visual
encoding model and Mitchell et al.’s semantic
encoding model (Kay et al. 2008, Mitchell
et al. 2008). Successful generalization can be an
effective tool for ruling out potential low-level
stimulus confounds or task-related factors.

In studies of high-level cognition, isolating
the specific function of a brain area may be more
challenging if the experimental design focuses
on discriminating between two cognitive tasks.
When participants perform cognitive tasks dif-
fering in the stimuli, task demands, and be-
havioral judgments required, almost the entire

cerebral cortex can show evidence of reliable
discriminating activity (Poldrack et al. 2009).
Differential activity can result from many fac-
tors, including differences in low-level sensory
stimulation, working memory load, language
demands, or the degree of response inhibition
required for the task. Even when two tasks are
quite closely matched, such as performing ad-
dition or subtraction (Haynes et al. 2007) or
directing attention to features or spatial loca-
tions (Greenberg et al. 2010), it is important
to consider potential confounding factors. If
one task is slightly more difficult or requires
a bit more processing time for a given partic-
ipant, then larger or longer fMRI amplitudes
could occur on those trials, which could allow
decoding to exceed chance-level performance.
This potential confound has sometimes been
addressed by performing decoding on the av-
erage amplitude of activity in a brain region to
see if overall activity is predictive or whether
more fine-grained information is needed for re-
liable decoding. Another approach might be to
attempt to assess decoding of fast versus slow
reaction times using the same brain region and
to test whether these activity patterns resemble
those that distinguish the two tasks.

Where in the Brain to Decode From?

Many fMRI decoding studies have focused on
the human visual system, which contains many
well-defined visual areas. In addition, it is com-
mon to map the particular region of visual space
that will be stimulated in an experiment so that
only the corresponding voxels in the retinotopic
visual cortex are used for decoding analysis.
There are several advantages to applying pat-
tern analysis to well-defined functional areas.
First, localization of function is possible, and
the information contained in each functional
region can be independently assessed and com-
pared to other regions. Second, there is reduced
concern that decoding performance might re-
flect information combined across functionally
distinct areas. Finally, decoding performance
can be compared to other known functional
properties of that brain area to ask whether
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the results seem reasonable and readily inter-
pretable. Focused investigations of the human
hippocampus have also benefitted from having
a targeted anatomical locus (Chadwick et al.
2010, Hassabis et al. 2009).

In studies of higher-level cognition, prede-
fined regions of interest usually are not avail-
able, and multiple distributed brain areas might
be involved in the cognitive task. Many of these
studies rely on decoding of whole-brain activity,
sometimes first selecting the most active voxels
in the task or applying a method to reduce the
dimensionality of the data (e.g., principal com-
ponents analysis) prior to classification analy-
sis. [When selecting a subset of voxels prior
to the decoding analysis, it is important to en-
sure that the selection process is independent
of the property to be decoded so it will not
bias decoding performance to be better than
it should (Kriegeskorte et al. 2009).] The ad-
vantage of the whole-brain approach lies in its
ability to reveal a majority of the information
available throughout the brain. Moreover, it is
possible to inspect the pattern of “weights” in
the classifier and to project these onto the cor-
tex to reveal how this information is distributed
throughout the brain. For example, Polyn and
colleagues (2005) found that that fusiform face
area was one of the regions most active dur-
ing the free recall of famous faces, whereas the
parahippocampal place area and retrosplenial
cortex were most active during the recall of fa-
mous places. Thus, decoding of whole-brain ac-
tivity can reveal what information is present in
the brain and where in the brain such informa-
tion is most densely concentrated.

However, classification analysis implicitly
assumes a “readout mechanism,” in which
relative differences between the strengths of
particular brain signals are calculated and
leveraged to compute useful information.
It is not clear whether the brain is actually
comparing or combining the neural signals that
are being analyzed by the classifier, especially
when information from distinct brain regions
is combined. For example, a semantic model
might find that the word “rose” leads to whole-
brain activity that is well predicted by the

patterns associated with “smell,” “plants,” and
“seeing” vivid colors such as red. Should each
of the respective components of this activity
be considered part of a single unified represen-
tation or as entirely separate components that
are being unified outside of the brain by the
classifier (Mahon & Caramazza 2009, Mitchell
et al. 2008)? This distinction can be made
more vivid with a somewhat different example.
Assume it is possible to decode whether some-
thing smells “floral” or “citrus” from activity
patterns in the olfactory piriform cortex, and
it is also possible to decode whether the color
“red” or “yellow” is being perceived from the
visual cortex. Now, if decoding of whole-brain
activity can tell apart a floral-scented red
rose from one that smells like lemon or has
lemon-colored petals, can it be argued that the
brain contains a unified representation of the
color and smell of roses? According to a recent
fMRI study of perceptual binding (Seymour
et al. 2009), establishing evidence of a conjoint
representation of color and smell would require
demonstrating that brain activity patterns can
distinguish between a floral-scented red rose
paired with a citrus-scented yellow rose as
distinct from a citrus-scented red rose paired
with a floral-scented yellow rose. This issue
also points to a longstanding debate regard-
ing whether the brain relies on modular or
distributed representations for information
processing (Haxby et al. 2001, Op de Beeck
et al. 2008). Recent fMRI studies indicate that
many types of information are distributed quite
widely throughout the brain but that there
also exist highly stimulus-selective modules
that may form a more local, exclusive network
(Moeller et al. 2008, Tsao et al. 2006).

An alternative to decoding whole-brain ac-
tivity is to perform a searchlight analysis, in
which decoding is iteratively performed on lo-
cal activity patterns sampled throughout the
cortex (Kriegeskorte et al. 2006). This typi-
cally involves using a moveable searchlight to
sample a local “sphere” of voxels (say a 5 ×
5 × 5 voxel cubic region) from each point in
the cortex. This approach reveals the informa-
tion contained in local activity patterns, which
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reduces the extent to which information will
be combined across distinct functional areas. A
potential concern is that brain signals from
disparate areas may sometimes be combined
across a sulcus, so this approach could be fur-
ther strengthened by analyzing activity patterns
based on a flattened representation of the cor-
tical surface. A disadvantage of this approach
is the need to correct for multiple comparisons
for each iteration of the search, which reduces
statistical power. For these reasons, searchlight
analyses are often combined with group-level
statistical analyses to evaluate whether reliable
information is consistently found in a particular
region of the brain across participants.

At What Spatial Scales of Cortical
Representation Is Decoding
Most Useful?

MVPA may serve different purposes depend-
ing on whether the sought-after information
resides at fine or coarse spatial scales in the
brain. At the finest scale, multivoxel pattern
classification may be particularly advantageous
at detecting signals arising from variability in
the spatial arrangement of cortical columns,
which can lead to locally biased signals on
the scale of millimeters (Swisher et al. 2010).
Pattern analysis of fine-scale signals has proven
effective not only in the visual cortex but also in
high-resolution fMRI studies of the hippocam-
pus (Hassabis et al. 2009). Such fine-grained
information would otherwise be very difficult or
impossible to detect using traditional univariate
methods of analysis. At a somewhat coarser
scale, pattern classifiers are also very effective at
extracting category-selective information from
the ventral temporal cortex, which reveals a
strong functional organization at spatial scales
of several millimeters to centimeters (Haxby
et al. 2001). These methods can be helpful for
pooling distributed information about objects
or semantic categories, particularly when there
is no single “hotspot” of functional selectivity
available in the broad cortical region to be
analyzed. Decoding has also been applied to
activity patterns of large spatial scale, including

whole-brain activity, even when differen-
tially activated regions can be seen using
traditional univariate analyses such as statistical
parametric mapping. For example, one can
attain much better predictions of an ob-
server’s near-threshold perceptual judgments
regarding fearful versus nonfearful faces by
pooling information across multiple activated
regions (Pessoa & Padmala 2007). Beyond
the benefits of signal averaging, combining
signals from multiple regions of interest can be
beneficial if each region contains some unique
information. Another example of whole-brain
decoding comes from a recognition memory
study, which compared participants’ behavioral
performance at old-new judgments with the
discriminating performance of the pattern
classifier (Rissman et al. 2010). Although the
patterns picked up by the classifier closely
resembled the statistical maps, the decoding
analysis revealed a compelling relationship
between subjective ratings of memory confi-
dence and differential brain responses to old
versus new items on individual trials. These
examples illustrate how decoding can be useful
when applied at large spatial scales. Neverthe-
less, interpreting the combined results from
disparate brain areas can be challenging and
may warrant careful consideration of exactly
what is being decoded, as we have described
above.

ETHICAL AND SOCIETAL
CONSIDERATIONS

What are the potential implications of human
neuroimaging and brain-reading technologies
as this rapidly growing field continues to
advance? Over the past decade, there has been
steadily growing interest in neuroethics, which
focuses on the current and future implications
of neuroscience technology on ethics, society,
and law (Farah 2005, Roskies 2002). Although
some had thought these concerns to be
premature, the intersection between law and
neuroscience (sometimes called neurolaw) has
rapidly evolved in recent years ( Jones & Shen
2012).
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In October 2009, Dr. Kent Kiehl appeared
at a Chicago court hearing to find out whether
the fMRI scans he had collected of Brian
Dugan’s brain might be admissible as evidence
in a high-profile death penalty case. Dugan,
who had already served more than 20 years in
prison for two other murders, had recently con-
fessed to murdering a 10-year-old girl in 1983,
following the discovery of DNA evidence link-
ing him to the crime.

On November 5, 2009, the fMRI scans of a
defendant’s brain were considered as evidence
in the sentencing phase of a murder trial, for
what appears to be the first time (Hughes 2010).
Dr. Kiehl provided expert testimony, describ-
ing the results of two psychiatric interviews and
the unusually low levels of activity in several re-
gions of Dugan’s brain, similar to levels of many
other criminal psychopaths when they were
shown pictures of violent or morally wrong ac-
tions (Harenski et al. 2010). He pointed to these
regions on cartoon drawings of the brain, as the
judge had decided that the presentation of ac-
tual brain pictures might unduly influence the
jury (Weisberg et al. 2008). Expert testimony
from the prosecution refuted the brain imaging
data on two grounds: Dugan’s brain might have
been very different 26 years ago, and Dr. Kiehl’s
neuroimaging studies of criminal psychopaths
showed average trends in the data and were
not designed for individual diagnosis. After less
than an hour of deliberation, the jury initially
reached a mixed verdict (10 for and 2 against the
death penalty), but then asked for more time,
switching to a unanimous verdict in favor of
the death penalty the next day. Dugan’s lawyer
noted that although the verdict was unfavor-
able, Kiehl’s testimony “turned it from a slam
dunk for the prosecution into a much tougher
case.”

If courts are primarily concerned that neu-
roimaging evidence appears unreliable for indi-
vidual diagnosis, then recent advances in brain
classification methods for diagnosing neurolog-
ical disorders could lead to the increasing preva-
lence of such evidence in courtrooms. Recent
studies have shown that pattern-classification
algorithms applied to structural MRI scans or

functional MRI scans can distinguish whether
an individual is a normal control or is a patient
suffering from schizophrenia (Nenadic et al.
2009), depression (Craddock et al. 2009), or
psychopathy (Sato et al. 2011), with reported
accuracy levels ranging from 80% to 95%. In
the context of a court case, these accuracy lev-
els might be high enough to influence a jury’s
decision. For example, a diagnosis of para-
noid schizophrenia might influence decisions
regarding whether a defendant was likely to
have been psychotic at the time of the crime.
Although a diagnosis of psychopathy might be
unlikely to affect the determination of whether
a defendant should be considered guilty based
on his or her actions, such evidence could prove
to be an influential mitigating factor during
the sentencing phase of the trial. As neuro-
science continues to advance our understanding
of the neural mechanisms that lead to decisions
and actions, neuroscientists and perhaps soci-
ety more generally may feel motivated to re-
consider our traditional definitions of free will
and personal responsibility (for discussions of
this issue, see Greene & Cohen 2004, Roskies
2006, Sapolsky 2004).

Brain classification methods for individual
diagnosis could have strong ethical implica-
tions in medical settings as well, especially
concerning disorders of consciousness. Some
patients who partially recover from coma
are diagnosed as being in a vegetative state
if they exhibit periods of wakefulness but
appear to lack awareness or any purpose in
their motor actions. Despite this apparent lack
of awareness, it was recently discovered that
some vegetative-state patients are capable of
voluntarily performing mental imagery tasks
(Owen et al. 2006). When asked to imagine
either playing tennis or walking around a
house, differential patterns of activity can be
observed in their brains. Recently, this imagery
paradigm has been combined with fMRI de-
coding to obtain reliable yes/no responses from
a patient to questions such as “Is your father’s
name Alexander?” (Monti et al. 2010). If highly
reliable communication can be established
with such patients, this could lead to uncharted
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territories in terms of the ethical and legal
considerations regarding, for example, any
medical requests made by the patient.

Perhaps the strongest ethical concerns have
been raised regarding the potential application
of fMRI decoding to detect lies or the pres-
ence of guilty knowledge (Bizzi et al. 2009).
Much attention has focused on recent studies
of lie detection and their claims, as well as the
efforts made by private companies to develop
and market this nascent technology. In a study
by Langleben and colleagues, participants were
given two cards in an envelope and asked in
advance to lie whenever they were asked if they
had one card and to tell the truth about the other
card (Davatzikos et al. 2005). Pattern classifi-
cation applied to whole-brain activity revealed
that truths and lies could be distinguished in
this task with 88% accuracy on individual tri-
als because of the greater activity observed for
lies in multiple areas, including the prefrontal
cortex, anterior cingulate, and insula. On the
basis of these findings, some rather bold claims
were made about the prospects of future fMRI
lie detection technology. However, it is critical
to note that it is not lying per se that is being
decoded from these brain areas but rather the
cognitive and emotional processes that are as-
sociated with lying (Spence et al. 2004). Thus,
lie-detection technology suffers the same prob-
lem of reverse inference that we have discussed
previously. Although lying typically leads to the
activation of a certain set of brain areas, the acti-
vation of these brain areas does not necessarily
indicate lying. In real world settings, such as
when a defendant is strongly suspected of com-
mitting a crime or feels guilty for having wit-
nessed the crime, any questions about the crime
might elicit strong emotional and cognitive re-
sponses akin to those evoked by lying. It is also
not clear whether criminals, particularly those
with psychopathy, would show the same activ-
ity patterns during lying. Other fMRI studies
have shown that brain activity patterns differ
for prepared lies and spontaneous lies (Ganis
et al. 2003) and that fMRI lie-detection tech-
nology can be subverted by covertly engaging
in a separate cognitive task during brain scan-

ning (Ganis et al. 2011). These major short-
comings bring into serious question whether it
will be possible to develop an ecologically valid
and reliable fMRI lie detector anytime in the
near future.

However, this has not prevented the recent
efforts of private companies to market such
technology or to prepare for their use in court-
rooms. In May 2010, the first Daubert hearing
was held in Tennessee to determine whether
fMRI lie detection might be considered admis-
sible as scientific evidence (Miller 2010). Dr.
Steven Laken, CEO of Cephos, a company that
provides fMRI lie-detection services, presented
evidence in favor of admitting the brain scans he
had performed on the defendant, which accord-
ing to him, indicated innocence on the charges
of fraud. The prosecution invited expert testi-
mony from neuroscientist Marcus Raichle and
statistician Peter Imrey to dispute the reliabil-
ity of the current technology. In the end, the
judge determined that fMRI lie-detection tech-
nology was supported by peer-reviewed pub-
lications but had not gained wide acceptance
among scientists. Moreover, its reliability and
accuracy had yet to be validated in real-world
settings, and a well-standardized protocol for
implementing such tests had yet to be estab-
lished (Shen & Jones 2012).

It remains to be seen whether fMRI lie
detection will ever improve enough to meet
general scientific acceptance or gain admission
into courts. Nevertheless, it would be prudent
to consider the potential ethical and societal
ramifications of such technology should it
improve to the point that detection accuracy is
no longer the primary concern. There would
be obvious benefits in a legal setting if accuracy
were extremely high. However, mental privacy
could face enormous new challenges, in both
legal settings and beyond, as there has been no
precedent for being able to look into the mind
of another human being. Although DNA can
be obtained as evidence from a suspect on the
basis of a court order, brain reading of thoughts
might fall under the category of testimony,
in which case defendants would be pro-
tected by the Fifth Amendment. Even so, if the
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technology were ever to develop to near-perfect
levels of accuracy, a refusal to voluntarily submit
to fMRI lie detection might be interpreted as an
implicit admission of guilt by some juries even
when instructed not to make such an interpre-
tation. In the worlds of business and personal
relationships, the availability of such technol-
ogy could have far-reaching consequences, par-
ticularly in situations involving employers and
employees, business partners, or even spouses.
Just the existence of such technology and the
pressure of being asked to undergo testing
could lead people to disclose information that
they otherwise would have declined to share.

Given the conceptual challenges of develop-
ing reliable fMRI lie detection and the fact that
people can use countermeasures to alter their
patterns of brain activity, we are doubtful that
the technology will progress to being truly re-
liable and ecologically valid. Nonetheless, it is
important to consider potential implications in
case such progress is ever made.

CONCLUDING REMARKS

In recent years, fMRI pattern classification has
led to rapid advances in many areas of cog-
nitive neuroscience, encompassing perception,
attention, object processing, memory, seman-
tics, language processing, and decision making.
These methods have allowed neuroimaging re-
searchers to isolate feature-selective sensory re-
sponses, neural correlates of conscious percep-
tion, content-specific activity during attention
and memory tasks, and brain activity patterns
that are predictive of future decisions.

Furthermore, multivariate analyses can
be used to characterize the multidimensional
nature of neural representations, such as the
functional similarity between object repre-
sentations, scene representations, or semantic
representations, allowing one to predict how
the brain should respond to novel stimuli.
Looking forward, the enhanced sensitivity and
information content provided by these meth-
ods should greatly facilitate the investigation
of mind-brain relationships by revealing both
local and distributed representations of mental
content, functional interactions between brain
areas, and the underlying relationships between
brain activity and cognitive performance.

Despite, or perhaps because of, the statistical
power of these analytic tools, careful exper-
imentation and interpretation are required
when making inferences about successful de-
coding of a stimulus, task, or mental state from
human brain activity. The extension of these
methods into real-world applications could
prove very useful for medical diagnoses and
neuroprostheses (Hatsopoulos & Donoghue
2009). However, there are major concerns
regarding the reliability and ecological validity
of current attempts to perform real-world
lie detection. Much more research will be
needed to determine whether such methods
might be valid or not. Strong ethical consid-
erations also revolve around the prospect of
developing reliable lie detection technology,
and it would be prudent to consider how
mental privacy would be protected if such
technology were allowed to gain prominent
use.
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Figure 1
Correlation and classification approaches to decoding brain activity patterns. (a) Average activity patterns for chairs and shoes in the
ventral temporal cortex, calculated separately for even and odd runs. Correlations between these spatial patterns of activity were
calculated between even and odd runs. Pairwise classifications between any two object categories were considered correct if the
correlations were higher within an object category than between the two object categories. Adapted with permission from Haxby et al.
(2001). (b) Hypothetical responses of two voxels to two different experimental conditions, denoted by red and green points. Density
plots in the margins indicate the distribution of responses to the two conditions for each voxel considered in isolation. The dividing line
between red and green data points shows the classification results from a linear support vector machine applied to these patterns of
activity; any points above the line would be classified as red, and those below would be classified as green.
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a

b

Figure 2
Decoding the orientation of viewed gratings from activity patterns in the visual cortex. (a) Blue curves
indicate the distribution of predicted orientations shown on polar plots, with thick black lines indicating the
true orientations. Note that common values are plotted at symmetrical directions because stimulus
orientation repeats every 180◦. Reproduced with permission from Kamitani & Tong (2005). (b) Spatial
distribution of weak orientation preferences in the visual cortex, measured using high-resolution functional
magnetic resonance imaging with 1mm isotropic voxels and plotted on an inflated representation of the
cortical surface. Reproduced with permission from Swisher et al. (2010).
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Figure 3
Eye-specific modulation of activity in the lateral geniculate nucleus (LGN) during binocular rivalry.
(a) Distribution of weak monocular preferences in the LGN of a representative participant. (b) Time course
of the decoded eye-specific signal from these LGN activity patterns is correlated with fluctuations in
perceptual dominance during rivalry between left-eye and right-eye stimuli. Reproduced with permission
from Haynes et al. (2005).
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Figure 4
Reconstruction of viewed images from activity patterns in the visual cortex, based on averaged fMRI activity patterns (a) and single
fMRI volumes acquired every 2 seconds (b). Reproduced with permission from Miyawaki et al. (2008). (c) Reconstruction of natural
scenes from visual cortical activity. Various methods are used to reconstruct the image’s high-contrast regions (flat prior) or
low-spatial-frequency components (sparse prior), or to select the most visually and semantically similar image to the target from a
database of 6 million predefined images (image prior). Reproduced with permission from Naselaris et al. (2009).
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Figure 5
Decoding item-specific information over time during working memory or free recall from long-term memory. (a) Average time course
of BOLD activity during a visual working memory task in which two oriented gratings were briefly shown, followed by a postcue
indicating which orientation to retain until test. Although the mean BOLD signal steadily declined during the memory retention
interval, decoding accuracy for the retained orientation remained elevated (b) throughout the delay period. Adapted with permission
from Harrison & Tong (2009). (c) Classification of the reinstated context during a participant’s free recall of famous faces, famous
places, and common objects. Dots indicate when the participant verbally reported an item from a given category. Curves show
estimates of match between fMRI activity patterns at each time point during free recall, using classifiers trained on activity patterns
from the prior study period with each of the three categories. Reproduced with permission from Polyn et al. (2005).
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Predicted 

“Celery” = + 0.35 0.84 

Predicted Activity 

Pattern for “Celery”: 
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+ 0.32 + … 
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high 

below 
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average Observed Pattern

Figure 6
Semantic encoding model used to predict brain activity patterns to novel nouns. Neural responses to viewed
objects and their name, such as “celery,” were modeled as the sum of weighted activity patterns to
intermediate semantic features consisting of 25 different verbs. Examples of activity patterns for three
semantic features (“eat,” “taste,” and “fill”) are shown, and the weight of their contribution to the predicted
activity pattern reflects their frequency of co-occurrence with the target word. Predicted activity patterns are
then compared with the observed activity for celery. Adapted with permission from Mitchell et al. (2008).
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