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Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using
multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on
the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted
by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that var-
ied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity pat-
terns in early visual areas led to better discrimination of orientations presented at high than low contrast,
with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better
decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however,
V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the
finer scale of representation in the primary visual cortex. In both experiments, the reliability of these
orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of
interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel re-
sponses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be
predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding ac-
curacy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation
models of cortical selectivity; such models could prove useful in future applications of fMRI pattern
classification.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Orientation is a fundamental feature that provides the basis by
which the visual system encodes the local contours of visual objects.
Psychophysical studies indicate that observers are exquisitely sensitive
to visual orientation. For example, humans can discriminate between
gratings that differ by less than one degree (Regan and Beverley,
1985; Skottun et al., 1987) or detect a colinear arrangement of oriented
patches embedded in a field of random orientations (Field et al., 1993;
Kovacs and Julesz, 1993). Neurophysiological studies in animals have
revealed the prevalence of orientation-selective neurons and cortical
columns throughout the visual cortex, with stronger selectivity and co-
lumnar organization found in lower tier visual areas and broader tuning
found in higher visual areas (Blasdel and Salama, 1986; Bonhoeffer and
Grinvald, 1991; Desimone and Schein, 1987; Felleman and Van Essen,
1987; Gegenfurtner et al., 1997; Hubel and Wiesel, 1968; Levitt et al.,
1994; Ohki et al., 2006; Vanduffel et al., 2002).
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Advances in functional magnetic resonance imaging (fMRI) have also
led to promising approaches for investigating orientation selectivity in the
human visual system. These include amplitude measures of orientation-
selective adaptation (Boynton and Finney, 2003; Fang et al., 2005;
Murray et al., 2006; Tootell et al., 1998b), recent efforts to isolate orienta-
tion columns using high-resolution functional imaging (Yacoub et al.,
2008), and the decoding of orientation-selective responses from cortical
activity patterns (Kamitani and Tong, 2005). Here, we focus on the orien-
tation decoding approach, as our previous work has revealed that this
method is both robust and flexible, allowing for the detection of orienta-
tion signals from multiple visual areas when scanning at standard fMRI
resolutions.

In the study byKamitani and Tong (2005), the authors applied pattern
classification algorithms to determine whether reliable orientation infor-
mation might be present in the ensemble patterns of fMRI activity found
in the human visual cortex. To their initial surprise, they found that pat-
tern classifiers could predict which of eight possible orientations a subject
was viewing on individual stimulus blocks with remarkable accuracy.
Given that the fMRI signals were sampled at a standard spatial resolution
(3×3×3 mm) that greatly exceeded the presumed size of human
orientation columns, how was this possible? Analyses and simulations
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Fig. 1. Examples of the visual orientation displays from Experiment 1. On each 16-s
stimulus block, sine-wave gratings of independent orientation (45° or 135°) were
presented in the two hemifields at 1–9° eccentricity. Gratings flashed on and off at a
rate of 2 Hz.
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indicated that random variations in the local distribution of orientation
columns could lead to weak but reliable orientation biases in individual
voxels, even across small shifts in head position. By pooling the orienta-
tion information available from many voxels, it was possible to extract
considerable orientation information from these patterns of cortical activ-
ity. High-resolution functional imaging of the visual cortex in cats and
humans has shown that orientation-selective information can be found
at multiple spatial scales, ranging from the scale of columns up to several
millimeters, thereby allowing for reliable decoding at standard fMRI reso-
lutions (Swisher et al., 2010).

Since its advent, this approach for measuring feature-selective re-
sponses has attracted considerable interest (Haynes and Rees, 2006;
Kriegeskorte and Bandettini, 2007; Norman et al., 2006; Tong and
Pratte, 2012). Applications of this approach have led to successful
decoding of the contents of feature-based attention (Jehee et al., 2011;
Kamitani and Tong, 2005, 2006; Serences and Boynton, 2007a), conscious
perception (Brouwer and van Ee, 2007; Haynes and Rees, 2005b;
Serences and Boynton, 2007b), subliminal processing (Haynes and Rees,
2005a), and even the contents of visual working memory (Harrison and
Tong, 2009; Serences et al., 2009). Given that top-down processes such
as voluntary attention or working memory can have such a powerful in-
fluence on these measures of feature-selective activity, it is important to
determine whether the reliability of these feature-selective responses
would also scale with strength of the stimulus-driven response. In recent
studies, we have found that top-down visual processes of selective atten-
tion or working memory can lead to dissociable effects on these
orientation-selective activity patterns and the overall BOLD response
(Harrison and Tong, 2009; Jehee et al., 2011). For example, one can accu-
rately predict the orientation being retained in working memory even
when the overall activity in the visual cortex falls to near-baseline levels
(Harrison and Tong, 2009). Thus, the relationship between response am-
plitude and reliability of the orientation-selective activity pattern is not
entirely straightforward.

The goal of the present study was to characterize how these
orientation-selective activity patterns vary as a function of the strength
and quality of the visual input. Specifically, we investigated how sys-
tematic manipulations of stimulus contrast (Experiment 1) and spatial
frequency (Experiment 2) affected these fMRI responses, using the ac-
curacy of orientation decoding as an index of the reliability of the
orientation-selective activity patterns in the visual cortex. We also
conducted more in-depth analyses to gain insight into the relationship
between the overall amplitude of stimulus-driven activity and the
amount of orientation information contained in the cortical activity pat-
terns. Specifically, we determined whether fMRI amplitudes could ef-
fectively predict the accuracy of orientation decoding using a simple
simulation model, by incorporating these amplitude values to adjust
the response strength of simulated orientation columns. This model
was then used to predict the overall accuracy of orientation decoding
performance across changes in stimulus contrast and spatial frequency,
based on the fMRI response amplitudes observed in those conditions.
We also performed a variety of correlational analyses to investigate
the relationship between fMRI response amplitudes and orientation
decoding performance, both at a group level and when inspecting indi-
vidual data.

Based on previous studies of the visual system, we predicted that
the reliability of orientation-selective activity patterns should in-
crease as a function of stimulus contrast (Lu and Roe, 2007; Smith
et al., 2011). Moreover, we predicted that the effects of contrast
should be more pronounced in V1 than in higher visual areas, due
to the gradual increase in contrast invariance that occurs at progres-
sively higher levels of the visual hierarchy (Avidan et al., 2002;
Boynton et al., 1999; Kastner et al., 2004; Tootell et al., 1995). We
further predicted that high spatial frequency gratings would be bet-
ter discriminated with central than peripheral presentation, and that
V1 might show an advantage over extrastriate areas in discriminat-
ing fine orientations.
Experiment 1

In Experiment 1, we determined howwell the activity patterns in in-
dividual visual areas (V1–V4) could discriminate between orthogonal
grating patterns presented at varying levels of stimulus contrast (4, 20
or 100%). Sine-wave gratings of independent orientation (45° or 135°)
were presented in the left and right visualfieldswhile subjects performed
a simple visual detection task (Fig. 1). Activity patterns obtained from the
contralateral visual cortex were used to classify the orientation seen in
each hemifield; control analyses were performed using voxels sampled
from the ipsilateral visual cortex. We expected that contralateral visual
areas should show better orientation discrimination at higher stimulus
contrasts, reflecting the strength of incoming visual signals. Moreover,
wepredicted thatmanipulations of stimulus contrast should have a great-
er impact on orientation discrimination performance in lower-tier visual
areas, especially V1, as these areas are thought to be more contrast-
dependent (Avidan et al., 2002; Boynton et al., 1999; Gegenfurtner et
al., 1997; Kastner et al., 2004; Levitt et al., 1994; Sclar et al., 1990;
Tootell et al., 1995).

To investigate the relationship between orientation-selective re-
sponses and the overall BOLD amplitude found in each region of in-
terest, we performed both correlational analyses and simulation
analyses. For our simulation analysis, we generated a 1-dimensional
array of simulated orientation columns, following the work of
Kamitani and Tong (2005). A modest degree of random spatial jitter
was used to generate the preferred orientations for the repeating
cycle of columns, which led to small local anisotropies in orientation
preference (see Materials and methods for details). The response of
each column was specified by a Gaussian-shaped orientation-tuning
curve centered around its preferred orientation. From this fine-scale
columnar array, we sampled large voxel-scale activity patterns
(with random independent noise added to each voxel's response),
and submitted these to our linear classifier. To determine whether
decoding of these simulated activity patterns might account for our
fMRI decoding results in a given visual area, we adjusted the sharp-
ness of the columnar orientation tuning curve to match the mean
level of classification accuracy across the 3 contrast levels; this was
the only free parameter in our model. The amplitude (height) of the
Gaussian-tuned response curve was scaled according to the mean
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fMRI response amplitude observed in the corresponding stimulus
condition. For this simulation, the decoding accuracy across changes
in stimulus contrast provided a measure of how well the mean
stimulus-driven BOLD response could account for the reliability of
the fMRI orientation-selective activity patterns.

Materials and methods

Participants
Ten healthy adults (eight male, two female), ages 23–35, with nor-

mal or corrected-to-normal visual acuity participated in this experi-
ment. All subjects gave written informed consent. The study was
approved by the Institutional Review Board at Vanderbilt University.

Experimental design and stimuli
Visual displayswere rear-projected onto a screen in the scanner using

a luminance-calibrated MR-compatible LED projector (Avotec, Inc.). All
stimuli were generated by a Macintosh G4 computer running Matlab
and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

The stimulus display consisted of oriented sine-wave gratings
presented in the left and right visual fields (Fig. 1). The gratings were
displayed at an intermediate spatial frequency of 1 cycle per degree
(cpd) within an annular region extending from 1 to 9° eccentricity.
Along the vertical meridian, a 30°-sector region was removed to avoid
potential spillover of visual input to ipsilateral regions of visual cortex.
In addition, a Gaussianmaskwas applied to each grating to reduce visual
responses to the edges of the stimulus.

The lateralized gratings flashed on and off every 250 ms (2 Hz),
appearing at a randomized spatial phase with each presentation. The
extended blank interval between presentations of the gratings mini-
mized the appearance of apparent motion (Kahneman and Wolman,
1970). The participant's task was to maintain fixation on a central
bull's-eye throughout each fMRI run and to report rare occasions in
which the gratings failed to appear. This simple monitoring task was
chosen because it could be performed well at all contrast levels and en-
sured that subjects had to attend to the display. The orientation of each
of the two gratingswas varied independently on each stimulus block, by
presenting an equal number of blockswith left/right gratings of 45°/45°,
45°/135°, 135°/45°, and 135°/135°. These four possible display condi-
tions occurred in a randomized order on each fMRI run. Each run
consisted of a series of 16-s blocks: an initial fixation-rest block, 12 con-
secutive stimulus blocks with no intervening rest periods, and a final
fixation block.

The contrast of the gratings was randomly varied across runs (4%,
20%, or 100%) while the spatial frequency was held constant at 1 cpd.
Participants performed a total of 12–15 runs, consisting of 4–5 runs at
each contrast level. Thus, within a given hemifield, participants viewed
a total of 24–30 stimulus blocks of each orientation by contrast condi-
tion. The fMRI activity collected during each stimulus block served as
an independent sample for classification analysis.

On separate runswithin each experimental session, subjects viewed
a reference stimulus to localize retinotopic regions corresponding to the
stimulus locations in the main experiment. This “visual field localizer”
consisted of dynamic randomdots (dot size 0.2°, 10 random-dot images
per second) presented within a contrast-modulated Gaussian envelope
that matched that of the orientation display, with the exception that
only a single hemifieldwas stimulated at a time. Participants performed
2 localizer runs in a session, which consisted of 10 cycles of stimulus
presentation alternating between the left and right visual fields.

Retinotopic mapping of visual areas
All subjects participated in a separate retinotopic mapping ses-

sion. Subjects viewed rotating and expanding checkerboard stimuli,
which were used to generate polar angle and eccentricity maps, re-
spectively. This allowed us to identify the boundaries between visual
areas on flattened cortical representations, using previously described
methods (Engel et al., 1997; Sereno et al., 1995).

MRI acquisition
Scanning was performed on a 3.0-Tesla Philips Intera Achieva

scanner using a standard 8-channel head coil at the Vanderbilt Uni-
versity Institute for Imaging Sciences. A high-resolution anatomical
T1-weighted scan was acquired from each participant (FOV 256×256,
1×1×1 mm resolution). To measure BOLD contrast, standard gradient-
echo echoplanar T2*-weighted imaging was used to collect 28 slices per-
pendicular to the calcarine sulcus, which covered the entire occipital lobe
aswell as the posterior parietal and temporal cortices (TR, 2000 ms; TE=
35 ms; flip angle, 80°; FOV 192×192; slice thickness, 3 mm, no gap;
in-plane resolution, 3×3 mm). Participants used a custom-made bite
bar system to stabilize head position and minimize motion.

Functional MRI data preprocessing
All fMRI data underwent three-dimensional (3D) motion correc-

tion using automated image registration software, followed by linear
trend removal to eliminate slow drifts in signal intensity. No spatial or
temporal smoothing was applied. The fMRI data were aligned to the
retinotopic mapping data collected from the separate session, using
Brain Voyager software (Brain Innovation). All automated alignment
was subjected to careful visual inspection and manual fine-tuning to
correct for potential residual misalignment. Rigid-body transforma-
tions were performed to align fMRI data to the within-session 3D an-
atomical scan, and then to the retinotopy data. After across-session
alignment, fMRI data underwent Talairach transformation and re-
interpolation using 3-mm isotropic voxels. This procedure allowed
us to delineate individual visual areas on flattened cortical represen-
tations and to restrict the selection of voxels to the gray matter re-
gions of the cortex.

Voxels used for orientation decoding analysis were selected from
the cortical surface of areas V1 through V4. First, voxels near the
gray–white matter boundary were identified within each visual area
using retinotopic maps delineated on a flattened cortical surface rep-
resentation. Then, the voxels were sorted according to the strength of
their responses to the visual field localizer. We used 60 voxels from
each hemisphere for each of areas V1, V2, V3, and V3A/V4 combined,
selecting the most activated voxels as assessed by their t-value. The
t-values of all selected voxels in areas V1–V3 were highly significant,
typically greater than 10 and ranging upward to 30 or more in many
subjects. The lowest t-values observed in any subject or voxel were
5.20, 7.32, and 4.22 (pb0.00005) for areas V1, V2, and V3, respective-
ly. Data from V3A and V4 were combined due to the smaller number
of visually active voxels found in these regions. Note that the classifi-
cation analyses performed separately on V3A and V4 did not reveal
any reliable statistical differences in orientation decoding, so pooling
of the data from these regions would not have affected the overall
pattern of results.

The data samples used for orientation classification analysis were
created by shifting the fMRI time series by 4 s to account for the hemo-
dynamic delay of the BOLD response, and then averaging theMRI signal
intensity of each voxel for each 16-s stimulus block. Response ampli-
tudes of individual voxels were normalized relative to the average of
all stimulus blocks within the run to minimize baseline differences
across runs. The resulting activity patterns were labeled according to
their corresponding stimulus orientation to serve as input to the orien-
tation classifier.

Classification analysis
fMRI activity patterns from individual visual areas were analyzed

using a linear classifier to predict the orientation shown in each
hemifield. Each fMRI data sample could be described as a single point
in amultidimensional space, where each dimension served to represent
the response amplitude of a specific voxel in the activity pattern. We
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used linear support vector machines (SVM) to obtain a linear discrimi-
nant function that could separate the fMRI data samples according to
their orientation category (Vapnik, 1998). SVM is a powerful classifica-
tion algorithm that aims tominimize generalization error byfinding the
hyperplane that maximizes the distance (or margin) between themost
potentially confusable samples from each of the two categories.

Mathematically, deviations from this hyperplane can by described
by a linear discriminant function: g(x)=w·x+wo, where x is a vec-
tor specifying the fMRI amplitude of each voxel in the activity pattern,
w is a vector specifying the corresponding weight of each voxel that
determines the orientation of the hyperplane, and wo is an overall
bias term to allow for shifts from the origin. For a given training
data set, linear SVM finds optimal weights and bias for the discrimi-
nant function. If the training data samples are linearly separable,
then the output of the discriminant function will be positive for activ-
ity patterns induced by one stimulus orientation and negative for
those induced by the other orientation. This discriminant function
can then be applied to classify the orientation of independent test
samples. We have previously described methods for extending this
approach to multi-class decoding (Kamitani and Tong, 2005).

To evaluate orientation classification performance, we performed
an N-fold cross-validation procedure using independent samples for
training and testing. This involved dividing the data set into N pairs
of 45° and 135° blocks, training the classifier using data from N−1
pairs, and then testing the decoder on the remaining pair of blocks.
We performed this validation procedure repeatedly until all pairs
were tested, to obtain a measure of classification accuracy for each vi-
sual area, visual hemifield, stimulus condition, and subject.

Statistical analyses
Orientation classification performance was calculated and plotted

for the following visual areas: V1, V2, V3, and V3A/V4 combined.
Next, we tested for differences in classification accuracy across stim-
ulus contrasts and visual areas, focusing on areas V1–V3 because of
their consistently strong performance. (Combined area V3A/V4 was
excluded from these statistical analyses, because the low overall per-
formance found in this region would otherwise lead to floor effects
that could distort the analytic results.) Our measures of orientation
classification performance for each contrast level (4, 20, 100%),
hemifield (left or right), visual area (V1, V2, V3), and subject, served
as data for within-subjects analysis of variance and planned contrasts.
Since both hemispheres were stimulated independently, data from
the two hemispheres were treated as independent observations. In-
teraction effects were further investigated using paired contrasts
and general trend analysis. In addition, classification performance of
each visual area was compared to chance-level performance of 50%
using one-sample t-tests.

To ensure the statistical validity of our experimental design and
analyses, we performed a permutation test by randomizing the labels
for the activity patterns of participants in Experiment 1. The result of
60,000 iterations of this procedure revealed a mean classification ac-
curacy of 50.3% (chance level 50%). We calculated the false positive
rate for analyzing group data (N=10), by applying a t-test (with
alpha of 0.05) to each of the 6000 sets of data. We observed a false
positive rate of 5.10%, indicating that the application of t-tests and
other parametric statistical tests would lead to minimal inflation in
the likelihood of committing a Type I statistical error.

Simulation analyses
To determine whether fMRI response amplitudes could account

for the accuracy of orientation decoding, we applied the same classi-
fication analysis to voxel-scale activity patterns that were sampled
from a 1-dimensional array of simulated orientation columns. Previ-
ously, we have shown that when random spatial jitter is applied to
a regular array of orientation columns, individual voxels develop a
weak orientation bias such that the resulting pattern of activity across
many voxels can allow for reliable orientation decoding (Kamitani
and Tong, 2005). It should be noted that the effects of spatial irregu-
larity are similar for 1D and 2D simulations, with the degree of irreg-
ularity determining the amount of bias evident at more coarse spatial
scales. (For simplicity, in the present analysis we excluded the simu-
lation of head motion jitter.)

Parameters for the simulation were as follows. We assumed a voxel
width of 3 mm, and determined the average spacing between neigh-
boring iso-orientation columns based on previously reported values in
the macaque monkey (Vanduffel et al., 2002). Average iso-orientation
spacings were 760, 950, and 970 μm for V1, V2, and V3 respectively,
with 20 individual columns used to span this cortical distance. Amodest
degree of random spatial jitter was used to generate the preferred ori-
entations for the repeating cycle of columns, allowing each column to
deviate by 0.3 SD units relative to the average rate of change in orienta-
tion preference across the cortex. The orientation-tuned response func-
tion of each columnwas specified by a Gaussian function of fixedwidth,
centered at the preferred orientation of the individual column. The
height of the Gaussian was scaled according to the mean fMRI response
amplitude observed in the corresponding stimulus condition and visual
area. The width of the Gaussian tuning function was the only free pa-
rameter in our model, whichwas determined separately for each visual
area to fit the mean level of classification accuracy found across the 3
contrast levels in Experiment 1. The orientation tuningwidths obtained
for each visual area in Experiment 1 were then used to fit the data in
Experiment 2.

For classification of the simulated data,we generated the samenum-
ber of voxels (i.e., features) and data samples as was used in the fMRI
study. An array of 60 voxels was used to coarsely sample activity from
the orientation columns. The response of each voxel was calculated
using a boxcar function to obtain themean level of activity from the rel-
evant portion of the columnar array. Independent Gaussian-distributed
noise was added to each voxel's response, to simulate the physiological
noise sources inherent to fMRI measures of brain activity. The same
level of random noise was used for all stimulus conditions and visual
areas. After randomly generating an array of orientation columns for a
particular visual area, we generated 30 samples of voxel activity pat-
terns (with random independent noise) for each orientation (45° or
135°) and each of the 3 stimulus conditions, using the fMRI response
amplitude in the corresponding condition to scale the amplitude of
the columnar orientation responses. The classifier was trained to dis-
criminate stimulus orientation using N−1 pairs of data samples, and
tested on the remaining pair of orientations using a leave-one-
pair-out cross-validation procedure. We performed 1000 simulations
for each visual area, and calculated the average level of classification
accuracy.

Results

fMRI classification analyses
We found that the activity patterns in all retinotopic visual areas

could discriminate between orientations presented in the contralateral
hemifield at above-chance levels, with higher stimulus contrasts lead-
ing to better performance (Fig. 2A). Overall, orientation classification
performance was strongest in V1 and V2, moderate in V3, and much
worse in V3A/V4. The decline in orientation decoding performance
when ascending the visual hierarchy replicates our previous findings
with high-contrast square-wave gratings (Kamitani and Tong, 2005).
The results are generally consistent with reports of weaker columnar
organization and broader orientation selectivity in higher extrastriate
areas (Desimone and Schein, 1987; Vanduffel et al., 2002). Because ori-
entation classification in V3A/V4 was less reliable and could potentially
lead to floor effects, we focused on V1–V3 in our analytic comparisons
of visual areas.

Statistical analyses confirmed that orientation classification per-
formance was highly dependent on stimulus contrast (F=28.36,
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Fig. 2. Effects of stimulus contrast on orientation classification performance, plotted by
visual area for Experiment 1. Areas V1–V3 performed significantly better than chance
level of 50% at all contrast levels for gratings presented to the contralateral visual
field (A), but could not reliably discriminate orientations presented in the ipsilateral
visual field (B). Higher stimulus contrasts led to better discrimination of contralateral
orientations, especially in early areas such as V1. Error bars indicate ±1 S.E.M.
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pb0.00001). Orientation classification improved as the contrast of
the grating increased from 4% to 20% (t=4.0, pb0.001), and from
20% to 100% (t=4.47, pb0.001). Thus, the reliability of these ensem-
ble orientation-selective responses depended on the strength of the
incoming visual signals. Visual areas also differed in classification
performance (F=6.6, pb0.005), with areas V1 and V2 showing
stronger orientation selectivity than V3 (t=3.35, pb0.005).
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Fig. 3. Orientation classification performance plotted as a function of number of voxels used
selected for analysis, based on t-values obtained from independent visual localizer runs. Th
performance reached near-asymptotic levels with the selection criterion of 60 voxels used
Of particular interest was whether visual areas differed in their abil-
ity to discriminate between orientations as a function of contrast. We
observed a significant interaction effect between visual area and con-
trast level (F=4.66, pb0.005), indicating a reliable difference in
contrast sensitivity between visual areas. V1 and V2 showed larger dif-
ferences in classification performance between the high- and low-
contrast conditions than did area V3 (t=2.95, pb0.005), indicating
that lower-tier areas are more contrast dependent and V3 is relatively
more “contrast invariant”. Admittedly, when stimuli were presented
at full strength (i.e., 100% contrast), our decodingmethod was less sen-
sitive at detecting orientation-selective responses fromV3 than fromV1
or V2. Nonetheless, V3 performed as well as V1/V2 in the low-contrast
condition, indicating a relative boost in sensitivity, specifically in the
low-contrast range.

Control analyses confirmed that visual areas in each hemisphere
could only predict the orientation of stimuli in the corresponding visual
field. All visual areas could discriminate between orientations shown in
the contralateral visual field (Fig. 2A) but not those shown in the ipsilat-
eral visual field (Fig. 2B), indicating the location specificity of this orien-
tation information. Also, the pattern of results remained consistent and
stable when a sufficient numbers of voxels (~40 or more) was used for
classification analysis (Fig. 3). Orientation classification accuracy was
near asymptote at the level of 60 voxels used in the main analysis,
suggesting that most of the available information had been extracted
from the activated region.

To what extent can these orientation decoding results be under-
stood in terms of the overall amplitude of activity in the visual cortex,
which is known to increase monotonically with stimulus contrast and
to approach asymptotic levels more quickly in higher visual areas? Pre-
vious fMRI studies have found that response amplitudes gradually be-
come more invariant to contrast at progressively higher levels of the
visual pathway, although reports have been mixed regarding whether
early areas V1–V3 might differ in contrast sensitivity (Avidan et al.,
2002; Boynton et al., 1999; Kastner et al., 2004; Tootell et al., 1995). In
Fig. 4A, we show the overall amplitude of fMRI activity across the visual
hierarchy for each level of stimulus contrast. Here, one can observe
much stronger responses at higher contrasts and also a gradual increase
in contrast invariance when ascending the visual hierarchy; area V1
showed a significantly greater difference in amplitude between high
and low contrast conditions than did area V3 (F=11.98, pb0.00001).
This pattern of results corresponds well with the orientation decoding
results. Mean decoding accuracy was highly correlated with the mean
amplitude of activity found in areas V1 through V3 across all contrast
levels (R=0.71, pb0.01), indicating a strong positive relationship.
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Why should orientation decoding improve with increased response
amplitudes as measured with fMRI? Single-unit recording studies have
found that higher firing rates are accompanied by a proportional increase
in variance, such that increases in stimulus contrast lead to relatively
small improvements in the signal-to-noise ratio and transmission of ori-
entation information (Skottun et al., 1987). However, fMRI reflects the
averaged activity of large populations of neurons, thereby minimizing
the impact of variability in individual neuronal firing rates. Noise levels
in fMRI are largely dominated by other physiological sources, which in-
clude respiratory, vascular, and metabolic fluctuations and also pulsatile
head motion (Kruger and Glover, 2001). Gratings of higher contrast
should therefore evoke stronger orientation-selective activity patterns
without increasing the variability of these fMRI responses, thereby in-
creasing the signal-to-noise ratio. Consistent with this view, we found
that fMRI noise levels remained stable across changes in stimulus con-
trast, based on estimates of the variability of mean amplitudes when
measured across subjects (see error bars in Fig. 4A) and also across blocks
within each subject (average standard deviation at 4%, 20% and100% con-
trast, 0.37, 0.35 and 0.38 percent signal change, respectively).

Simulation analyses: comparison with fMRI decoding
We performed a simulation analysis to determine whether the

mean amplitude of fMRI activity found in individual visual areas
could provide a good account of the accuracy of orientation decoding.
Previously, we have shown that when random spatial jitter is applied
to a regular array of orientation columns, it becomes possible to de-
code orientation-selective activity patterns at voxel resolutions be-
cause these local anisotropies lead to weak biases in orientation
preference in the individual voxels (Kamitani and Tong, 2005).
Here, we constructed a simple 1D model simulation of orientation
columns, from which coarse-scale activity patterns were sampled
using an array of 60 voxels (see Materials and methods for details).
Our orientation classifier was then trained and tested on the pattern
of responses from these 60 voxels (plus independent Gaussian
noise) to repeated presentations of 45° and 135° orientations. The
goal of this simulation was to determine whether scaling of the re-
sponse amplitude of simulated orientation columns could effectively
predict the reliability of fMRI orientation decoding.

In constructing this simulation, we attempted to use a minimum set
of assumptions and free parameters. The same parameter values were
used for all visual areas and contrast levels (e.g., number of voxels, num-
ber of samples, jitter in orientation preference, fMRI noise level), with
the exception of two fixed parameters (columnar spacing and response
amplitude) and one free parameter (columnar orientation tuning). The
spacings between iso-orientation columns were determined individu-
ally for V1, V2 andV3 (760, 950 and 970 μm, respectively) based onpre-
viously reported values obtained from the monkey visual cortex
(Vanduffel et al., 2002). The response amplitude of the simulated orien-
tation columnswas scaled according to themean fMRI amplitude found
in that contrast condition and visual area. The only free parameter
consisted of the orientation tuning width of the cortical columns,
which was adjusted separately for each visual area to obtain a good fit
of the mean decoding accuracy averaged across all contrast levels. Thus,
manipulations of this parameter cannot account for changes in perfor-
mance as a function of stimulus contrast; such differences must instead
reflect the change in response amplitude.

We obtained the following fitted values for simulated columns in
areas V1, V2, and V3; orientation tuning was 38°, 58° and 64° respec-
tively, based on the standard deviation of the Gaussian tuning curve.
Such a decline in columnar orientation tuning when ascending the vi-
sual hierarchy is in rough agreement with the known properties of
early visual areas. Results from Vanduffel et al. (2002) suggested
that the orientation tuning width of cortical columns are about 50%
more broad in areas V2/V3 than in area V1. Fig. 4B shows the results
of decoding the simulated voxel responses to these orientation col-
umns. The model provided a very good fit of the orientation decoding
data by incorporating the mean amplitude of fMRI responses at each
contrast level (R2=0.938, pb0.0001). From these results, we can con-
clude that the reliability of ensemble orientation-selective responses
is highly dependent on the amplitude of stimulus-driven activity in
the visual cortex, and that this relationship can be well modeled by
scaling the amplitude of orientation-selective responses.

It should be noted that this model provides an excellent fit to the
fMRI data over a range of initial parameters. This is because decoding
accuracy depends on the signal-to-noise ratio of the differential ac-
tivity, which is determined by the difference of Gaussians for col-
umns tuned to different orientations. Thus, changes to one fixed
parameter, such as iso-orientation spacing, can be compensated for
by adjustments to the single free parameter of orientation tuning
width to obtain differential patterns of about equal discriminability.
For example, if we arbitrarily specify that areas V1–V3 should in-
stead share the same iso-orientation spacing of 760 μm, then differ-
ent estimates of columnar orientation tuning are obtained (V1–V3:
38°, 42°, 54° respectively). Nonetheless, with these parameters the
model still provides an excellent fit of fMRI decoding performance
for visual areas across changes in stimulus contrast (R2=0.931,
pb0.0001). In the analyses described here, we report the results
using columnar spacing values of 760, 950 and 970 μm for areas
V1, V2 and V3, respectively.
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Additional correlational analyses
We performed a variety of correlational analyses for more explor-

atory purposes, to determine whether the mean BOLD response ampli-
tude in a given visual area might be predictive of the accuracy of
orientation decoding performance for a given individual. The goal of
these analyses was not to test for the effects of stimulus manipulations,
such as the effects of contrast, but rather, to investigate whether indi-
vidual differences in one measure might be predictive of another. For
example, perhaps individuals who exhibit relatively greater response
amplitudes in area V2, as compared to V1, also exhibit better decoding
in V2, when tested with a common set of stimuli. Although the mean
BOLD response does not contain reliable orientation-selective informa-
tion per se, aspects of this gross signal, such as its amplitude or reliabil-
ity, might be predictive of the reliability of orientation-selective
patterns for an individual. With a sample size of 10 subjects, it was pos-
sible to explore such questions pertaining to individual differences in
decoding performance.

As a first-pass analysis, we evaluated whether fMRI amplitudes might
be predictive of decoding accuracy when pairs of data points were sepa-
rately entered for each contrast level and visual area (V1–V3) of every
subject. We observed a modest correlation (R=0.36, pb10−6), but
much of this apparent relationship was driven by the effect of stimulus
contrast on fMRI amplitudes and decoding accuracy. Correlations were
no longer reliable when tested within each contrast level (R values of
0.098, 0.106 and 0.077 for 100%, 20% and 4% contrast, respectively,
p>0.40 in all cases).

We also explored the possibility that decoding performance for an
individual might be related to the signal-to-noise ratio of their mean
fMRI response. Instead of using response amplitudes, we used the
ratio resulting from the mean response amplitude divided by the stan-
dard deviation to test for correlations. This signal-to-noisemeasure was
quite strongly correlated with decoding accuracy when considering
paired data points for every contrast level and visual area (R=0.51,
pb10−12). More importantly, we observed a reliable relationship with-
in each contrast condition (R values of 0.48, 0.35, and 0.27 for 100%, 20%
and 4% contrast respectively, pb0.05 in all cases). These results indicate
that reliability of orientation-selective activity patterns can be partly
predicted by the signal-to-noise ratio of fMRI responses for a given indi-
vidual. These individual differences could potentially reflect differences
at a neural level, such as differences in the stability of low-level visual
responses or high-level cognitive effects of attention/arousal. Alterna-
tively, it could reflect noise factors resulting from other physiological
sources (e.g., headmotion, stability of breathing and heart rate, strength
of blood flow response) or even non-physiological sources such as the
quality of the shim or stability of the MRI signal for that scanning ses-
sion. The results of Experiment 1 provide compelling evidence of the re-
lationship between orientation decoding performance and response
amplitude across changes in stimulus contrast. We also find suggestive
evidence of a relationship that might account for individual differences
in decoding accuracy within a stimulus condition.

Experiment 2

In this experiment, we determined the extent to which fMRI activity
patterns in individual visual areas could discriminate between orthogo-
nal gratings shown at various spatial frequencies (0.25, 1 or 4 cpd).
Higher spatial frequencies (above 5 cpd) were avoided because optical
factors can impair sensitivity in this range (Banks et al., 1987). In the
main experiment (Experiment 2A), wemeasured orientation classifica-
tion performance for separate gratings presented in the left and right vi-
sual fields (cf. Fig. 1). Because these stimuli were presented in the
periphery (1–9° eccentricity), we expected that contralateral visual
areas would show better discrimination at moderate than high spatial
frequencies. A follow-up study (Experiment 2B) was conducted to de-
termine whether centrally presented stimuli (0-4° eccentricity) would
lead to better orientation discrimination of high spatial frequency
gratings. Such differences in orientation discrimination would be
expected due to the decline in spatial resolution found with increasing
eccentricity in both the retina and cortex (De Valois et al., 1982;
Enroth-Cugell and Robson, 1966; Hilz and Cavonius, 1974).

This experiment also allowed us to test for differences in spatial fre-
quency sensitivity across early visual areas. We expected that V1might
show a relative advantage at discriminating orientations of high spatial
frequency, in comparison to extrastriate areas. Previous studies have
found evidence of a shift in tuning toward lower spatial frequencies
when ascending the visual pathway (Foster et al., 1985; Gegenfurtner
et al., 1997; Henriksson et al., 2008; Sasaki et al., 2001; Singh et al.,
2000), suggestive of a gradual loss of fine detail information.

We further tested whether fMRI response amplitudes could predict
the accuracy of orientation decoding, by applying both correlational and
simulation analyses. Critically, for the simulation analysis, we used the
same orientation tuning parameter values as were obtained from the
fMRI data of Experiment 1, to predict fMRI classification accuracy in Ex-
periment 2 for stimuli presented in a common visual location. A good fit
across such changes in stimulus manipulation (i.e., stimulus contrast
and spatial frequency)would provide additional support for the general
validity of this simple modeling approach.

Materials and methods

All aspects of the experimental design, stimuli, MRI scanning pro-
cedures, and analysis were identical to those of Experiment 1, except
as noted below.

Participants
Five participants from Experiment 1 (four male, one female) partic-

ipated in Experiment 2A involving lateralized gratings. Four of these
participants (three male, one female) went on to participate in Experi-
ment 2B in which they viewed central presentations of a single grating.
All subjects provided written informed consent. The study was ap-
proved by the Institutional Review Board at Vanderbilt University.

Experimental design and stimuli
In the main experiment, lateralized gratings of varying orientation

(45° or 135°) were presented in the left and right visual fields (Fig. 1).
In Experiment 2B, a single grating of varying orientation (45° or 135°)
was centrally presented within a Gaussian envelope centered at the
fovea (0–4° eccentricity). All gratings were presented at 100% contrast,
with spatial frequency varied across runs (0.25, 1, or 4 cpd). For the foveal
presentation experiment, voxelswere selected fromboth left and right vi-
sual areas for classification analysis. Because retinotopic boundaries are
not well defined in the foveal region, the regions of interest consisted of
parafoveal and peripheral regions of V1–V4 that responded to the
localizer stimulus.

Results

Fig. 5 shows orientation classification performance at each spatial
frequency, plotted by visual area. Areas V1–V3 could discriminate the
orientation of contralateral stimuli at above-chance levels for all spa-
tial frequencies (min t=3.16, pb0.05), whereas discrimination of ip-
silateral stimuli was very poor and at chance level. Again, orientation
discrimination was quite poor in V3A/V4, with above-chance perfor-
mance found in the 0.25 and 1 cpd conditions, but chance-level per-
formance was found in the 4 cpd condition.

Focused analyses of areas V1–V3 indicated that orientation decoding
was highly dependent on spatial frequency (F=21.32, pb0.0001), with
much poorer discrimination at 4 cpd than at lower spatial frequencies
(t=8.57, pb0.001). Overall classification performance also differed
across visual areas (F=9.98, pb0.001), with better performance
found for V1/V2 than V3 (t=3.80, pb0.005).
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Fig. 5. Effects of spatial frequency on orientation classification performance, plotted by
visual area for Experiment 2A. A, contralateral stimulation; B, ipsilateral stimulation.
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per degree (cpd). For contralateral regions, areas V1–V3 showed strong classification
performance for orientations of low and moderate spatial frequencies, but poorer per-
formance for high spatial frequencies. Nonetheless, V1 showed a relative advantage at
discriminating 4 cpd gratings in this condition.
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Fig. 6. Analysis of fMRI response amplitudes for Experiment 2A. A, mean response am-
plitudes for each spatial frequency condition and visual area. B, model fits of orienta-
tion classification accuracy based on the mean fMRI response amplitudes observed in
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columns, fromwhich voxel-scale activity patterns were sampled and analyzed by a lin-
ear classifier. Simulation results provided a good fit of fMRI classification performance
for areas V1–V3 (R2=0.925, pb0.0001).
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Of greater interest, the orientation classification accuracy found
across visual areas seemed to depend on the spatial frequency content
of the gratings, as indicated by a significant interaction effect (F=2.98,
pb0.05). For high spatial frequency gratings of 4 cpd, orientation dis-
crimination performancedeclinedwhen progressing along the visual hi-
erarchy from V1 to V3 (significant linear trend, F=11.828, pb0.005). At
1 cpd, performance was equally good in V1 and V2 (t=0.71, n.s.) and
worse in V3 (significant linear trend, F=9.73, pb0.05). The results
obtained with 1-cpd gratings were very similar to those of Experiment
1 when the same stimulus conditions were tested (see Fig. 2, red
curve). In the lowest spatial frequency condition of 0.25 cpd, orientation
decoding was quite comparable across visual areas, with V3 performing
aswell as V1 (t=0.42, n.s.), and V2 showing a relative advantage in per-
formance (significant quadratic trend, F=6.62, pb0.05). Overall, the re-
sults indicate that V1 can discriminate high spatial frequency patterns
better than higher extrastriate areas, whereas low spatial frequency pat-
terns can be discriminated about equally well by areas V1–V3. Area V3
exhibited a relative advantage at discriminating orientations discrimi-
nating orientations with lower spatial frequencies.

We investigated the relationship between fMRI response amplitudes
and orientation decoding accuracy. Plots of response amplitudes indicat-
ed that V1 responded most strongly to the 1 cpd gratings, whereas
extrastriate areas responded more strongly to the low spatial frequency
gratings (Fig. 6A). Mean decoding accuracy was highly correlated with
the mean amplitude of activity found in areas V1 through V3 across the
three spatial frequency conditions (R=0.767, pb0.005), indicating a pos-
itive relationship similar to that found in Experiment 1. This positive rela-
tionship was further supported by our decoding analysis of modeled
voxel responses sampled from simulated orientation columns. Using
the exact same parameter values and orientation tuning widths from
Experiment 1, we obtained a good fit of orientation decoding perfor-
mancebased on themean fMRI amplitudes found in each spatial frequen-
cy condition and visual area (Fig. 6B, R2=0.925, pb0.0001). These results
indicate the predictive power of this rather simple model, and how the
reliability of these orientation-selective activity patterns is highly depen-
dent on the strength of the stimulus-driven activity. This proved true
across manipulations of both stimulus contrast and spatial frequency.

We also tested whether our measures of ensemble orientation selec-
tivitymight reveal evidence of the bandpass tuning characteristics of visu-
al areas. This was done by evaluating generalization performance across
changes in spatial frequency. Fig. 7 shows generalization performance
plotted by visual area, in which the decoder was trained on orientations
of one spatial frequency and then tested on orientations of another spatial
frequency. As expected, orientation classification performancewas some-
what poorer across changes in spatial frequencies thanwhen training and
testing with the same spatial frequency (cf. Figs. 7 and 5A, respectively).
Nonetheless, generalization performance for areas V1–V3 exceeded
chance levels, with the exception of V3 in the 4 and 1 cpd conditions
(t=1.6, n.s.). V1 showed a relative advantage at generalizing between
moderate and high spatial frequencies of 1 and 4 cpd (significant linear
trend across V1–V3 in the 4 and 1 cpd condition, F=8.86, pb0.05), con-
sistent with the notion that this region is sensitive to a higher range of
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spatial frequencies. By contrast, extrastriate visual areas exhibited better
generalization between the 0.25 and 1 cpd conditions, presumably
because of their greater sensitivity to orientation at moderate and low
spatial frequencies than to the high frequency 4 cpd condition. General-
ization was significantly better for gratings differing by two octaves
than for those differing by four octaves in the 0.25 and 4 cpd analyses
(t=4.58, pb0.001).

These results indicate that more similar spatial frequencies allow
for better generalization of orientation preference, as one would ex-
pect, but further demonstrate that some degree of orientation gener-
alization is possible over a fairly broad spatial range spanning 4
octaves. Such generalization might partly reflect the bandwidth of in-
dividual orientation-selective neurons, as well as the tendency for
neurons with similar orientation preference to form clusters or col-
umns. Neurophysiological studies suggest that orientation-selective
neurons in V1 are sensitive to a range of spatial frequencies, with
bandwidths ranging from 0.5 to 5 octaves (Xing et al., 2004). Howev-
er, recent optical imaging studies of the monkey visual cortex have
found that orientation columns remain quite stable across large
changes in spatial frequency of up to 8–16 octaves (Lu and Roe,
2007). The extensive bandwidth of the orientation map implies a
high degree of clustering of neurons with a similar orientation prefer-
ence across differences in spatial frequency preference.

Results for Experiment 2B: foveal gratings
In a follow-up experiment, we investigated whether gratings cen-

tered at the fovea would lead to stronger orientation-selective re-
sponses at high spatial frequencies. Previous studies have shown
that spatial acuity is highest at the fovea and declines steadily toward
the periphery, with estimates of peak sensitivity in the foveal region
ranging from 3 to 8 cpd, depending on the study (Banks et al.,
1987; De Valois et al., 1974; Hilz and Cavonius, 1974). A large circular
grating was centrally presented, extending from 0–4° eccentricity. For
our decoding analysis, we focused on the contributions of the
parafovea and near periphery, since the boundaries between visual
areas are difficult to determine in the foveal region.

Central presentation of the gratings led to a dramatic boost in the
discrimination of high spatial frequency orientations throughout
areas V1–V3. These areas showed excellent orientation classification
performance across all spatial frequencies tested, including the
highest 4-cpd condition (Fig. 8). Classification accuracy did not reli-
ably differ as a function of spatial frequency (F=0.3, n.s.), nor was
there a significant interaction between spatial frequency and visual
area (F=0.5, n.s.). Thus, it appears that the cutoff sensitivity of
areas V1–V3 exceeds 4 cpd in central vision.
Discussion

This study demonstrates that orientation decoding depends greatly
on the strength and quality of the visual input. Early visual areas,
especially V1, showed much better discrimination of high- than low-
contrast oriented gratings, even though all stimuli were above percep-
tual threshold. This basic finding indicates that perception of orienta-
tion alone is not sufficient to evoke strong orientation-selective
activity patterns and that these orientation-selective responses are not
simply due to the perception of a global oriented pattern.Manipulations
of spatial frequency provided further support for this view. Although
the gratings were always suprathreshold orientation-selective re-
sponses were quite poor for high spatial frequency gratings presented
in the near periphery but considerably better with central presentation.
Thus, orientation decoding depends on the quality of the visual input
and the spatial resolution available at the given location in the visual
field.

More detailed analyses revealed that orientation classification perfor-
mancewas highly dependent on the amplitude of the stimulus-driven ac-
tivity. Compelling evidence of this relationship was revealed by both
correlational analyses and decoding applied to simulated voxel responses
to orientation columns. Correlations betweenmean response amplitudes
and decoding accuracywere reasonably high (R>0.70), when considered
across stimulus conditions and visual areas. An even better fit of mean
decoding performance was obtained by incorporating response ampli-
tudes in a simple simulationmodel of voxel responses to spatially irregu-
lar arrays of orientation columns. When fMRI response amplitudes were
used to determine the response strength of the simulated orientation col-
umns, decoding of the resulting voxel responses provided a very good fit
of the actual fMRI results.Model predictions accounted formore than 90%
of the variance observed across experimental conditions for areas V1–V3.
This proved true even when the parameter values obtained from
Experiment 1 were used to predict decoding accuracy based on the re-
sponse amplitudes observed in Experiment 2. Our results indicate that
the reliability of the voxel-scale activity patterns can be reasonably
modeled by incorporating changes in the response amplitude of simulat-
ed orientation columns. These findings provide compelling evidence of
the close relationship between fMRI response amplitudes and the
strength of these feature-selective responses under stimulus-driven
conditions.

Previous work has shown that voxel response amplitudes are an im-
portant consideration for effective decoding. For example, the classifica-
tion of whole-brain activity patterns can be improved considerably by
implementing feature selection to restrict the analysis to those voxels
that are most active across all of the experimental conditions to be dis-
criminated (Mitchell et al., 2004). In our previous (Kamitani and Tong,
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2005, 2006) and present works, we preselected voxels in individual vi-
sual areas based on their responses to independent visual localizer runs
to ensure statistical independence of our methods for feature selection
and pattern classification (Kriegeskorte et al., 2009). This approach al-
lows us to identify voxels that correspond to the retinotopic location
of the orientation stimulus, and typically we find that decoding accura-
cy steadily improves as more voxels are added (Fig. 4), until the region
of interest begins to exceed the boundaries of the cortical region that re-
ceives direct stimulus input. Since we analyzed the same set of voxels
across manipulations of stimulus contrast or spatial frequency, any
changes in decoding performance that we observed must be attribut-
able to changes in the strength of the underlying orientation-selective
activity patterns within the prespecified set of voxels.

Of considerable relevance to the current work is a recent fMRI study
that reported monotonic improvements in orientation decoding as a
function of stimulus contrast (Smith et al., 2011). The authors found
that classification performance in early visual areas improved with
stimulus-driven increases in BOLD response amplitude, approximately
following a power law with a 0.2 exponent due to the compressive
non-linearity that occurred at higher amplitudes. In the present study,
we conducted in-depth analyses to better understand the relationship
between response amplitude and orientation decoding accuracy, and
demonstrated that decoding of orientation responses can be well pre-
dicted by incorporating fMRI response amplitudes into a simple simula-
tion model. Using the parameter settings obtained from the first
experiment, wewere able to extend this approach to predict orientation
classification performance for gratings of varying spatial frequency in a
second experiment. These findings indicate the predictive power of our
modeling approach to account for orientation decoding performance.

Our study suggests that the effects of response amplitude on orien-
tation decoding can be understood by incorporating principles of visual
cortical organization. Whereas Smith et al. interpreted the effects of re-
sponse amplitude on orientation decoding as a confounding variable
that limits the ability to compare pattern classification results across vi-
sual areas, we consider response amplitude to be one of several factors
that can impact the accuracy of orientation decoding for a given visual
area. As is indicated by our model, multiple factors can readily affect
decoding performance for a given visual area, including columnar
size, iso-orientation spacing, spatial variability in the distribution of
columns, sharpness of columnar orientation tuning, and the amount
of neural or fMRI noise present in a visual area. Given that these factors
should remain constant throughout an experiment, it should be possi-
ble to investigate whether visual areas are differentially affected by sys-
tematic manipulations of a stimulus.

Our fMRI decoding approachwas sufficiently sensitive to detect differ-
ences between visual areas across stimulusmanipulations. In Experiment
1,we found that orientation-selective responses inV1 showedgreater de-
pendence on stimulus contrast than higher extrastriate areas, such as V3.
These findings are generally consistent with previous reports that fMRI
response amplitudes tend to become more “contrast-invariant” at pro-
gressively higher levels of the visual hierarchy. However, evidence of a
difference in contrast sensitivity between early visual areas, such as V1
and V3, has beenmixed, with several studies unable to find a reliable dif-
ference between these early visual areas (Avidan et al., 2002; Boynton et
al., 1999; Gardner et al., 2005; Tootell et al., 1995). In Experiment 2, we
found evidence of a selective attenuation of high spatial frequency infor-
mation as signals propagated up the visual hierarchy. Areas V1–V3
showed equally good orientation discrimination of low frequency pat-
terns presented at mid-eccentricities, whereas V1 showed a relative ad-
vantage at discriminating high frequency patterns. These results are
consistent with previous single-unit studies in monkeys, which have
reported differences in spatial frequency tuning between V1 and V2
(Foster et al., 1985; Levitt et al., 1994), and also between V2 and V3
(Gegenfurtner et al., 1997). Previous neuroimaging studies of response
amplitudes have found that spatial frequency preference is most strongly
influenced by visual eccentricity (Tootell et al., 1998a), with some studies
reporting evidence of a modest shift toward lower spatial frequencies
when ascending the visual hierarchy (Henriksson et al., 2008; Kay et al.,
2008; Sasaki et al., 2001; Singh et al., 2000).

Although we observe a strong relationship between orientation
decoding accuracy and BOLD response amplitude under these stimulus-
driven conditions, it is important to note that this relationship is unlikely
to prevail under conditions of pure top-down processing. In a recent
study of visual working memory, we discovered that activity patterns in
early visual areas contain reliable orientation information even after the
overall amplitude of activity has fallen to baseline levels (Harrison and
Tong, 2009). It is conceivable that inhibitory mechanisms, elicited by
some forms of top-down feedback, might lead to a decoupling between
overall response amplitudes and the reliability of the orientation-selective
activity patternswhen observersmust retain a grating inworkingmemory.

It is also interesting to note that our measures of orientation-selective
responses in the human visual cortex are in generally good agreement
with a recent optical imaging study of the macaque monkey (Lu and
Roe, 2007). These authors examined the effects of contrast and spatial fre-
quency on the response of orientation columns in areas V1 andV2.Higher
stimulus contrasts led to stronger orientation responses in both areas,
though V2 responses tended to saturate at high contrasts indicating rela-
tively greater contrast invariance. V1 also preferred somewhat higher
spatial frequencies thanV2. Orientation columns in V1weremost evident
at moderate spatial frequencies of 1.7 cpd, weak but visible at 3.4 cpd,
andno longer reliable at very high spatial frequencies of 6.7 cpd. These re-
sults are consistent with our findings that human V1 exhibited more
modest orientation selectivity at high spatial frequencies of 4 cpd, but
still exhibited a relative advantage in decoding performance when com-
pared to extrastriate areas V2 and V3. Interestingly, orientation columns
inmonkey V1 remained quite stable over awide range of spatial frequen-
cies (0.2–3.4 cpd). Such generalization suggests that neuronswith similar
orientation preference (but different spatial frequency preferences) tend
to cluster in cortical columns. This might account for the above-chance
generalization performance we observed across a 4-octave difference in
spatial frequency in our study. The fact that fMRI orientation decoding
proved sufficiently sensitive to detect differences in contrast and spatial
frequency sensitivity across visual areas indicates that this approach
could provide an effective tool for investigating the feature-selective re-
sponse properties of the human visual system. A related approach could
be to estimate the conjoint orientation and spatial frequency tuning of in-
dividual voxels within a visual area (Kay et al., 2008), or to assess the
amount of orientation information available in high-resolution fMRI ac-
tivity patterns (Swisher et al., 2010).

In recent years,multivariate pattern analysis has become an increas-
ingly popular method for characterizing fMRI activity in studies of
human perception and cognition (Tong and Pratte, 2012). Although
most studies have used these methods to investigate the neural repre-
sentation of sensory stimuli ormental states, onemight also askwheth-
er decoding is likely to be more successful in some individuals than
others. Here, we found evidence that the signal-to-noise ratio of the
BOLD response is modestly predictive of individual differences in
decoding accuracy. It might be interesting for future studies to explore
what other factors contribute to individual differences in the reliability
of classification performance. In the case of orientation decoding, some
factors to explore might include the size or cortical magnification prop-
erties of the visual area in question (Duncan and Boynton, 2003), the
fine-scale orientation structure in these regions (Swisher et al., 2010;
Yacoub et al., 2008), as well as the degree to which global orientation
biases might be present. Although a bias for radial orientations can in-
deed be found in the primary visual cortex (Freeman et al., 2011;
Sasaki et al., 2006), spiral patterns that lack any such bias nonetheless
allow for reliable orientation decoding (Mannion et al., 2009). It could
prove useful to characterize how local and more global orientation
biases tend to vary from one individual to another, and to investigate
whether these factorsmight account for individual differences in the re-
liability of fMRI orientation decoding.
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