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Supplementary Materials & Methods  

fMRI study of cat visual cortex.  

The experimental methods used here have been fully described in a previous publication 

(Moon et al., 2007). Animal use was approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh.  

 

Experimental design and stimuli.  Anesthetized and paralyzed cats (N=2) were 

presented with high-contrast, full-field drifting square-wave gratings (spatial frequency, 

0.15 cycles/degree; temporal frequency, 2 cycles/s; motion direction reversing every 0.5 

s), displayed at one of 8 equally-spaced orientations (0, 22.5, …., 157.5 degrees). Each 

orientation was shown for 10 seconds, after which the next counterclockwise orientation 

was presented. Thus, a full cycle through all 8 orientations required 80 seconds to 

complete. Each experimental run consisted of 11 cycles for a total duration of 880 

seconds.  

 

MRI scanning procedures. Animals were scanned using a 9.4 Tesla Varian (Palo Alto, 

CA) MR system, with a custom-built surface coil (1.6 cm diameter) positioned over the 

primary visual cortex. Functional imaging was performed using a 2D gradient echo (GE) 

echo-planar imaging (EPI) sequence (TE 18ms, TR 500ms, FOV 2 × 2 cm, slice 

thickness 1mm, in-plane resolution 0.3125 × 0.3125mm). The imaging slice was 

positioned with the aid of a venographic MR image to avoid large superficial veins and to 

include as much visual cortical surface area as possible. Three functional runs were 

completed for each of the 2 cats analyzed here.  
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Data analysis. Brain voxels were first identified as those with average intensities greater 

than 80% of the mean intensity of the volume, then a mean trend timecourse was 

determined by averaging together all brain voxels at each time point. The time series of 

each voxel was then orthogonalized with respect to this global trend by subtracting the 

best fit of the trend timecourse from each voxel’s time series. Spatial filtering and 

multivariate pattern analysis were performed as for the human data, described below. 

 

Univariate statistical analysis used analytic methods similar to those previously 

developed for continuous phase-encoded retinotopic mapping (Sereno et al., 1995). 

Briefly, the amplitude and phase of modulation at the stimulus periodicity (80 

seconds/cycle) were determined by taking the Fourier transform of the time series at each 

voxel. Under the assumption of temporally white noise and the null hypothesis of no 

stimulus-driven activity, the ratio of the power of modulation at the stimulus frequency to 

the average power at all other “noise” frequencies for a time course of N time points is 

distributed as an F-statistic with 2 and N-2 degrees of freedom (Tootell et al., 1998). 

Voxels were considered reliably orientation-selective if their F-statistic exceeded a 

Bonferroni-corrected significance level of P < 0.05. These voxels were rendered on the 

cortical surface in colors according to the phase of their response, reflecting the preferred 

orientation (Fig. 1). 

 

fMRI study of human visual cortex.  



3 

Subjects. Four right handed males, ages 27-37, participated in this study after providing 

written informed consent. All had normal or corrected to normal vision. The study was 

approved by the Vanderbilt University Institutional Review Board. 

 

Experimental design and stimuli.  Participants were asked to discriminate letters 

presented at fixation while oriented gratings (0°, 45°, 90°, or 135°) were displayed in the 

left and right visual fields (Fig. 2A). The orientation stimuli consisted of two flickering 

square-wave gratings (mean luminance, 6.5 cd/m2; contrast, 100%; spatial frequency, 1.4 

cycles per degree with randomized phase; flicker rate, 125 ms on/125 ms off) presented 

in semi-annular apertures (0.8–7.6° eccentricity) in the left and right visual fields. The 

orientation stimuli in each hemifield covered 160º of polar angle around the central letter 

stream, with 20º gaps inserted along the vertical meridian to ensure that V1 responses to 

each grating would be confined exclusively to the contralateral hemisphere. The left and 

right apertures were separated by 0.8° of visual angle at their innermost point and by 2.6° 

at their outermost point.  

 

Eye movements were discouraged by requiring subjects to perform a letter discrimination 

task at fixation (letter size ~0.5°) throughout each fMRI run. A series of letters were 

centrally presented at a rate of 5 items per second. The subject’s task was to report 

whenever a target letter (‘J’ or ‘K’) appeared by pressing corresponding buttons on a 

response box with the index or middle fingers of the right hand. Targets appeared at 

randomly selected intervals, with exactly one target appearing in each 4.5-second scanner 

acquisition interval. Mean accuracy for this task was 85% correct.  
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Each experimental run consisted of eleven 18s blocks. A run began with a block of letters 

only, followed by 4 blocks of both letters and gratings, a middle block of letters only, 4 

more blocks of letters and gratings, and a final block of letters. The peripheral gratings, 

when present, were irrelevant to the subjects’ primary letter discrimination task at 

fixation. Orientations were counterbalanced so that each of the 4 possible orientations 

appeared in both the left and right visual fields during each set of 4 blocks.  Each subject 

completed 11 or 12 experimental runs within a scanning session. 

 

The subjects wore prism glasses in order to view stimuli on a rear-projection screen 

positioned above the chest, which was illuminated by an Avotec (Stuart, FL) LCD 

projector. The stimulus background was a medium gray (6.5 cd/m2) in an otherwise dark 

room. 

 

MRI scanning procedures. Functional images were acquired on a Philips Achieva 7 

Tesla MRI scanner at the Vanderbilt University Institute of Imaging Science (VUIIS), 

using a volume transmit coil and a 16-channel receive-array head coil (Nova Medical, 

Wilmington MA). A 3D fast field echo (FFE) sequence was used for functional imaging 

(3D-FFE parameters: acquisition time, 4.5 s per volume; TE 25 ms; TR 36 ms; flip angle 

17°; 13 echo EPI readout train; sensitivity encoding (SENSE) acceleration factor 3.0).  

The field of view (FOV) was 128 × 128 × 33mm, with an isotropic spatial resolution of 1 

× 1 × 1mm. The imaging slab was centered over the occipital pole and oriented roughly 

perpendicular to the calcarine sulcus. 
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Anatomical images used for cortical reconstructions (acquired at 1 mm3 resolution) and 

retinotopic mapping data were collected in separate imaging sessions on a 3 Tesla Philips 

Intera Achieva scanner. 

 

Data analysis. Functional images were aligned using FSL's MCFLIRT (Jenkinson et al., 

2002) for motion correction (6 degrees of freedom, sinc interpolation). The first 

functional volume was discarded.   

 

For univariate analyses, the voxelwise time series were fit by a general linear model, 

using boxcar regressors convolved with a gamma function (delta, 2.25s; tau, 1.25s) for 

each experimental condition. Additional regressors were included to model polynomial 

drift terms up to second order. The statistical significance of planned contrasts was 

assessed according to a fixed-effects model in each individual subject.  

 

The borders of area V1 were identified on the reconstructed cortical mesh based on 

retinotopic mapping data acquired in separate scan sessions. These surface-based regions 

of interest (ROIs) were then projected back into the functional volume space, identifying 

the functional voxels that intersected the gray matter of area V1. Separate volumetric 

ROIs were generated for the left and right hemispheres of each subject. 

 

Human orientation preference maps (Fig. 2) were generated from the estimated amplitude 

of the responses to each of the four orientations. A vector-valued response estimate was 
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calculated for each voxel by taking the difference between response amplitudes for the 

cardinal orientations (0º minus 90º) and the oblique orientations (45º minus 135º), and 

interpreting these values as the real and imaginary components, respectively, of a 

complex number. These complex values were projected onto the cortical surface and 

color-coded according to their phase, showing only those voxels that displayed 

statistically significant responses in the unfiltered contrast of all orientations versus 

fixation (P < 0.05). This vector-averaging method is likely adequate for broad, unimodal 

tuning curves (Swindale, 1998).  

 

Spatial filtering. Three different types of spatial filters were used, including 3D 

volumetric filtering with both ideal and Gaussian kernels, as well as an iterative surface-

based smoothing method.  

 

Ideal lowpass filtering was performed in the frequency domain by taking the spatial 

Fourier transform of each 3D volume, setting all frequency components above the desired 

cutoff to zero, and inverting the Fourier transform. This is equivalent to convolution in 

the spatial domain with a circularly-symmetric sinc kernel. However, ideal filtering can 

lead to pronounced Gibbs ringing artifacts in the spatial domain, due to the prominent 

sidelobes of the sinc kernel.  

 

3D Gaussian smoothing was performed using FSL’s fslmaths utility. Gaussian kernels do 

not cause ringing artifacts in the spatial domain, but have a comparatively slow transition 

between passband and stopband in the frequency domain. Although Gaussian smoothing 
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substantially attenuates high spatial frequency components, it does not eliminate them 

entirely (Kamitani and Sawahata, 2009). The effects of this slow passband-stopband 

transition are most evident in the classification of highpassed data with small kernel sizes 

(Supplementary Fig. 1), where the accuracy of classification of Gaussian filtered data is 

notably better than that of ideally filtered data. As the Gaussian filters do not provide 

perfect frequency isolation, patterns on scales substantially more coarse than that 

suggested by the nominal kernel size can contribute greatly to the classification accuracy 

in this regime. 

 

Surface-based smoothing was performed using an iterative method described by Hagler 

et al. (2006), as implemented in Freesurfer's mri_surf2surf utility. Functional volumes 

were carefully manually aligned to a reference T1-weighted anatomical scan, which was 

used to reconstruct the cortical surface of each hemisphere as a triangular mesh (Dale et 

al., 1999; Fischl et al., 1999).  The functional data were then projected onto this 

reconstructed cortical mesh by taking the intensity values of voxels at 75% of the 

distance from the gray matter/white matter boundary to the pial surface, and mapping 

them onto the corresponding mesh vertices. The projected functional intensity values 

were then spatially smoothed by repeated nearest-neighbor averaging along the 

reconstructed cortical mesh, which is approximately equivalent to smoothing by a 

surface-based Gaussian kernel with a full width at half maximum (FWHM) proportional 

to the square root of the number of iterative smoothing steps (Hagler et al., 2006). The 

surface based smoothing method thus has frequency isolation characteristics comparable 

to that of the volumetric Gaussian filter. 
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Both Gaussian and surface-based smoothing were performed at 1mm FWHM increments. 

Approximately equivalent ideal filtering was performed for each level of Gaussian 

smoothing, taking the equivalent cutoff frequency of the Gaussian to be the spatial 

frequency at which signals were attenuated to half their original power (approximately -

3dB). Highpass filtered data were generated simply by subtracting the lowpassed data 

from the original images.   

 

Multivariate pattern analysis. For pattern classification analysis, after spatial filtering, 

all timecourses were first z-transformed (normalized by the standard deviation of the time 

course). Response amplitudes for each individual stimulus block (10s in cat data, 18s in 

human) were then estimated by a general linear model, as described above. The linear 

classifier we used consisted of linear support vector machines (SVMs), implemented by 

liblinear (Fan et al., 2008). A classifier was trained on block amplitude data from all but 

one experimental run, leaving the remaining run held out as independent test data. This 

leave-one-run-out procedure was repeated for all N runs, to obtain a measure of 

orientation classification accuracy for activity patterns in V1.  

 

For the cat data, SVMs were trained on all brain voxels (those exceeding 80% of the 

mean image intensity, as above), giving 1497 voxels for one cat and 1156 voxels for the 

other. In the human data, voxels used for training were those in left or right V1 that 

exceeded a significance threshold of P < 0.01 in the contrast of all orientations versus 

letters only, leading to an average of 2070 voxels included per hemisphere in the 
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volumetric analysis and 1519 voxels per hemisphere for the surface-based analysis. 

(Qualitatively similar results, not shown, were obtained for thresholds of P < 0.05, 0.001, 

0.0001, and 0.00001.) Separate classifiers were trained to predict the contralaterally 

presented orientation in left and right V1. 

 

The feature selection contrast of all orientations versus baseline (letters only) is 

orthogonal to the between-orientations contrasts of interest, and served merely to identify 

those voxels corresponding to the regions of retinotopic cortex that were driven by the 

visual stimulus. To ensure that test and training data were independent (Kriegeskorte et 

al., 2009), the feature selection contrast was calculated separately for each stage of the 

classifier cross-validation, including only those runs used as training data at each step. 

However, the orthogonality of the feature selection contrast with respect to all contrasts 

between orientations indicates that such rigorous separation of test and training data is 

not necessary to obtain unbiased classification results (Friston et al., 2006). Repeating 

this analysis with all runs included in a single feature selection contrast gives results 

effectively indistinguishable from those obtained by cross-validated feature selection 

(Supplementary Fig. 6). 

 

Additional support vector machines were trained and tested on the spatially averaged 

activity of all significantly active (P < 0.01) voxels within each V1 ROI, and on the 

global trend time course data for the cat visual cortex (rightmost data points, Figures 1B 

and 2D). 

 



10 

Supplementary methods - references. 

 
Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation 
and surface reconstruction. Neuroimage 9:179-94   

 
Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: A Library for Large 
Linear Classification. J. Mach. Learn. Res. 9:1871-1874   
 

Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, 
flattening, and a surface-based coordinate system. Neuroimage 9:195-207   

 
Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN (2006) A critique of functional 
localisers. Neuroimage 30:1077-1087   
 

Hagler DJ, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical 
surface-based group analysis of fMRI data. Neuroimage 33:1093-103   

 
Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the 
robust and accurate linear registration and motion correction of brain images. 
Neuroimage 17:825-41  

  
Kamitani Y, Sawahata Y Spatial smoothing hurts localization but not information: 
Pitfalls for brain mappers. NeuroImage In Press. 
 

Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in 
systems neuroscience: the dangers of double dipping. Nat. Neurosci 12:535-540   

 
Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, 
Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional 
magnetic resonance imaging. Science 268:889-93   

 
Swindale NV (1998) Orientation tuning curves: empirical description and estimation of 
parameters. Biol Cybern 78:45-56   
 

Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM 
(1998) The retinotopy of visual spatial attention. Neuron 21:1409-22   


