
Journal of Mathematical Psychology ( ) –

Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Integrating theoretical models with functional neuroimaging
Michael S. Pratte a,b,∗, Frank Tong b

a Department of Psychology, Mississippi State University, United States
b Department of Psychology and the Vanderbilt Vision Research Center, Vanderbilt University, United States

a r t i c l e i n f o

Article history:
Available online xxxx

a b s t r a c t

The development of mathematical models to characterize perceptual and cognitive processes dates back
almost to the inception of the field of psychology. Since the 1990s, human functional neuroimaging
has provided for rapid empirical and theoretical advances across a variety of domains in cognitive
neuroscience. Inmore recentwork, formalmodeling and neuroimaging approaches are being successfully
combined, often producing models with a level of specificity and rigor that would not have been possible
by studying behavior alone. In this review, we highlight examples of recent studies that utilize this
combined approach to provide novel insights into the mechanisms underlying human cognition. The
studies described here span domains of perception, attention, memory, categorization, and cognitive
control, employing a variety of analytic and model-inspired approaches. Across these diverse studies, a
common theme is that individually tailored, creative solutions are often needed to establish compelling
links between multi-parameter models and complex sets of neural data. We conclude that future
developments inmodel-based cognitive neurosciencewill have great potential to advance our theoretical
understanding and ability to model both low-level and high-level cognitive processes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The general goal of cognitive psychology has been to under-
stand psychological processes at what Marr (1982) would call the
algorithmic or representational level (see Love, 2015). In order to
explore the algorithms and representational structures that might
underlie processes such as attention ormemory, cognitive psychol-
ogists often propose formal theoretical models of these processes,
and test them by assessing predicted patterns in behavior. For
decades, doing so has provided remarkable insights into how the
mind works. During the same time, the field of neuroscience has
made strides in understanding what Marr calls the implementation
level, or, how these processes are implemented in the biological
machinery that makes up the brain. More recently, the merger of
these fields into a unified cognitive neuroscience has resulted in part
from the development of new neuroimaging techniques, such as
functional magnetic resonance imaging (fMRI), which have made
investigating the biological substrates of human cognition possi-
ble. The more targeted approach of combining theoretical model-
ing and neuroscience has been termed computational neuroscience,
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a field that is often credited as originating fromMarr’s work. In this
review, we consider a newly emerging endeavor that has arisen
from themerger of cognitive psychology, theoretical modeling and
neuroscience: using theoreticalmodels in conjunctionwith human
neuroimaging to study psychological processes.

Advances in mathematical and computational approaches have
played a key role in fMRI since its invention. Some of these de-
velopments include analytical approaches for extracting relevant
information from the BOLD signal across the temporal domain,
such as the use of temporal phase-encoded designs (Engel, 2012;
Engel et al., 1994; Sereno et al., 1995) and the development of
de-convolution approaches for fast-event related designs (Boyn-
ton, Engel, Glover, & Heeger, 1996; Buckner et al., 1996; Glover,
1999). Developments in inferential statistical techniques have pro-
duced a number of tools that have helped make fMRI mapping
studies so successful, especially regarding techniques to account
for what is arguably the most serious multiple comparisons prob-
lem in psychology (see Nichols & Hayasaka, 2003). Given the mul-
tivariate nature of fMRI data, correlation-based approaches (Haxby
et al., 2001), machine learning techniques (Kamitani & Tong, 2005;
Norman, Polyn, Detre, & Haxby, 2006; Tong & Pratte, 2012) and
voxel-based modeling approaches (Brouwer & Heeger, 2009; Kay,
Naselaris, Prenger, & Gallant, 2008; Serences & Saproo, 2009) have
been used to capture the complexities of these high-dimensional
data sets, providing powerful new ways of identifying perceptual
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information contained in brain activity patterns (Harrison & Tong,
2009; Haynes & Rees, 2005; Kamitani & Tong, 2005; Serences &
Boynton, 2007), as well as evidence of semantic tuning properties
(Huth, Nishimoto, Vu, & Gallant, 2012; Mitchell et al., 2008). The
correlational structure of activity patterns has also been used to
characterize object representations in the ventral temporal lobe
(Haxby et al., 2001; Kriegeskorte et al., 2008). Correlation-based
approaches have also proven useful for delineating the functional
connectivity of the human brain (e.g., Honey et al., 2009), including
resting state networks (Fox et al., 2005), and more recent studies
of brain connectivity have benefitted from the application of graph
theoretical models (Bullmore & Sporns, 2009) and other model-
based approaches (Tavor et al., 2016). Such advances in analytic
methods continue to expand the ways in which fMRI can be used
to study the brain.

More recently, research on new mathematical approaches for
fMRI has evolved beyond the goal of simply developingmore pow-
erful analytic methods, to that of integrating and testing cogni-
tive models. This model-based approach to cognitive neuroscience
represents an exciting development that goes beyond the sim-
pler goals of ‘‘brain mapping’’, identifying correlations between
individual differences and brain activity, or information-based ap-
proaches to characterize cortical function. Instead, the goal of
model-based cognitive neuroscience lies in describing the percep-
tual or cognitive processes that underlie behavior in a mathemat-
ically precise manner, and determining the neural processes that
underlie these computations.

Cognitive process models have a long history in the study of
human performance. For example, models based on signal detec-
tion theory have served as the foundation for studying perception
(Green & Swets, 1966), attention (Lu & Dosher, 1998) and memory
(Kintsch, 1967). Early cognitive research also demonstrated that
stochastic accumulator models can accurately predict patterns of
choice reaction times across numerous behavioral paradigms (Rat-
cliff & Rouder, 1998; Stone, 1960). While some cognitive process
models have focused on identifying and quantifying a few key pa-
rameters to capture patterns of cognitive performance, othermod-
els rely on general learning principles to train complex networks
with numerous parameters to perform a cognitive task. For ex-
ample, neural network models (e.g., McClelland & Rogers, 2003)
have been developed to characterize high-level processes includ-
ing speech perception (McClelland & Elman, 1986), categorization
(Ashby &Maddox, 1993; Nosofsky & Palmeri, 1997), cognitive con-
trol (Botvinick, Braver, Barch, Carter, & Cohen, 2001), and human
memory (Polyn, Norman, & Kahana, 2009).

One might expect that the application of theoretical models
to neuroimaging data would be a naturally obvious and fruitful
endeavor. However, most cognitive neuroscientists have not
rushed tomeet this challenge until recently.Why has this been the
case? A central challenge lies in establishing strong links between
the parameters of a cognitivemodel and particular brain responses
embedded within a cognitive experiment. Cognitive models
typically rely on latent constructs of presumed psychological
processes that must somehow be translated into a predicted
pattern of brain responses. If the model leads to clear predictions
regarding how the univariate BOLD responses should change
over time, such models may be more straightforward to test
using standard fMRI analysis procedures. Earlier applications of
model-based fMRI have relied on such approaches to identify
the neural correlates of reward prediction error (e.g., O’Doherty,
Dayan, Friston, Critchley, & Dolan, 2003; O’Doherty et al.,
2004; O’Doherty, Hampton, & Kim, 2007) and response conflict
(e.g., Botvinick, Cohen, & Carter, 2004). However, fMRI data
is very high-dimensional, such that establishing links between
cognitive models and the information contained in multivariate
brain activity patterns is considerably more challenging. Even if a

model can be positively related to an information-based metric of
brain processing, the next step of determiningwhether a particular
model provides a compelling fit of the high-dimensional brain data
can be difficult to demonstrate.

In this review,wehighlight several recent studies that have suc-
cessfully combined theoretical models with fMRI data, address-
ing diverse questions spanning lower-level perceptual processes
to higher-level cognitive processes. A central theme across these
studies is the goal of identifying compelling relationships between
brain, model and behavior (see Fig. 1(A)), often with the cognitive
model serving as the intermediary for mapping between brain and
behavior. However, as we will see, there are many possible op-
tions and approaches for establishing these links, as a model fit-
ted to behavioral data might be used to predict brain responses,
or brain data might be incorporated into a model to predict behav-
ior.Moreover, intermediate processing stepsmay take place before
links are established, such as methods to reduce the high dimen-
sionality of brain data to lower-dimensional measures that can be
more directly related to model predictions.

We begin this review by discussing an application of the nor-
malization model to the visual perception of orientation (Brouwer
& Heeger, 2011). In this work, fMRI data from early cortical vi-
sual areaswas first transformed into interpretable constructs using
a multivariate modeling approach, and the normalization model
was then fitted to the resulting measurements. We then describe
an application of models of visual attention to fMRI data (Pratte,
Ling, Swisher, & Tong, 2013). Here, a multivoxel pattern classi-
fication approach was used to transform multivariate fMRI data,
obtained from multiple levels of the visual hierarchy, into an
interpretable measure of information representation, and the the-
oretical model was fitted to the result. Whereas in both of these
studies, a formal model was fitted to information decoded from
the multivariate fMRI signal (Fig. 1(B)), we next consider a study
in which the time course of the fMRI signal on individual trials
was incorporated within a theoretical model of behavioral mem-
ory performance (Fig. 1(C)), to determine whether this neural sig-
nal can lead tomore accurate predictions of free recall performance
(Kragel, Morton, & Polyn, 2015). An fMRI study of categorization
highlights yet another approach (Fig. 1(D)), by assessing the de-
gree to which competing models of behavioral categorization per-
formance can account for observed patterns of neural data (Mack,
Preston, & Love, 2013). Finally, we review a study of cognitive con-
trol that demonstrates how the application of a theoretical model
to fMRI data can reveal new insights about neural processing that
would have been impossible without the model (Ide, Shenoy, Yu,
& Li, 2013). Here, a model of behavioral performance in the stop-
signal task was incorporated within the fMRI analysis (Fig. 1(E)),
and the results suggest that the function of the anterior cingulate
is more specific than has been suggested by previous studies.

This collection of studies demonstrates both the feasibility and
potential of model-based cognitive neuroscience. The approaches
are remarkably diverse, both in how the data are used to inform
the model, and in the technical solutions employed to establish
compelling relationships between brain, model and cognitive
performance (see Fig. 1). Of particular interest is that fact that
none of the reviewed works share exactly the same strategy to
link a theoretical model with functional imaging data. Rather,
these examples underscore how individual studies have relied on
clever innovations that are custom-built for a particular model or
experimental paradigm. As such,weneither foresee nor prescribe a
one-size-fits-all approach to model-based cognitive neuroscience.
Instead, we believe that the diversity in attempts to integrate
modeling and functional brain imaging will forward the advance
of theoretical models with a momentum that would not happen if
these fields remained isolated from one another.
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Fig. 1. Approaches To Linking Models With Brain and Behavior. (A) The goal of a model-based cognitive neuroscience is to develop theory by forming links between brain
activity, behavior, and a theoretical model that describes these data. (B) In the approach taken by Brouwer and Heeger (2011) and Pratte et al. (2013), a multivariate pattern
analysis is first used to transform the brain activity data into a lower-dimensional space, and the model is then applied to these more interpretable data. (C) In the approach
taken by Kragel et al. (2015) the brain activity signal is directly incorporated within the model, and statistical tests are used to determine whether this inclusion produces a
more accurate account of the behavioral data than a model without the neural data. (D) Mack et al. (2013) first fitted a model to behavioral data, and used the fitted model
to decode patterns of brain activity. They then compared this decoding performance across different models to determine which model provided the best correspondence
with the neural data. (E) Ide et al. (2013) first fited a model to behavioral data, and then used a regression analysis to identify fMRI voxels that co-varied with various model
constructs over the course of the experiment.

2. Perception: the normalization model

A major goal in the study of visual perception is to understand
how neural responses to a stimulus are affected by the presence of
other stimuli in the visual field. One of the most widely studied
models of such stimulus interactions, the normalization model
(see Carandini & Heeger, 2012 for a review) has been rigorously
tested using behavioral, neurophysiological, and more recently,
human neuroimaging approaches. The normalizationmodel posits
that the response of a neuron to a stimulus will depend on
its sensitivity to the stimulus, and further that this response is
divisively reduced by the concurrent activity of other neighboring
neurons. The activity of these other neurons is driven largely by
the presence of other stimuli, such that the model accounts for a
myriad of behavioral and neural effects resulting from stimulus
interactions. The purported benefits of such a normalization
process to the perceptual system include reducing the overall
neural andmetabolic demandswithin a local region, de-correlating
the responses of neurons with different stimulus preferences, and
providing for more efficient neural coding.

Before considering interactions between multiple stimuli, a
simpler case of normalization can be understood by considering
how the response of a single neuron changes as a stimulus

changes size. Neural responses in many brain areas, such as the
lateral geniculate nucleus (LGN) and striate cortex (V1), increase
monotonically as a function of stimulus contrast. These responses
typically follow a sigmoidally shaped response function, with a
signature compressive effect at high stimulus contrasts (Fig. 2(A)).
For example, consider a neuron in the LGN that responds to
stimulation within its receptive field, in a manner that depends on
the stimulus contrast (C). According to the normalization model,
the activity within a pool of nearby cells that also respond to this
stimulus (Cm) will divisively dampen the response of the target
neuron R(C),

R(C) =
C

σ +


Cm

where parameter σ determines the shape of the contrast-response
function.1 The population of neurons in the denominator (Cm) is
referred to as the normalization pool, and the summed responses

1 These models often include parameters such as an intercept, scale and non-
linearity to account for the various measurements that are used. These parameters
are omitted here for simplicity.
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Fig. 2. NormalizationModel of Perception. (A) Responses of an LGNneuron to a stimuluswithin its receptive field, plotted as a function of stimulus contrast (Data fromBonin
et al., 2005, figure adapted from Carandini & Heeger, 2012). Colors denote responses for various stimulus sizes; lines show fits of the normalization model. (B) Example of
cross-orientation suppression stimuli used by Brouwer andHeeger (2011),where targets of various contrast are presented alone (top) orwith a superimposedmask (bottom).
(C) Orientation tuning curves that serve as basis functions for the forward encoding model. The orientation-tuned response of each voxel is modeled as a weighted sum of
these response curves, with weighs estimated from the data. (D) Target-tuned responses in V1 as a function of target contrast presented alone (open points) or with a
superimposedmask (filled points) from Brouwer and Heeger (2011). (E) Mask-tuned responses in V1 as a function of target contrast when themaskwas not presented (open
points) and when it was superimposed on the target (filled points). Panels D and E adapted from Brouwer and Heeger (2011). (Color figures available in the online version
of this article.)

of these neurons act to normalize the response of the target neu-
ron. When the response of a neuron is plotted as a function of con-
trast, increased activity in the neuron’s normalization pool will act
to suppress responses of the target neuron by an amount that de-
pends on the stimulus contrast. For example, Fig. 2(A) shows that
the response of an LGN neuron is suppressed as the stimulus is
enlarged from 2° to 20°, growing beyond that neuron’s receptive
field (Bonin, Mante, & Carandini, 2005). According to the normal-
izationmodel, a larger stimuluswill activatemorenearby LGNneu-
rons that make up the target neuron’s normalization pool, thereby
suppressing the response of the target neuron. When the stimu-
lus is made to be smaller than 2°, the response again decreases as
the stimulus no longer occupies the entire receptive field. Over-
all, the relationship between stimulus size and the response of
the neuron is non-monotonic at high stimulus contrasts, and the
normalization model provides an accurate account of the shape of
the contrast-response function, and the complex ways in which its
shape changes across many stimulus manipulations.

The normalization model not only accounts for the neural
interactions that may be evoked by a single stimulus, it provides a
parsimonious account of the non-linear interactions that can take
place when multiple stimuli are presented, such as superimposed
gratings of differing orientation (see Fig. 2(B)). Consider a target

population of neurons with responses that depend on the contrast
(C) and the orientation (θ ) of a stimulus within the population’s
receptive field, where responses to various orientations are
described by some function f (θ). The responses of nearby neurons
will also depend on the contrast and orientation of the stimulus
according to their own tuning curves fm(θ). These tuning curves
are incorporated into the normalization model by assuming that
the response of a neuron to a particular stimulus is weighted by
the neuron’s tuning function and divisively normalized by the
response of neighboring neurons to that same stimulus,

R(C, θ) =
f (θ)C

σ +


fm(θ)Cm
.

Amajor goal of the normalizationmodel is to account for neural
responses to simultaneously presented stimuli. A prominent
example is cross-orientation suppression, in which responses to a
preferred target orientation are suppressed by the presence of
a masking grating with an orthogonal orientation. For example,
consider the case when a vertical target stimulus of various
contrasts is presented alone, or superimposed with a horizontal
mask of 50% contrast (Fig. 2(B)). The normalization model is easily
amended to account for this situation. Let C1 and C2 denote the
contrast of target andmask, respectively, and θ1 and θ2 denote their
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orientations. The total response of the target population to both
stimuli becomes:

R(C1, C2, θ1, θ2) =
f (θ1)C1 + f (θ2)C2

σ +


fm(θ1)C1,m +


fm(θ2)C2,m
.

The model simply states that the total response reflects
the summed response to both target and mask, but that this
response is dampened by the summed responses of neurons in the
normalization pool to both stimuli.

Brouwer and Heeger (2011) tested the predictions of the
normalization model for cross-orientation suppression in humans
using fMRI, following the steps shown in Fig. 1(B). Each measured
fMRI voxel reflects the pooled response from many neurons, and
in an early visual area such as the primary visual cortex (V1),
most neurons exhibit strong selectivity for local orientation. The
orientation-selective response of a voxel that encompasses many
such neurons can be described by a combination of the tuning
curves of the underlying neurons. Brouwer and Heeger (2011)
developed a forwardmodeling approach (Brouwer &Heeger, 2009;
Kay et al., 2008) in which the responses of a voxel to different
orientations are modeled as a linear combination of orientation-
tuned basis functions. For example, Brouwer and Heeger modeled
orientation responses using 6 evenly spaced raised cosine profiles
to cover the space of all orientations (Fig. 2(C)), and the amplitude
of response for each of these 6 tuned populations could then be
estimated for each voxel by using linear regression applied to a
subset of the fMRI data. The fitted model is then inverted and
applied to voxel responses in another data set, providing an overall
measure of how strongly particular orientations are activated
across the entire population of voxels in V1. This analysis allowed
the researchers to separatelymeasure the strength of V1 responses
to various orientations. Consequently, in a cross-orientation
scenario in which two stimuli are presented simultaneously, the
combined response of voxels in V1 could be decomposed to
provide estimated responses to each stimulus separately.

In their experiment, Brouwer and Heeger (2011) showed ver-
tically oriented target stimuli of various contrasts either alone, or
superimposed with a horizontally oriented mask stimulus of 50%
contrast (Fig. 2(B)). Orientation preferences were first determined
for voxels in V1, and then this estimated forward model was used
to provide separate measures of V1 responses to target and mask
stimuli. Fig. 2(D) shows the resulting contrast response functions
for V1 responses to the target orientation, and the fitted normal-
ization model. In the absence of a mask, the target-tuned response
rises with target contrast in a way that is accounted for well by
the model. The addition of the superimposed horizontal mask re-
duces target-tuned responses, and this gross effect is the signature
of cross-orientation suppression. Specifically, the effect of themask
is to reduce target-tuned responses for low-contrast targets, but it
has a weaker suppressive influence when the target grating’s con-
trast exceeds that of the masking grating, as predicted by the nor-
malization model.

Fig. 2(E) shows V1 responses to the mask-tuned orientation,
as a function of target contrast. In the absence of a mask (Target
Only condition), these responses are invariant to target contrast
as expected. However, the presence of the horizontal mask leads
to large horizontally tuned responses for low target contrasts,
and these responses systematically decrease as the target contrast
is increased. This negative-going curve is also predicted by the
normalization model: as the target-tuned cells become more
strongly activated by increasing target contrast, these target-tuned
responses will act to normalize responses to the mask, leading to
greater inhibition of the mask-tuned cells at high target contrasts.

The normalization model provides a simple and accurate ac-
count of how fMRI responses behave in this rather complex stim-
ulus paradigm. This study relied on a sophisticated approach to

decompose multivariate V1 activity into target-selective and
mask-selective responses. This approach therefore provides a
starting point for further investigations of the normalization
model, such as its application to other feature domains (e.g.,Moradi
& Heeger, 2009) and to higher-level processes such as attention
(e.g., Herrmann, Heeger, & Carrasco, 2012).

3. Attention: the perceptual template model

The effect of attending to a particular stimulus is often charac-
terized as enhancing the perceived quality of the attended stimu-
lus. A prominent example of this effect is when the to-be-attended
stimulus is embedded in external noise, such as trying to focus on
a person’s voice at a crowded party or trying to see through a rain-
spattered windshield. In an effort to describe the mechanisms that
underlie our ability to enhance the representation of an attended
stimulus in the presence of perceptual noise, Lu and Dosher (1998)
constructed a model based on core concepts of signal detection
theory and signal processing, which they termed the Perceptual
Template Model (PTM). The PTMmodel assumes that attending to a
noisy stimulus has the effect of increasing the signal-to-noise ratio
of the representation of that stimulus. As such, attention can do one
of two things: increase the strength of the incoming input (amplifi-
cation), or decrease the irrelevant noise (noise reduction). Whereas
the amplification mechanism simply increases responses to all of
the incoming information (i.e., both signal and noise), the noise-
reductionmechanism selectively decreases responses to the exter-
nal noise. To do so, themodel assumes that there exists a perceptual
template of the relevant signal, which allows the brain to discrim-
inate between signal and noise. Since its inception, this model has
been applied and tested behaviorally in many contexts (see Car-
rasco, 2011 for a review). More recently, the PTM model has been
used with fMRI to determine the neural correlates of these pur-
ported attentional processes.

In the vast majority of fMRI studies, the effect of attention
is to increase the mean BOLD signal, for example, within
retinotopic visual areas corresponding to the attended part of
space (e.g., Buracas & Boynton, 2007; Kastner, Pinsk, De Weerd,
Desimone, & Ungerleider, 1999). The PTMmodel, however, makes
the opposite prediction for a specific region of the stimulus space:
If attention acts as a noise-reduction mechanism in a brain region,
then attending to a low-contrast stimulus embedded in high levels
of external noise should reduce the total response to signal plus
noise, as responses to the noise are reduced but responses to
the signal are not affected. If the mean BOLD signal in a region
reflects the total activity of cells responding to both signal and
noise, then attention should reducemean BOLD responses for low-
contrast signals presented in noise. Lu, Li, Tjan, Dosher, and Chu
(2011) found support for this prediction, showing that attending
to low-contrast gratings in high levels of external noise led to
reduced mean BOLD responses in V1, whereas attention increased
responses to the low-contrast gratingwhen itwas presented alone.

These results illustrate that it is possible to test theoretical
models with fMRI by making predictions about mean BOLD,
especially by exploring predicted interactions with parametric
manipulations of the stimulus. However, the formal PTM model
specifies how amplification and noise reduction affect the signal-
to-noise ratio of stimulus information, rather than the total neural
response as is measured with mean BOLD. In particular, consider
a stimulus with contrast C that is embedded in visual noise
(termed external noise) with contrast NE . The goal is to predict
some measure of the sensitivity to a signal relative to the noise
(d′) for a neural population tuned to some property of the stimulus
(e.g. orientation). Sensitivity varies as a function of the contrast
of the stimulus and the contrast of the noise. In the absence of
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attention, sensitivity is proportional to the stimulus strength, and
lowered by external noise:

d′(C,NE) =
C

N2
E + N2

I

where NI is the level of internal noise inherent in the perceptual
system, and determines the shape of the response which varies
as a function of stimulus contrast (C) or external noise contrast
(NE). Within the denominator, external and internal noise sources
are combined, and the combined effects act to degrade the
representation of the stimulus.

According to the PTMmodel, there are two ways that attention
can act on the incoming signal and noise. An amplification mecha-
nism (a) will multiplicatively enhance the entire input signal, thus
increasing responses to both the signal and the external noise. As a
consequence, amplification can improve the representation of the
stimulus if external noise ranges fromnegligible levels to levels not
much greater than that of internal noise. In contrast, a selective
noise-reductionmechanism (r) will act solely to decrease the level
of external noise without affecting the stimulus:

d′(C,NE) =
aC

aNE
r

2
+ N2

I

.

This model makes strong predictions about how attention
should affect sensitivity to a signal in a population of cells. A noise-
reduction mechanism would significantly improve the quality
under conditions of high external noise by reducing responses to
the noise, but in the absence of noise, a noise-reductionmechanism
would have nothing to do and would lead to no net benefit. This
pattern may be contrasted with the effects of a non-selective
amplification mechanism, which will improve visual processing
in low levels of external noise and comparatively high levels of
internal noise: This is achieved by boosting the representation
of both signal and external noise, such that internal noise has
less of an impact. However, amplification will be ineffective when
external noise levels are higher than internal noise, as both the
signal and noise will be increased, leading to no net benefit.

In order to assess the correspondence between this model’s
predictions and fMRI responses, Pratte et al. (2013) adopted
a multivariate pattern classification approach to measure the
amount of stimulus information contained at multiple levels of
the cortical visual hierarchy about the viewed stimulus category.
The accuracy of fMRI classification served as a measure of
discrimination sensitivity to link to the predictions of the model
(see Fig. 1(B)).

The stimuli were comprised of line drawings of faces, houses,
shoes and chairs embedded in varying levels of external noise
(Fig. 3(A)). Participants either attended to the stimuli by perform-
ing a one-back matching task on the images, or they performed a
demanding task on letters presented at fixation, effectively with-
drawing attention away from the object images. Tomeasure neural
sensitivity to the stimuli in a group of voxels, amultivariate pattern
classifier was trained to identify which stimulus type (face, house,
shoe or chair)was being viewed in a given block, based on themea-
sured fMRI activity patterns in each cortical visual area. The ability
to predict the viewed stimulus category based on activity patterns
served as a measure of stimulus-specific sensitivity. This measure
of classification accuracywas assessed separately for each external
noise level and each attention condition.

Fig. 3(B) shows classification performance for V1 as a function
of external noise level, separately for when the stimulus was
attended and when attention was withdrawn from the object
images. As expected, adding external noise to the stimulus
systematically lowered classification performance, regardless of

whether the stimulus was attended to or not. The influence
of attention, however, depended on the external noise level:
Attention enhanced classification performance when stimuli were
embedded in high levels of noise, but had no effect for stimuli
presented in low or moderate noise levels. This pattern of results
implies that a pure noise-reduction mechanism operates in V1:
attention is only effective in the presence of high levels of external
noise. This can be contrasted with the results found in the fusiform
face area (FFA, Fig. 3(C)), an area in the ventral temporal cortex
that shows strong selectivity for faces (Kanwisher, McDermott, &
Chun, 1997). Unlike V1, attention increased the sensitivity of the
FFA to stimuli presented in both low- and high-noise regimes. The
attentional enhancement observed across all noise levels suggests
that both noise-reduction and amplification mechanisms impact
the contents of visual representations in these high-level brain
regions.

The lines in Fig. 3(B) and (C) show predictions of the fitted
PTM model, which captures the effects of both external noise
and attention on fMRI classification performance quite well. The
model was fitted to data from several brain regions in the visual
cortex, providing estimates of noise reduction and amplification
in each. Fig. 3(D) and (E) shows the resulting parameter estimates
of noise reduction and amplification, respectively. Whereas noise
reduction appears to occur throughout the early visual cortex,
amplification is absent in early areas V1 and V2, but becomesmore
prominent in higher-level areas. These results have important
implications for how attention may operate to improve visual
processing, first by relying on attentional templates tuned to the
target to filter out external noise, and subsequently by amplifying
these filtered responses to enhance overall responses, effectively
overcoming the effects of internal noise.

Despite tackling a very different problem, the methodological
approach of Pratte et al. shares similarities with the previous
study by Brouwer and Heeger (2011). Both relied on an analytic
approach to isolate stimulus-specific components of the fMRI
responses, and then compared these observed responses with
those predicted by a fitted cognitive model. In Pratte et al.’s study,
a multivariate classification approach was used to estimate the
amount of stimulus information in a visual area, which could then
be mapped onto the predictions and specific parameters of the
PTM model. We believe that using multivariate pattern analyses
as a transformational step between the dense spatiotemporal
information in the original fMRI data and the predictions of a
formal model provides a powerful framework for future studies.
However, aswewill discuss below, there are other promisingways
to link fMRI responses with theoretical models.

4. Memory: the context maintenance and retrieval model

Theoretical modeling has played a central role in the study
of memory (see Raaijmakers & Shiffrin, 2002 for a review). At
the same time, human neuroimaging has been used successfully
to examine various mnemonic processes including long-term
memory (seeHenson, 2005;Wagner et al., 1998), free recall (Polyn,
Natu, Cohen, & Norman, 2005) and visual working memory (Ester,
Serences, & Awh, 2009; Harrison & Tong, 2009; Marois, 2016;
Sprague, Ester, & Serences, 2014; Xu & Chun, 2006). However,
bridging these approaches by applying formal memory models
to neural data has been largely absent. One reason may be that,
unlike the relatively simple normalization andperceptual template
models considered above, memory models are often extremely
complex. For example, neural network models of memory contain
multiple layers, many units and numerous weighted connections,
such that its performance cannot be expressed in a closed-form
equation. As a consequence, their model predictions can only
be approximated via simulation, and their parameters must be
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Fig. 3. Perceptual TemplateModel of Attention. (A) Example of stimuli used in Pratte et al. (2013), where here a house image is embedded in various levels of external noise.
(B) Accuracy of a pattern classifier trained on V1 responses to identify the category of a viewed object (face, house, chair or shoe) plotted as a function of external noise level,
separately for when the objects were attended (filled points) or un-attended (open points). Lines denote the fitted perceptual template model, and stars indicate significant
attention effects at each noise level. (C) Classification accuracy for activity patterns in the FFA. (D) Estimates of noise reduction effects of attention in various visual areas
obtained by fitting the PTM model to classification data from various regions of interest, arranged loosely from early visual areas to higher-level visual areas. (E) Estimates
of amplification effects of attention.
Source: Figures adapted from Pratte et al. (2013).

fitted with advanced minimization routines such as differential
evolution, or after extensive training of the network. With such
complexity, applying these models even to simple behavioral data
can be challenging, such that the task of linking model predictions
to neural data is not straightforward.

Recently however, Kragel et al. (2015) successfully established
links between a well-studied model of free recall and fMRI mea-
sures of brain activity, providing insights into neural mechanisms
underlying memory processing that would not have been possi-
ble otherwise. A challenge in understanding humanmemory is the
organization and structure that people naturally impose upon any
set of learned items. This structure is particularly evident in studies
that allow for free recall, in which participants are presented with

a list of items to study and are then asked to recall as many words
as they can in whatever order they choose. Several characteristics
of free recall data have been pivotal for theory development, such
as the prominence of primacy and recency effects. One particularly
interesting feature of free recall is the strong influence of temporal
context: upon recalling a word at test, people aremore likely to re-
call words that were nearby in the study list (with the subsequent
word more likely to be reported than the preceding word). This
pattern of behavioral data has been interpreted to suggest that dur-
ing the study of a word, the characteristics of the word are stored
alongwith the temporal context in which thewordwas presented.
At retrieval, the activation of a memory trace for a particular word
will also activate the context with which that itemwas stored, and
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this heightened activity helps bring to mind other studied items
that occurred nearby in time.

This notion of temporal reinstatement has been formalized
in the Context Maintenance and Retrieval Model (CMR, Polyn
et al., 2009), a member of a large class of temporal context
models (Howard & Kahana, 2002). According to the CMR model,
a studied item can be represented by a feature vector, as is
standard in many models of memory. Additionally, a separate
vector represents the context at the time of study for a given item.
The context surrounding a word at study includes the previously
studied words, and will be more greatly influenced bymore recent
words. Consequently, this context vector changes gradually over
the course of the study epoch, and serves to link the memory
representations of temporally proximal words. At test, recalling an
item will re-activate the context state associated with that item,
thus increasing the probability of recallingwords thatwere studied
nearby.

Kragel et al. (2015) posited that changes in brain activity
during the recall period may reflect these dynamics, driven by two
different processes: (1) More or less brain activity in an area might
correspond to how well a word is being recalled, termed retrieval
success, and (2) Activity may be related not to the item strength,
but rather to the degree with which the context surrounding the
item is being activated, termed temporal reinstatement.

There is nothing inherent in the experimental design of a
free recall task that can be used to decompose the neural signal
into these two separate processes of temporal reinstatement and
general memory performance. Instead, Kragel et al. devised an
approach of first fitting a standard CMR model to the behavioral
data (i.e. the recall events) collected during fMRI scanning, in
which parameters were found by maximizing the likelihood of
the behavioral data given the model. They then fitted enhanced
versions of the model in which the fMRI signal from a given
voxel was allowed to modulate a specific parameter of the CMR
model over the time course of the recall period (see Fig. 1(C)).
A voxel’s average response to each recall event could either
modulate the overall success rate of memory performance during
the course of recall, or it could modify the strength of temporal
reinstatement during recall. If the resulting model, informed by
this modulatory source of fMRI signal, was more likely to have
produced a participant’s particular behavioral data than the model
without fMRI modulation included, then the voxel was deemed
to be related to the particular process (accounting for model
complexity using AIC). By allowing the response of each voxel
to affect one, both or neither model parameter, the researchers
could identify voxels that were involved in memory performance,
temporal reinstatement, or both.

The results of this analysis provided novel evidence to
implicate distinct regions of the medial temporal lobe in temporal
reinstatement (Fig. 4(A)) and retrieval success (Fig. 4(B)). A
spatial gradient can be observed along the posterior–anterior
axis, whereby more anterior voxels are involved in retrieval
success and more posterior voxels co-vary with the level of
temporal reinstatement. The authors used a statistical model
comparison approach to assess the merit of various models, to
determine which regions of interest were related to retrieval
success (RS), temporal reinstatement (TR), or both processes.
The model comparison results further supported the notion of a
posterior–anterior gradient both in the hippocampus (Fig. 4(C))
and the medial temporal cortex (Fig. 4(D)). Taken together, these
results suggest that when posterior regions showed increased
neural activity, there was an increased likelihood that the next
recalled item would be one that was studied nearby in time. In
contrast, activity in anterior regions did not relate to the temporal
organization of recalled items; instead, lower activity indicated a
failure in retrieval success.

The ability to tease apart these cognitive processes relied
on incorporating fMRI activity within a theoretical model of
contextual reinstatement. The result of doing so provides new
evidence for the role of the medial temporal lobe in episodic
memory and free recall, by linking BOLD activity in these regions to
formalized computational mechanisms of temporal context. These
results also provide support for the CMRmodel: If the model were
poorly aligned with cognitive/neural processes, then it is unlikely
that its parameters would map onto brain responses in such a
structured and coherent manner. Other temporal context models
may fair better or worse at linking the BOLD signal to behavior,
and the modeling approach developed by Kragel et al. provides a
powerful framework for addressing such model-based questions.

The approach taken by Kragel et al. to establish links between
a theoretical model and neural data is quite different than those
discussed previously, where a model was fitted to amplitudes of
fMRI population responses or to the accuracy of fMRI decoding.
Instead, Kragel et al. incorporated fMRI signals to modulate latent
processes within a model of behavioral data, and identified voxels
for which doing so led to better behavioral predictions. This
approach serves as a promising framework for future studies, and
provides a compelling demonstration that there are many ways to
accomplish a model-based approach to cognitive neuroscience.

5. Categorization: exemplar vs. prototype models

In the studies considered so far, a specific model was applied to
some combination of behavioral and neural data, and the resulting
fits and parameter estimates were used to make inferences
about the underlying mechanisms. However, formal theoretical
modeling provides for amore powerful approach of fittingmultiple
models to the data, such that the merits of different cognitive
theories can be compared quantitatively. Admittedly, the task
of developing multiple models to link to neural data presents
a greater challenge, especially to ensure judicious and equitable
implementations of each model. However, a recent study by Mack
et al. (2013) demonstrates how doing so can lead to powerful ways
to test cognitive theories.

People are highly adept at learning categorical boundaries
in multidimensional spaces, and can accurately categorize new
instances according to these learned categories. There are two
prominent classes of models that describe how people might do
this, namely prototype and exemplar-based models (see Ashby
& Maddox, 2005 for a review). Prototype theories posit that as
we encounter multiple instances from different categories, we
construct a prototype for each category. For example, the prototype
may be constructed as the average of all stimuli experienced in
that category. Upon seeing a new exemplar of a category, the
values of its features are then compared with the prototypes
for each category. Greater similarity (or proximity) to one of
the prototypes then provides the basis for categorization of the
novel exemplar. In contrast, exemplar-based theories posit that
people store particular instances from each category as they are
experienced. Upon seeing a new instance that is to be categorized,
the values of its features are comparedwith all previous exemplars
stored in memory for each category, and the current instance is
categorized based on its similarity with all exemplars stored in
memory.

Mack et al. created stimuli that took on one of two values of
color, shape, size, and spatial location. The set of possible stimuli
were divided into two categories, such that the average values of
each stimulus dimension varied across categories, and provided
reasonable prototypes of each category. Participants were trained
to categorize a subset of the stimuli, andwere then testedwith new
instances from each category while undergoing fMRI scanning.
According to prototype theories, the degree to which a new
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Fig. 4. Context Maintenance and Retrieval Model of Memory. (A) Voxels that lead to a better-fitting behavioral model when their signals modulate the temporal
reinstatement parameter of the model. (B) Voxels that produce a better behavioral model when they modulate the retrieval success parameter. (C) Results of an ROI analysis
in which the ROIs are ordered from their posterior-to-anterior position within the Hippocampus. Bars denote the relative evidence (weighted AIC) for each of the three fitted
models: (1) a model in which the ROI signal modulates the temporal reinstatement parameters (TR, red), (2) the ROI signal modulates the retrieval success parameters (RS,
blue), or (3) the ROI signal modulates both parameters (Joint, orange). (D) Same ROI analysis as in (C) but for ROIs within the medial temporal lobe. (Color figures available
in the online version of this article.)
Source: Figures adapted from Kragel et al. (2015).

instance belongs to each category is based on how similar the new
instance is to the average, or prototype, stored in memory for each
category. If xkm denotes these averages for the kth category andmth
feature dimension, and the feature values of a new item at test are
ym for the mth feature dimension, then the similarity between the
item and the kth category prototype is

sk = exp


−c

4
m=1

wm|ym − xkm|


where parameter c controls how quickly similarity decreases as
the distance between a prototype and a new item increases, and
parameters wm allow for particular dimensions to be differentially
weighted. For example, if more attention were paid to one feature
dimension over the others, leading to greater weighting of that
feature, then that feature would have a greater influence on
the similarity evaluation (sk) between an item (ym) and the
prototypes (xkm) for each category. The exponential function
leads to a similarity value of 1.0 when the instance matches the
prototype exactly, and the exponential decay of this similarity
metric provides for a generally good characterization of human
similarity judgments (Shepard, 1987).

The exemplar-basedmodel follows a similar structure, however
similarity is based on the summed distance between a new
instance and all previously stored items in a category, rather than
distance to the average item. If xjm are the mth feature values for
the jth previously studied item, then the total similarity between a
new item ym and the K th category can be specified by

sk = exp


−c


j∈K

4
m=1

wm|ym − xjm|


where parameters and wm govern overall similarity and feature
weighting, respectively.

For each item to be categorized at test, these equations describe
the model predictions regarding the similarity (or representational
match) between the representation of that item and that of
each category. These similarity values can be used to compute
a predicted probability that an item is placed within each
category, and these predictions can be compared with observed
categorization performance to evaluate the predictive power of the
models. In their experiment, Mack et al. (2013) found that both
models fitted the participants’ behavioral performance equally
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Fig. 5. Exemplar and PrototypeModels of Categorization. (A) Categorizationmodels predict a certain amount of representational match between an internal representation
and a particular item from a learned category. Here the match for the exemplar (green) and prototype (blue) models are shown for various items used by Mack et al. (2013).
(B) The level of agreement (measured as mutual information) between the representational match as predicted by each model, and the level of representational match as
measured in the fMRI signal. Values of zero would indicate no correspondence between a model’s predictions and the data; larger values indicate a higher correspondence.
(C) Searchlight analysis to identify areas where the differences in brain activity to the different items at test were well predicted by the exemplar model. (Color figures
available in the online version of this article.)
Source: Figures adapted from Mack et al. (2013).

well, as is often the case (Rouder & Ratcliff, 2004). Although the
prototype and exemplar models predict different representational
match values for each item (Fig. 5(A)), the coarseness of the
behavioral measure (category A or category B) appeared to lack
the sensitivity to discriminate between themore subtle differences
between the models in their representational match predictions.

Mack et al. (2013) evaluated whether neural activity as
measured with fMRI multivariate pattern analysis might provide a
more sensitive measure of variations in representational match in
this categorization task. To do so, they first fit the prototype model
to a participant’s behavioral data, and used themodel to label each
test trial by its predicted representational match value (Fig. 5(A)).
In a cross-validation procedure, they applied a regression analysis
to a subset of the data, mapping the weighted sum of voxel
activity onto the model-defined representational match value for
each trial (using 1000 voxels chosen from the entire brain using
a localizer analysis). This fitted linear model was then used to
predict the representational match values of trials not included
in the training data set, based on the corresponding voxel activity
patterns. This procedure was repeated such that representational
match values were predicted for every trial, based on the neural
signal. The accuracy of these predictions served as an index of
how closely the neural activity patterns matched the prototype
model’s definition of representational match. Prediction accuracy
above chancewould indicate that the neural signal carries category
information as defined by the prototype model. Critically, the
same procedure was conducted for the exemplar model, providing
prediction accuracy for representational match values as defined
by distance from the exemplars. Comparing how well the neural

data could be used to predict match values as defined by the two
models provides a way to determine which model more closely
matches the neural representation (see Fig. 1(D)).

The correspondence between model-based representational
match values and those predicted from brain activity was captured
by a measure of mutual information between predicted and
observed values. This mutual information metric was significantly
greater than zero for both models (Fig. 5(B)), suggesting that
brain activity (from voxels chosen across the entire brain) conveys
some information about the similarity between a presented item
and the previously learned category representations as defined
by either model. Critically however, this measure was higher for
the exemplar model than for the prototype model, implying that
the exemplar model provides a better description of category
representations in the human brain. A follow up searchlight
analysis was conducted to identify brain areas that showed
activation differences to different items that were in linewith item
differences predicted by the exemplarmodel (Fig. 5(C)). The results
indicated that regions of the lateral occipital complex, inferior
parietal lobe, as well as the right inferior frontal lobe, exhibited
responses consistent with the predictions of the exemplar-based
model.

These results underscore the potential power of combining
theoretical models with neuroimaging techniques. Although these
models make unique predictions about behavioral data, the
resolution of such data is not always sufficient to provide
convincing evidence in favor of one model or another. By using
multivariate pattern analysis to construct an appropriate link
between the neural data and model parameters, the cortical
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activity patterns observed in this study provided a measurement
that could be used to adjudicate between the categorization
models. The ability to make a coherent link between theories and
brain imaging data underlies the success of this and other model-
based neuroscience approaches. Mack et al. (2013) demonstrate
that doing so can provide insights into processing that would not
have otherwise been possible.

6. Error monitoring in the stop signal task

A variety of cognitive functions have been ascribed to the dorsal
anterior cingulate cortex (dACC), based on studies conducted using
fMRI, EEG, and other methods. Prominent theories have proposed
roles for the dACC in error detection, conflict monitoring, error an-
ticipation, volatility monitoring, action–outcome learning, reward,
and the coding of errors in predicting future outcomes, to name a
few (see e.g. Botvinick et al., 2004; Hayden, Heilbronner, Pearson,
& Platt, 2011; Rushworth,Walton, Kennerley, & Bannerman, 2004).
Teasing apart which of these roles the dACC is primarily responsi-
ble for during a task is extremely challenging, asmost tasks that are
designed to tap into one of these processes may also evoke some
combination of the others. For example, tasks designed to elicit er-
rors often do so by incorporating rare events within the experi-
mental design, such that events that produce behavioral errors are
also rare. Consequently, brain responses to these rare eventsmight
reflect the fact that they are unexpected, or alternatively, because
they tend to elicit error responses. Fortunately, formal cognitive
models have been devised that can provide separate measures of
these various processes, based on the structure of the task and the
resulting behavioral data. The key to determining how these pro-
cesses map on to particular brain regions, such as the dACC, is to
somehow leverage themodels in order to isolate the neural activity
associated with specific components of these overlapping mental
processes.

Ide et al. (2013) set out to isolate these often co-occurring
mental processes, such as error detection and conflict monitoring,
in order to determine what brain areas are involved in which
particular functions. They utilized a classic cognitive control task,
known as the stop-signal task (Logan, Cowan, & Davis, 1984; see
Verbruggen & Logan, 2008), in which participants make a button
press in response to a ‘‘go’’ signal, such as a green dot. On aminority
of trials, however, a ‘‘stop’’ signal (e.g. a red dot) appears some
time following the go signal, instructing participants to refrain
from making a response to the preceding go stimulus. Replicating
previous results, Ide et al. (2013) found that the dACC as well
as many surrounding regions showed a stronger BOLD response
on stop trials than on go trials (yellow/orange colors in Fig. 6).
However, this heightened activitymight reflect any combination of
many underlying cognitive processes. For example, higher activity
on stop trials might reflect the processing of conflict between the
prepotent ‘‘go’’ response and the required stopping behavior, or it
might reflect the experience of surprise associated with the rare
event of a stop trial.

The authors applied a Bayesian rational decision-makingmodel
to account for behavioral performance in the stop-signal task, with
dynamic updating based on trial-by-trial learning (Shenoy, Angela,
& Rao, 2010; Shenoy & Yu, 2011). The degree towhich a participant
expects a stop signal to occur on a given trial can be specified by
a latent variable (Pstop) that varies from trial to trial depending
on the stimulus history and the participant’s past behavior. For
example, following a long sequence of go trials, people tend to
make progressively faster responses. This behavior is thought to
reflect a lowered expectation of an impending stop trial after
each successive go trial, such as by the buildup of an automatic,
prepotent response. In the model this behavior is instantiated as a
relaxing of the decision criterion to make a ‘‘go’’ response, and this

Fig. 6. Bayesian Model of Stop Signal Task. Contrasting the BOLD signal to identify
regions of greater activity for stop than for go trials (red/orange) reveals extensive
activation in both cortical and sub-cortical regions. Themore nuancedmodel-based
analysis, however, reveals that only a small region (magenta color)within the dorsal
anterior cingulate cortex (indexed by cross hairs, labeled dACC) is related to the
process of comparing expected outcomes with actual outcomes, termed surprise.
(Color figures available in the online version of this article.)
Source: Figure adapted from Ide et al. (2013).

dynamic latent process is measured by parameter Pstop. Another
parameter, Perror , reflects the likelihood that a participantwillmake
an error on theupcoming trial, dependent upon the recent stimulus
history and theparticipant’s past behavior. By specifyinghow these
and several other latent processes are linked to the behavioral data,
the model is able to predict the engagement of these processes for
each trial across an experiment.

Ide et al. (2013) fit this model to behavioral data collected
while participants underwent fMRI scanning. The resulting fitted
model provided trial-by-trial predictions regarding the levels of
multiple latent constructs, such as Pstop and Perror . These values
were then used as independent variables in a multiple regression
model, in which the BOLD signal from individual voxels served
as the dependent variable. The results of the regression analysis
could then be used to identify voxels that co-varied with each
particular latent process, such as the participant’s expectations of
a stop trial (see Fig. 1(E)). One critical analysis involved comparing
the participant’s presumed expectations about a trial, as specified
by the model, with the actual outcome of the trial. In particular,
the difference between the latent parameter Pstop and the actual
stimulus condition (stop vs. go) on each trial provided a measure
of the degree of mismatch between participant’s expectations and
the actual stimulus outcome, termed surprise. The magenta color
in Fig. 6 shows voxels that were modulated specifically by this
measure of surprise, and the results of this whole-brain analysis
revealed that voxels sensitive to surprise are located squarely
within the dACC (marked by cross hairs). This analysis suggested
that the dACC’s sensitivity to surprise on stop trials is independent
of other cognitive processes associated with stop trials, such as
cognitive control and error monitoring. In fact, the researchers
performed several additional analyses to determine what other
factors may co-vary with dACC activity, but found none.

The results of this fMRI modeling work suggest that the
dACC is involved in comparing our expectations about the
environment with actual outcomes, and that accounting for this
cognitive process may preclude the need to invoke additional
cognitive processes such as error monitoring or response conflict.
Because these processes are so commingled in typical tasks,
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contrasts between conditions in previous studies likely reflect a
conglomeration of cognitive processes. However, Ide et al.’s use
of a theoretical model in conjunction with fMRI provided a more
nuanced and powerful approach for ascribing particular functions
to the anterior cingulate.

7. Discussion

Human cognitive neuroscience and theoreticalmodeling of cog-
nitive processes have led to remarkable advances in our under-
standing of mental function, but largely as isolated endeavors. The
integration of these approaches is a natural step forward, and the
recent proliferation of review articles (Forstmann, Wagenmakers,
Eichele, Brown, & Serences, 2011), books (Forstmann & Wagen-
makers, 2015), and special journal issues speaks to the growing in-
terest in model-based cognitive neuroscience. Establishing a link
between a model’s constructs and non-invasive measures of hu-
man brain activity presents many challenges. The studies we have
reviewed here highlight the diversity of recent approaches tomeet
these challenges, and we take their success as evidence that there
are many promising paradigms for building a model-based cogni-
tive neuroscience.

The studies reviewed here differ not only in the particular
methods used, but differ in more fundamental ways with respect
to how the models and neural data were combined (see Fig. 1).
For example, some studies fitted a theoretical model directly to
the neural data, and used the resulting parameter estimates and
model fits to learn about the underlying psychological and neural
processes (Brouwer & Heeger, 2011; Pratte et al., 2013). Other
studies first fitted amodel to the behavioral data and then used the
resulting fitted model to make inferences about the neural signals
(Ide et al., 2013). The opposite approach has also proven effective,
in which fMRI signals from a voxel or brain region of interest are
incorporated within a model in order to make better predictions
of behavioral performance (Kragel et al., 2015). Finally, Mack
et al. (2013) fitted multiple models to the behavioral data, and
determined which model produced the highest correspondence
with patterns of brain activity. The approaches taken in these
studies is not an exhaustive list, but the diversity clearly shows that
there are many possible paths for integrating theoretical modeling
and cognitive neuroscience. Going forward, the development of
new ways to link models and neural data has great potential for
advancing our theoretical and empirical understanding of brain
function. Although we are hesitant to make strong prescriptions
for how one ought to approach model-based neuroscience, it
may be helpful to consider the similarities of an approach with
previously successful efforts. Although no two studies reviewed
here completely converged in their methods, there are some
commonalities among them that we highlight below as promising
avenues for future work.

One approach for establishing links between high-dimensional
fMRI data and parameters of interest in a cognitivemodel is to con-
struct a lower-dimensional measure of the information contained
in fMRI activity patterns. This approach was taken in the stud-
ies of the normalization model of perception (Brouwer & Heeger,
2011) and the perceptual templatemodel of attention (Pratte et al.,
2013). Both studies utilized multivariate pattern analyses as an
intermediary step to link themultivariate BOLD responseswith the
theoretical model. For example, Pratte et al. (2013) applied pat-
tern classification to determine how well the activity patterns in
individual visual areas could predict which of four possible ob-
ject categories the participant was viewing on individual stimu-
lus blocks. The resulting prediction accuracy provided ameasure of
how robustly an object was represented within a particular visual
area, which is precisely the targeted construct for the theoretical
model. Adopting a multivariate approach in this way necessitates

several considerations. First, the stimulus, experimental paradigm,
and taskmay require somemodifications to bewell-suited formul-
tivariate pattern classification (see Tong & Pratte, 2012 for details).
In addition, special care must be taken to ensure that the results
of such a complex intermediary analysis serve to measure the in-
tended construct. In the studies considered here that leveraged
multivariate pattern analysis (Pratte et al., 2013), multivariate re-
gression (Mack et al., 2013) or amultivariate forward-modeling ap-
proach (Brouwer & Heeger, 2011), such considerations were built
into the design and analysis of the experiment. However, demon-
strating that these complex analysis methods are measuring the
neural information that they are intended to extract will be crit-
ical for future studies that utilize such techniques. Nonetheless,
we believe that multivariate approaches such as pattern classi-
fication analyses (Kamitani & Tong, 2005; Norman et al., 2006;
Tong & Pratte, 2012) and forward modeling approaches (Brouwer
& Heeger, 2009; Kay et al., 2008) will provide for powerful ways to
link high-dimensional neuroimaging data with model parameters
that isolate important cognitive constructs.

Another commonality among recentmodel-basedneuroscience
work is the use of temporally dynamic models. For example, in
the work of Kragel et al. (2015), the Context Maintenance and
Retrieval model specifies latent constructs such as the strength
of temporal reinstatement over the course of free recall. By
incorporating the amplitude of the fMRI signal on each trial into
specific parameters of the model, they could determine whether
the neurally informed model provided a better prediction of
free recall performance. Models such as this, in which processes
are proposed to vary over the course of an experiment, provide
excellent candidates for a model-based neuroscience. For such
models, the behavioral data alone is often not sufficient to identify
how processes might vary over time. However, the corresponding
neural measurements provide potentially informative information
about the temporal dynamics of such latent processes. Although
some dynamic cognitive phenomena occur on slow time scales
that can be measured with fMRI (e.g., Davis, Love, & Preston,
2012; O’Doherty et al., 2003; Serences & Saproo, 2009), such as
variations in performance across trials (e.g., Ide et al., 2013), the
sluggish nature of the hemodynamic BOLD response may limit
the ability to study fast cognitive processes that typically occur
over a timeframe of a few hundred milliseconds. However, other
methods that measure neural signals in real time, such as EEG and
MEG, provide a promising avenue to investigate faster dynamic
processes in the same manner.

Formal models have provided many insights into cognitive
processes, but progress can sometimes stall following the devel-
opment of more advanced and nuanced models, when the behav-
ioral data fails to clearly distinguish between competing models.
The comparison of prototype and exemplar models of categoriza-
tion is a striking example, as these models aim to explain the same
phenomena, and differ only subtly in the nature of their underlying
latent representations. This feature has made the models particu-
larly difficult to differentiate using behavioral measures alone, as
the latent constructs produce similar behavior. However, by using
the fMRI signal to tap into the underlying latent representation,
Mack et al. (2013) were able to compare the models with a granu-
larity not possible by studying behavior alone. We doubt that this
is a special case, but rather, we suspect that neural measurements
might be informative to the study of a variety of proposed latent
constructs that are difficult to measure accurately with behavior
alone. The challenge will be to design paradigms and analytic ap-
proaches that link neural signals to the proposed latent process in
a testable manner. The studies reviewed herein provide evidence
that doing so is highly feasible.

It is often said that no model is correct, but that some models
are better than others, and among the better ones, some may be
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considered adequate with respect to their predictive power and
the plausibility of their assumptions. Each of the studies reviewed
here included various checks to ensure that the utilized model
was at least adequate, such that combining the model with neural
data allowed for clearly interpretable inferences to be drawn.
These inferences would not have been possible with a poorly
specified model, and the often-demonstrated match between
predicted and observed neural data speaks to the potential power
of these models. Looking forward, we believe that one of the
most promising avenues for a model-based neuroscience will lie
in using cognitive neuroscience data in order to test, constrain, and
compare differentmodels,with the eventual goal of developing the
next generation of better theoretical models.

Our reviewwas selective, aiming to demonstrate the breadth of
topics for which amodel-based cognitive neuroscience has proven
successful, and the diversity of approaches taken. Other notable
achievements in combining theoretical models with functional
imaging have been made in recent years, with respect to the study
of information accumulation (Turner, van Maanen, & Forstmann,
2015), reinforcement learning (Badre & Frank, 2012; O’Doherty
et al., 2007), and with complex cognitive architectures such as
ACT-R (Borst & Anderson, 2014). In this review, we chose to
focus on fMRI approaches to neuroscience, and on theoretical
models of perception and cognition, but it is worth noting that the
more general ideas underlyingmodel-based neuroscience have the
potential to impact all areas of neuroscience and psychology.

We anticipate that future advances in theoretical understand-
ing will be bolstered by advances in technology. Developments in
the methods used to estimate model parameters, such as Bayesian
estimation (e.g., Turner et al., 2013), will allow researchers to test
more sophisticated models than are currently possible. Likewise,
advances in neuroimaging technologies, such as high-field fMRI
(Duyn, 2012), will allow for more fine-grained measures of human
brain activity. Spurred by progress on multiple fronts, the future
of model-based neuroscience holds great promise for linking the-
oretical processes with their underlying neural instantiations.

Acknowledgments

This research was supported by National Science Foundation
grant BCS-1228526 to FT and National Institutes of Health
Fellowship F32-EY022569 to MP, and was facilitated by National
Institutes of Health center grant P30-EY-008126 to the Vanderbilt
Vision Research Center.

References

Ashby, F. G., & Maddox, W. T. (1993). Relations between prototype, exemplar, and
decision bound models of categorization. Journal of Mathematical Psychology,
37(3), 372–400.

Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of
Psychology, 56, 149–178.

Badre, D., & Frank, M. J. (2012). Mechanisms of hierarchical reinforcement learning
in cortico-striatal circuits 2: evidence from fMRI. Cerebral Cortex, 22(3),
527–536.

Bonin, V., Mante, V., & Carandini, M. (2005). The suppressive field of neurons in
lateral geniculate nucleus. Journal of Neuroscience, 25(47), 10844–10856.

Borst, J. P., & Anderson, J. R. (2014). Using the ACT-R cognitive architecture in
combination with fMRI data. In B. U. Forstmann, & E. J. Wagenmakers (Eds.),
An Introduction to Model-Based Cognitive Neuroscience. New York: Springer.

Botvinick,M.M., Braver, T. S., Barch, D.M., Carter, C. S., & Cohen, J. D. (2001). Conflict
monitoring and cognitive control. Psychological Review, 108(3), 624–652.

Botvinick, M.M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior
cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–546.

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems
analysis of functional magnetic resonance imaging in human V1. Journal of
Neuroscience, 16(13), 4207–4221.

Brouwer, G. J., & Heeger, D. J. (2009). Decoding and reconstructing color
from responses in human visual cortex. Journal of Neuroscience, 29(44),
13992–14003.

Brouwer, G. J., & Heeger, D. J. (2011). Cross-orientation suppression in human visual
cortex. Journal of Neurophysiology, 106(5), 2108–2119.

Buckner, R. L., Bandettini, P. A., O’Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle,
M. E., et al. (1996). Detection of cortical activation during averaged single trials
of a cognitive task using functional magnetic resonance imaging. Proceedings
of the National Academy of Sciences of the United States of America, 93(25),
14878–14883.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews Neuroscience,
10(3), 186–198.

Buracas, G. T., & Boynton, G. M. (2007). The effect of spatial attention on contrast
response functions in human visual cortex. Journal of Neuroscience, 27(1),
93–97.

Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural
computation. Nature Reviews Neuroscience, 13(1), 51–62.

Carrasco, M. (2011). Visual attention: the past 25 years. Vision Research, 51(13),
1484–1525.

Davis, T., Love, B. C., & Preston, A. R. (2012). Learning the exception to the rule:
model-based FMRI reveals specialized representations for surprising category
members. Cerebral Cortex, 22(2), 260–273.

Duyn, J. H. (2012). The future of ultra-high fieldMRI and fMRI for study of the human
brain. Neuroimage, 62(2), 1241–1248.

Engel, S. A. (2012). The development and use of phase-encoded functional MRI
designs. Neuroimage, 62(2), 1195–1200.

Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H., Chichilnisky, E.
J., et al. (1994). fMRI of human visual cortex. Nature, 369(6481), 525.

Ester, E. F., Serences, J. T., & Awh, E. (2009). Spatially global representations in
human primary visual cortex during working memory maintenance. Journal of
Neuroscience, 29(48), 15258–15265.

Forstmann, B. U., & Wagenmakers, E. J. (2015). An Introduction to Model-Based
Cognitive Neuroscience. New York: Springer.

Forstmann, B. U., Wagenmakers, E. J., Eichele, T., Brown, S., & Serences, J. T. (2011).
Reciprocal relations between cognitive neuroscience and formal cognitive
models: opposites attract? Trends in Cognitive Sciences, 15(6), 272–279.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E.
(2005). The human brain is intrinsically organized into dynamic, anticorrelated
functional networks. Proceedings of the National Academy of Sciences of the
United States of America, 102(27), 9673–9678.

Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD
fMRI. Neuroimage, 9(4), 416–429.

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics. New
York: Wiley.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working
memory in early visual areas. Nature, 458(7238), 632–635.

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001).
Distributed and overlapping representations of faces and objects in ventral
temporal cortex. Science, 293(5539), 2425–2430.

Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise
signals in anterior cingulate cortex: neuronal encoding of unsigned reward
prediction errors driving adjustment in behavior. Journal of Neuroscience,
31(11), 4178–4187.

Haynes, J. D., & Rees, G. (2005). Predicting the stream of consciousness from activity
in human visual cortex. Current Biology, 15(14), 1301–1307.

Henson, R. (2005). A mini-review of fMRI studies of human medial temporal lobe
activity associated with recognition memory. Quarterly Journal of Experimental
Psychology Section B. Comparative and Physiological Psychology, 58(3–4),
340–360.

Herrmann, K., Heeger, D. J., & Carrasco,M. (2012). Feature-based attention enhances
performance by increasing response gain. Vision Research, 74, 10–20.

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al.
(2009). Predicting human resting-state functional connectivity from structural
connectivity. Proceedings of the National Academy of Sciences of the United States
of America, 106(6), 2035–2040.

Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal
context. Journal of Mathematical Psychology, 46, 269–299.

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic
space describes the representation of thousands of object and action categories
across the human brain. Neuron, 76(6), 1210–1224.

Ide, J. S., Shenoy, P., Yu, A. J., & Li, C. S. (2013). Bayesian prediction and evaluation in
the anterior cingulate cortex. Journal of Neuroscience, 33(5), 2039–2047.

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the
human brain. Nature Neuroscience, 8(5), 679–685.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a
module in human extrastriate cortex specialized for face perception. Journal
of Neuroscience, 17(11), 4302–4311.

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999).
Increased activity in human visual cortex during directed attention in the
absence of visual stimulation. Neuron, 22(4), 751–761.

Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural
images from human brain activity. Nature, 452(7185), 352–355.

Kintsch, W. (1967). Memory and decision aspects of recognition learning.
Psychological Review, 74(6), 496–504.

Kragel, J. E., Morton, N. W., & Polyn, S. M. (2015). Neural activity in the medial
temporal lobe reveals the fidelity of mental time travel. Journal of Neuroscience,
35(7), 2914–2926.

http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref1
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref2
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref3
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref4
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref5
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref6
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref7
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref8
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref9
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref10
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref11
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref12
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref13
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref14
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref15
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref16
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref17
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref18
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref19
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref20
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref21
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref22
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref23
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref24
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref25
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref26
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref27
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref28
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref29
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref30
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref31
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref32
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref33
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref34
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref35
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref36
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref37
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref38
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref39
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref40
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref41


14 M.S. Pratte, F. Tong / Journal of Mathematical Psychology ( ) –

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al. (2008).
Matching categorical object representations in inferior temporal cortex of man
and monkey. Neuron, 60(6), 1126–1141.

Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and
choice reaction time responses: a model and a method. Journal of Experimental
Psychology: Human Perception and Performance, 10(2), 276–291.

Love, B. C. (2015). The algorithmic level is the bridge between computation and
brain. Topics in Cognitive Science, 7(2), 230–242.

Lu, Z. L., & Dosher, B. A. (1998). External noise distinguishes attention mechanisms.
Vision Research, 38(9), 1183–1198.

Lu, Z. L., Li, X., Tjan, B. S., Dosher, B. A., & Chu, W. (2011). Attention extracts signal
in external noise: a BOLD fMRI study. Journal of Cognitive Neuroscience, 23(5),
1148–1159.

Mack, M. L., Preston, A. R., & Love, B. C. (2013). Decoding the brain’s algorithm
for categorization from its neural implementation. Current Biology, 23(20),
2023–2027.

Marois, R. (2016). The brain mechanisms of working memory: An evolving story.
In P. Jolicoeur, C. Lefebvre, & J. Martinez-Trujillo (Eds.), Mechanisms of Sensory
Working Memory: Attention and Perfomance (XXV). Elsevier.

Marr, D. (1982). Vision. A Computational Investigation into the Human Representation
and Processing of Visual Information. New York: Freeman.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception.
Cognitive Psychology, 18(1), 1–86.

McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing approach
to semantic cognition. Nature Reviews Neuroscience, 4(4), 310–322.

Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason, R.
A., et al. (2008). Predicting human brain activity associated with the meanings
of nouns. Science, 320(5880), 1191–1195.

Moradi, F., & Heeger, D. J. (2009). Inter-ocular contrast normalization in human
visual cortex. Journal of Vision, 9(3), 11–22. 13.

Nichols, T., &Hayasaka, S. (2003). Controlling the familywise error rate in functional
neuroimaging: a comparative review. Statistical Methods in Medical Research,
12(5), 419–446.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9),
424–430.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of
speeded classification. Psychological Review, 104(2), 266–300.

O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal
difference models and reward-related learning in the human brain. Neuron,
38(2), 329–337.

O’Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004).
Dissociable roles of ventral and dorsal striatum in instrumental conditioning.
Science, 304(5669), 452–454.

O’Doherty, J. P., Hampton, A., &Kim,H. (2007).Model-based fMRI and its application
to reward learning and decision making. Annals of the New York Academy of
Sciences, 1104, 35–53.

Polyn, S. M., Natu, V. S., Cohen, J. D., & Norman, K. A. (2005). Category-specific
cortical activity precedes retrieval during memory search. Science, 310(5756),
1963–1966.

Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and
retrieval model of organizational processes in free recall. Psychological Review,
116(1), 129–156.

Pratte, M. S., Ling, S., Swisher, J. D., & Tong, F. (2013). How attention extracts objects
from noise. Journal of Neurophysiology, 110(6), 1346–1356.

Raaijmakers, J. G. W., & Shiffrin, R. M. (2002). Models of memory. In H. Pashler, &
D. Medin (Eds.), Memory and Cognitive Processes: Vol. 2. Stevens’ Handbook of
Experimental Psychology (third ed.). New York: John Wiley & Sons, Inc.

Ratcliff, R., & Rouder, J. N. (1998).Modeling response times for two-choice decisions.
Psychological Science, 9(5), 347–356.

Rouder, J. N., & Ratcliff, R. (2004). Comparing categorization models. Journal of
Experimental Psychology: General, 133(1), 63–82.

Rushworth,M. F.,Walton,M. E., Kennerley, S.W., & Bannerman, D.M. (2004). Action
sets and decisions in themedial frontal cortex. Trends in Cognitive Sciences, 8(9),
410–417.

Serences, J. T., & Boynton, G. M. (2007). Feature-based attentional modulations in
the absence of direct visual stimulation. Neuron, 55(2), 301–312.

Serences, J. T., & Saproo, S. (2009). Population response profiles in early visual cortex
are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104(1),
76–87.

Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J.,
et al. (1995). Borders of multiple visual areas in humans revealed by functional
magnetic resonance imaging. Science, 268(5212), 889–893.

Shenoy, P., Angela, J.Y., & Rao, R.P. 2010. A rational decision making framework
for inhibitory control. Paper presented at the Advances in neural information
processing systems.

Shenoy, P., & Yu, A. J. (2011). Rational decision-making in inhibitory control.
Frontiers in Human Neuroscience, 5, 48.

Shepard, R. N. (1987). Toward a universal law of generalization for psychological
science. Science, 237(4820), 1317–1323.

Sprague, T. C., Ester, E. F., & Serences, J. T. (2014). Reconstructions of information
in visual spatial working memory degrade with memory load. Current Biology,
24(18), 2174–2180.

Stone, M. (1960). Models for choice-reaction time. Psychometrika, 25(3), 251–260.
Tavor, I., Parker Jones, O., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S.

(2016). Task-free MRI predicts individual differences in brain activity during
task performance. Science, 352(6282), 216–220.

Tong, F., & Pratte, M. S. (2012). Decoding patterns of human brain activity. Annual
Review of Psychology, 63, 483–509.

Turner, B. M., Forstmann, B. U., Wagenmakers, E. J., Brown, S. D., Sederberg, P. B., &
Steyvers, M. (2013). A Bayesian framework for simultaneouslymodeling neural
and behavioral data. Neuroimage, 72, 193–206.

Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive ab-
stractions through neuroimaging: the neural drift diffusion model. Psychologi-
cal Review, 122(2), 312–336.

Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal
paradigm. Trends in Cognitive Sciences, 12(11), 418–424.

Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., et al.
(1998). Building memories: remembering and forgetting of verbal experiences
as predicted by brain activity. Science, 281(5380), 1188–1191.

Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual
short-term memory for objects. Nature, 440(7080), 91–95.

http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref42
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref43
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref44
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref45
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref46
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref47
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref48
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref49
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref50
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref51
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref52
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref53
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref54
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref55
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref56
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref57
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref58
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref59
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref60
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref61
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref62
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref63
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref64
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref65
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref66
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref67
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref68
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref69
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref71
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref72
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref73
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref74
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref75
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref76
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref77
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref78
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref79
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref80
http://refhub.elsevier.com/S0022-2496(16)30047-5/sbref81

	Integrating theoretical models with functional neuroimaging
	Introduction
	Perception: the normalization model
	Attention: the perceptual template model
	Memory: the context maintenance and retrieval model
	Categorization: exemplar vs. prototype models
	Error monitoring in the stop signal task
	Discussion
	Acknowledgments
	References


