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SUMMARY

Our ability to multitask is severely limited: task per-
formance deteriorates when we attempt to under-
take two or more tasks simultaneously. Remarkably,
extensive training can greatly reduce such multi-
tasking costs. While it is not known how training
alters the brain to solve the multitasking problem, it
likely involves the prefrontal cortex given this brain
region’s purported role in limiting multitasking per-
formance. Here, we show that the reduction of multi-
tasking interference with training is not achieved by
diverting the flow of information processing away
from the prefrontal cortex or by segregating pre-
frontal cells into independent task-specific neuronal
ensembles, but rather by increasing the speed of
information processing in this brain region, thereby
allowing multiple tasks to be processed in rapid
succession. These results not only reveal how train-
ing leads to efficient multitasking, they also provide
a mechanistic account of multitasking limitations,
namely the poor speed of information processing in
human prefrontal cortex.

INTRODUCTION

Although weall have a propensity to undertakemore than one task

at a time in our day-to-day lives, our ability to perform these tasks

rapidly and accurately is severely compromised when we attempt

to carry them out simultaneously. Such multitasking costs are

ubiquitous, occurring regardless of whether the tasks are simple

(e.g., making arbitrary sensory-motor decisions) or complex

(e.g., driving and talking on the cell phone), and can even be

observed when the competing tasks do not overlap in either

sensory input or motor output modality, suggesting a central,

amodal source of interference (Marois and Ivanoff, 2005; Pashler,

1994). Remarkably, however, this fundamental limitation of our

cognitive system is not immutable: prolonged training with dual

tasks greatly reduces multitasking costs (Schumacher et al.,

2001; Tombu and Jolicoeur, 2004; Van Selst et al., 1999).
How does training modify the functional architecture of the brain

to solve the multitasking problem?Behavioral studies suggest that

multitask training improves the performance of each task, thereby

reducing the interference that tasks can exert onto each other

(Ruthruff et al., 2001, 2003), but these studies are agnostic to

the manner in which these processing changes are neurally

implemented. Similarly, the neurobiological literature on the

effects of training on cognitive task performance (Erickson et al.,

2007; Jonides, 2004; Kelly and Garavan, 2005; Poldrack, 2000;

Poldrack and Gabrieli, 2001; Poldrack et al., 2005; Rioult-Pedotti

et al., 1998, 2000; Sakai et al., 1998) does not single out a specific

neural mechanism that could account for cost-free multitasking,

as several of those mechanisms are consistent with the behavioral

findings from multitasking studies. Broadly speaking, these neural

accounts can be grouped into those positing that training results in

a reorganization of the brain circuits supporting task performance

and those suggesting that training improves the processing

efficiency of the preexisting neural substrates (Jonides, 2004). A

prominent theory of neural reorganization proposes that training

improves cognitive task performance by reducing the depen-

dence of such performance on brain regions involved in cognitive

control and attention, while concomitantly increasing its reliance

on task- or process-specific neural circuits (Kelly and Garavan,

2005; Petersen et al., 1998). Consistent with the hypothesis that

training induces a switch from slow, deliberative processing in

‘‘general-purpose’’ brain networks to fast, automatic processing

in task-specific neural circuits, training is often accompanied

with decreased activation in prefrontal cortex (e.g., Erickson

et al., 2007; Sakai et al., 1998), a key brain region underlying cogni-

tive control (Dosenbach et al., 2006; Koechlin et al., 2003;

MacDonald et al., 2000; Miller and Cohen, 2001) and multitasking

performance (e.g., Dux et al., 2006; Marois et al., 2005). However,

it has also been argued that training could lead to the recruitment

of prefrontal cortex regions to coordinate efficient multitasking

(Erickson etal., 2007).Most importantly, training-inducedchanges

in brain activation, whether they be down- or upregulations, reveal

little about the neural transformations that enable efficient multi-

tasking, for such activation changes may not necessarily reflect

the dropping off or recruitment of brain regions with training, as

they could just as well result from functional adaptations within

such regions to promote efficient task processing (Jonides,

2004; Kelly and Garavan, 2005; Poldrack, 2000).
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The elucidation of the neural dynamics that support successful

multitasking with training requires methodological approaches

that can distinguish between the candidate processes described

above. To achieve this goal, we trained seven subjects daily for

a period of 2 weeks (see Experimental Procedures) in a standard

dual-task paradigm (Pashler, 1994; Schumacher et al., 2001;

Tombu and Jolicoeur, 2004) and scanned these subjects with

functional magnetic resonance imaging (fMRI) on three different

occasions during this training regimen. We then applied several

analytical tools to the fMRI data to isolate the neural mecha-

nism(s) that bring about efficient multitasking. The training and

brain scanning sessions comprised three types of trials: single

auditory-vocal (AudVoc) trials, which consisted of the presenta-

tion of one of two auditory stimuli that each required a distinct

speeded vocal response; single visual-manual (VisMan) trials,

consisting of the presentation of one of two faces that each

required a distinct speeded finger-press response; and dual-

task trials, which involved the simultaneous performance of

both the AudVoc and VisMan tasks (Figure 1A). We scanned

the subjects before training was commenced (pretraining), at

Figure 1. Task Design and Behavioral Results

(A) Task design. The task included three trial types: Single Audi-

tory-Vocal Trials (AudVoc), where subjects were presented with

one of two auditory stimuli that each required a distinct speeded

vocal response; Single Visual-Manual Trials (VisMan) where

subjects were presented with one of two faces that each required

a distinct speeded finger-press response; and Dual-Task Trials

where subjects were presented with both the AudVoc and VisMan

tasks simultaneously. Training on these tasks took place over

several sessions during a 2 week period.

(B) Behavioral results for the training sessions. Upper panel, task

reaction times under single- and dual-task conditions. Lower

panel, reaction time costs of performing the tasks under dual-

task conditions relative to single-task conditions (calculated by

subtracting single-task performance from dual-task performance

for each task and then summing these values).

(C) Behavioral results from the scanning sessions. Upper panel,

task reaction times under single- and dual-task conditions. Lower

panel, Reaction time costs of performing the tasks under dual-task

conditions relative to single-task conditions (see Experimental

Procedures). All errors bars represent standard error of the mean.

the midpoint of training (midtraining), and after training

had concluded (posttraining; after a subject’s dual-

task performance improvement reached asymptote;

see Experimental Procedures). The timing of these

fMRI sessions ensured that any potential changes in

neural information processing with training would be

captured by the present experimental design (Kelly

and Garavan, 2005; Ungerleider et al., 2002).

RESULTS AND DISCUSSION

In the behavioral training sessions, training reduced

the reaction times to each task under both single-

and dual-task conditions (main effect of Training

Session, F(7, 42) = 68.2, p < 0.0002; 2[Task: AudVoc

versus VisMan] 3 2[Trial Type: Dual-Task versus

Single-Task] 3 8[Training Session: 1–8] repeated-

measures ANOVA). Importantly, this improvement was greater

for dual-task than single-task trials (interaction between Trial

Type and Training Session, F(7, 42) = 42.1, p < 0.0002; Figure 1B)

and did not result from either a trade-off in accuracy (as an oppo-

site pattern of results to that found for the reaction time data was

not observed for the accuracy data; interaction between Trial

Type and Training Session, F < 1) nor response grouping, as

RTs for the two tasks (under both single- and dual-task

conditions) were significantly different even after training (ts >

3.4, ps < 0.02, two-tailed paired-samples t test; response

grouping would be evidenced by comparable RTs for both tasks;

see Ulrich and Miller, 2008). In addition, an identical pattern

of behavioral results was obtained in the fMRI scanner (Fig-

ure 1C). Therefore, training was successful in reducing multi-

tasking costs to approximately one tenth of their initial value

(from approximately 400 ms to 40 ms), although it did not elimi-

nate such costs altogether as the residual multitasking costs

were still significant (p = 0.05, two-tailed, one-sample t test),

as has been found in previous behavioral studies (e.g., Tombu

and Jolicoeur, 2004).
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To isolate candidate brain regions that may limit multitasking

performance, we first searched for areas that responded signifi-

cantly to both single-tasks in the pretraining session, as would be

expected of the neural substrates underlying a central, amodal

bottleneck of information processing (Dux et al., 2006; Jiang

and Kanwisher, 2003b; Marois and Ivanoff, 2005). This contrast

isolated in each subject an extensive network of frontal,

prefrontal, parietal, and subcortical areas (see Table S1 available

online) that have previously been implicated in response selec-

tion, decision making, multitasking, and sensory-motor training

(Dux et al., 2006; Heekeren et al., 2004; Hikosaka et al., 2002;

Jiang and Kanwisher, 2003a; Marois et al., 2005; Poldrack

et al., 2005; Sakai et al., 1998; Schubert and Szameitat, 2003;

Szameitat et al., 2002). In addition, because sensory and motor

cortex have also been shown to be influenced by training (Büchel

et al., 1999; Karni et al., 1998; Kelly and Garavan, 2005), we

isolated the corresponding sensory and motor regions for our

AudVoc and VisMan tasks by directly contrasting their activity

(see Table S1). Finally, because dual-task performance could in

principle also be controlled by brain regions specifically recruited

to coordinate multitasking (D’Esposito et al., 1995), we also con-

trasted activity between the dual-task and single-task conditions

in the pretraining session. This latter analysis revealed no brain

regions that were specifically activated by the dual-task condi-

tion, replicating previous work (Adcock et al., 2000; Dux et al.,

2006). Thus, only ROIs that were isolated using the single-task

trials were examined, because there were no brain areas that

were exclusively activated by the dual-task trials.

Regions involved in limiting multitasking performance should

not only display greater activity under dual-task conditions

compared to single-task conditions prior to training (because

in the former condition twice as many time-consuming response

selection operations are required [Erickson et al., 2007; Marois

et al., 2005]), they should also evidence a greater effect of

training on neural activity in dual-task trials than in single-task

trials, as multitasking costs diminish over the two-week training

regimen (Figures 1B and 1C). In order to identify which of the

above brain areas showed such a pattern of activity, we ex-

tracted time courses of the blood-oxygen-level-dependent

(BOLD) signal from each ROI and examined the multitasking

effect across the three fMRI sessions. Paralleling previous

fMRI studies of single-task and dual-task training with overlap-

ping modalities (Erickson et al., 2007), several cortical and

subcortical regions showed general task-related decreases in

activity across the training sessions (see Table S1). However,

among all these brain regions, only the left inferior frontal junction

(IFJ), located at the boundary of the posterior lateral prefrontal

and anterior premotor cortex (posterior Brodmann area 9),

showed not only greater activity in dual-task than in single-task

trials prior to training, but also a significant reduction in this

activity difference as training ensued (Figure 2A). Specifically,

BOLD amplitudes for the pre- and midtraining fMRI sessions

were greater in the dual-task than in the two single-task condi-

tions (ts > 2.7, ps < 0.04, two-tailed paired samples t test), with

the latter two conditions not differing from one another (t < 1).

However, by the final session, when dual-task reaction time

costs were now strongly attenuated, there was no significant

amplitude difference between dual- and single-task trials (ts <
1.7, ps > 0.13). Importantly, this dual- versus single-task activa-

tion difference observed in left IFJ was significantly larger than

that observed in all the other regions tested prior to training

(t(6) = 5.9, p < 0.002, two-tailed paired samples t test), but not

posttraining (t < 1), attesting to the preferential association of

this brain region with the modulation of multitasking perfor-

mance with training. Moreover, while there was a strong correla-

tion between individual subjects’ BOLD amplitude differences

between dual- and single-task trials and their dual-task reaction

time costs in the first two fMRI sessions (rs > 0.7, ps < 0.05, one-

tailed Pearson correlation), this correlation no longer held by the

third session, (r = �0.3, p = 0.6). Finally, it is worth noting that

these results were not biased by using the pretraining session

for IFJ ROI definition, as the same findings were obtained

when the ROI was isolated from the posttraining session. Taken

together, these results not only suggest that an individual’s multi-

tasking performance costs are related to IFJ activity, they also

support prior work indicating that this very same brain region

is involved in the capacity-limited central stage of response

selection and decision-making (present IFJ mean Talairach

coordinates of x =�43, y = 8, z = 29 compared to x =�42, y = 17,

z = 28 in Dux et al. [2006]).

The observation that training reduces multitasking-related

activity in IFJ is consistent with the hypothesis that efficient

multitasking results from a decreased reliance on brain regions

involved in cognitive control and attention. According to this

hypothesis, regions initially required to cope with unfamiliar,

novel task demands are progressively replaced by more efficient

task-specific brain regions or networks with training (Chein

and Schneider, 2005; Haier et al., 1992; Jansma et al., 2001;

Petersen et al., 1998). However, we found no brain regions that

showed increased activity with training for any of the task condi-

tions, either in the isolated ROIs or when using a voxel-based

analysis that contrasted activity in the pre- and posttraining

fMRI sessions, suggesting that no brain regions were recruited

anew or more extensively with training. Therefore, these findings

provide no evidence to support the notion that the emergence of

efficient multitasking necessitates the recruitment of new brain

regions.

It has been suggested, however, that functional reorganization

with training might take place by affecting the strength of

connections between brain regions (Poldrack, 2000). According

to this account, efficient multitasking would emerge with training

because the flow of sensory-motor information from each task

would be progressively routed away from slow deliberative pro-

cessing in prefrontal cortex, thereby bypassing the neural locus

of multitasking limitations. The finding that dual-task specific

activity decreased with training in IFJ (Figure 2A) is generally

consistent with this hypothesis. This account further predicts

that the prefrontal route may be gradually replaced by more

direct and specific sensory-motor connections as multitasking

interference wanes with training. We tested this hypothesis by

performing an effective connectivity analysis (Büchel and Fris-

ton, 1997), using structural equation modeling (Rogers et al.,

2004; Rowe et al., 2002), to assess whether the strength of the

modeled sensory-prefrontal-motor pathways of the AudVoc

and VisMan tasks decreased, while the strength of the direct

sensory-motor pathways increased, with training. We focused
Neuron 63, 127–138, July 16, 2009 ª2009 Elsevier Inc. 129
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Figure 2. Effect of Training on Single- and Dual-Task BOLD Response Amplitude

(A) Left panel, left inferior frontal junction (IFJ) ROI (red circle) on SPM of conjunction of AudVoc open contrast and VisMan open contrast (example subject). Right

panels, BOLD time courses for the AudVoc, VisMan, and Dual-Task trials in the pre-, mid- and posttraining fMRI sessions (group).

(B and C) Left panel, ROIs in right vocal motor cortex (VocMC) and right auditory cortex (AC) isolated by contrasting AudVoc and VisMan trial activity (example

subject). Right panels, BOLD time courses for the AudVoc, VisMan, and Dual-Task trials in the pre-, mid- and posttraining fMRI sessions. ROIs were isolated from

the pretraining session. An identical pattern of results was observed when ROIs were defined from the posttraining session. All error bars represent average

within-subject standard error of the mean.
this analysis on the single-task trials because the functional reor-

ganization account predicts that training reduces multitasking

interference by reorienting the flow of sensory-motor information

for each of the individual tasks away from prefrontal cortex to

more task-specific networks (though the results described

below were qualitatively unchanged when dual-task trials were

subject to this analysis). The use of single-tasks is further justified

by the finding that the reduction in multitasking interference with

training can be largely explained by improved performance on

the two single-tasks (see Figure S1 and supporting text), rather

than improvement in the dual-task condition alone.

The standardized path coefficients, a measure of the relative

influence of one region’s BOLD activity onto another’s, were

unaffected by fMRI Session in either sensory-prefrontal-motor

network (all main effects and interactions involving fMRI Session

ps > 0.22, 2 [Task: AudVoc versus VisMan] 3 2 [Network: AC-

IFJ-VocMC versus VC-IFJ-ManMC] 3 2[fMRI Session: Pretrain-

ing versus Posttraining] repeated-measures ANOVA; Figure 3).

In addition, there were also no increases in the path coefficients

describing the direct sensory-motor pathway (all main effects
130 Neuron 63, 127–138, July 16, 2009 ª2009 Elsevier Inc.
involving fMRI Session ps > 0.28, 2 [Network Relevance: Task-

Network versus Nontask Network] 3 2[fMRI Session: Pretraining

versus Posttraining] repeated-measures ANOVA; see Figure S2).

These findings were obtained regardless of whether BOLD signal

amplitude was equated across fMRI sessions (see Experimental

Procedures), and they do not appear to be a result of a lack of

model sensitivity, as the path coefficients were significantly

larger in a given network (sensory-prefrontal-motor or sensory-

motor) when subjects performed the task relevant for that

network (sensory-prefrontal-motor connectivity analysis: inter-

action between Task and Network, F(1, 6) = 14.19, p < 0.01;

sensory-motor connectivity analysis: main effect of Network

Relevance, F(1, 6) = 16.6, p < 0.01). Thus, the present results

provide no evidence that increased efficiency in multitasking

is achieved by a weakening of a prefrontal cortical route and a

reciprocal strengthening of a direct sensory-motor route.

The finding that training affects activity levels in prefrontal

cortex but does not significantly modulate the interregional

connectivity with prefrontal cortex, suggests that it may be neural

changes intrinsic to this brain region that lead to efficient
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multitasking. Specifically, we hypothesized that if multitasking

interference results from competition between distinct sensory-

motor tasks for processing by a common ensemble of prefrontal

cortex neurons, thereby creating a ‘‘bottleneck’’ of information

processing (e.g., Dux et al., 2006), then training may lead to effi-

cient multitasking by functionally segregating neurons devoted

to each sensory-motor task, thereby resulting in independent,

parallel processing pathways within prefrontal cortex. This hypo-

thesis is not only consistent with neurophysiological evidence

that training/experience can induce local changes in neural

connectivity patterns (Kelly and Garavan, 2005; Rioult-Pedotti

et al., 2000; Rioult-Pedotti et al., 1998) and promote the differen-

Figure 3. Effect of Training on Effective Connectivity in Sensory-

Prefrontal-Motor Pathways

Upper panel, effective connectivity model. The AudVoc pathway (red) con-

sisted of auditory cortex projecting to IFJ which then projected to vocal motor

cortex (AC-IFJ-VocMC; AudVocNetwork), while the pathway for the VisMan

task (green) consisted of the visual cortex projecting to IFJ which then pro-

jected to manual motor cortex (VC-IFJ-ManMC; VisManNetwork). According

to the ‘‘macro-scale connectivity’’ model, efficient multitasking after training

would result from the diversion of sensory-motor information away from the

slow, inefficient processing in prefrontal cortex. This hypothesis predicts

decreased effective connectivity through IFJ with training. Lower panel,

strength of the AudVocNetwork and VisManNetwork path coefficients as

a function of Training Session and Task. An identical pattern of results was

observed when either left or right hemisphere AudVoc sensory-motor ROIs

were employed in the model. All errors bars represent standard error of the

mean.
tiation of stimulus- or task-selective neurons in cerebral cortex

(Duncan, 2001; Freedman et al., 2001; White and Fitzpatrick,

2007; Wiesel and Hubel, 1963), it is also the cortical mechanism

thought to support odor discrimination learning (Li et al., 2008).

Thus, according to this account, multitasking interference would

initially occur because the same population of neurons within

prefrontal cortex (IFJ) performs sensory-motor translation for

both the AudVoc and VisMan tasks, but this interference would

dissipate with training as IFJ neurons functionally segregate

into distinct ensembles for the processing of each of the two

sensory-motor tasks (Figure 4A).

To test if increased task selectivity within IFJ leads to multi-

tasking improvement with training, we employed a multivariate

pattern classification technique to overcome the spatial limita-

tions of fMRI (Haynes and Rees, 2006; Kamitani and Tong,

2005). In the present context, this method relies on each voxel

within an ROI having a weak but true bias for one of the two tasks

due to the random distribution of neurons within that region that

are selective for that task. By employing a linear pattern classifi-

cation analysis, this information can be pooled together across

an ROI to identify an ensemble activity pattern that reflects the

particular task subjects are performing in a given single-task trial

(see Experimental Procedures). Specifically, we examined the

accuracy of the pattern classifier in decoding the identity of

each of the two single tasks in IFJ and control sensory-motor

regions (right hemisphere AC and VocMC, although the same

pattern was observed for the left hemisphere ROIs) across the

training period. If, prior to training, multitasking interference

results from the processing of two sensory-motor tasks by

a largely overlapping pool of IFJ neurons, then the ability of the

pattern classifier to distinguish the activity pattern for each of

the two single-tasks is expected to be relatively poor. However,

decoding performance should improve with training if it leads

to the functional segregation of populations of IFJ neurons

processing each of the two sensory-motor tasks.

Prior to training, decoding performance was slightly above

chance in IFJ (62.22% accuracy, t(6) = 2.94, p < 0.05, one sample

t test), although it was lower than that observed for the sensory

and motor ROIs (F(2, 12) = 4.2, p < 0.05, repeated-measure

ANOVA with the single factor of brain region; Figure 4B), as

would be expected of a central, amodal area that is commonly

activated by both tasks compared to sensory and motor regions

known to exhibit strong modality specificity. Of primary interest

was the influence of fMRI Session on classification accuracy in

IFJ (Figure 4B). Contrary to our expectation that decoding perfor-

mance would increase with training, it slightly decreased across

the sessions (F(1, 6) = 3.75, p = 0.05, one-way ANOVA), suggest-

ing that training may attenuate task selectivity in IFJ. By contrast,

training had no discernible effect on decoding performance in

sensory and motor cortex (Fs < 1). Taken together, these decod-

ing results do not support the hypothesis that efficient multi-

tasking results from the functional segregation of sensory-motor

information processing pathways in prefrontal cortex. If any-

thing, training appears to decrease task selectivity in IFJ. This

latter finding cannot be explained by the general decrease in

BOLD signal amplitude across training sessions, as these results

were obtained regardless of whether amplitude was equated

across sessions (see Experimental Procedures). Given that the
Neuron 63, 127–138, July 16, 2009 ª2009 Elsevier Inc. 131
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lateral prefrontal cortex is composed of a heterogeneous mixture

of neurons with sensory, motor, and sensory-motor properties

(Fuster, 1997) that can adaptively code task-relevant information

(Duncan, 2001), a possible explanation for the diminished task

selectivity observed across the fMRI sessions is that multitask

training may ‘‘prune out’’ neurons coding for modality-specific

sensory or motor information, thereby enhancing the proportion

of cells that code for task-independent sensory-motor transla-

tion (response selection).

While the multivoxel pattern analysis did not reveal any evi-

dence for the functional segregation of task-related activity in

IFJ, it did suggest that training modifies the functional neuro-

architecture within this region. How can such modifications

lead to efficient multitasking? Behavioral studies have hypothe-

sized that training alleviates multitasking interference by short-

ening the central stage of response selection for each task,

thereby reducing processing overlap between these two tasks

at this capacity-limited stage of information processing (Ruthruff

et al., 2001, 2003; Figure 5A). Given that it is centrally involved in

response selection (Dux et al., 2006; Marois et al., 2005) and that

it is modulated by multitask training (Figures 2A and 4B), the IFJ

is well positioned to mediate training-induced changes in the

efficiency of sensory-motor translation. If this hypothesis is

correct, then BOLD signal duration in IFJ should be significantly

longer in the dual-task condition compared to the single-task

condition prior to training because in the former condition two

time-consuming sensory-motor translations must be undertaken

serially, while in the latter condition only one such operation must

be performed. Moreover, if training considerably shortens the

Figure 4. Effect of Training on Neural Decoding of

Task Identity in IFJ

(A) Functional segregation (‘‘micro-scale connectivity’’) model

of successful multitasking. According to this model, multi-

tasking interference results from functional overlap in the

neural ensembles processing each of the two sensory-motor

tasks in IFJ (pretraining). Training may lead to the functional

segregation of the IFJ neural ensembles processing each of

the two tasks (posttraining), thereby eliminating multitask

interference. This hypothesis predicts poor decoding of

task identity (AudVoc versus VisMan) in IFJ prior to training,

followed by improved decoding performance with training.

(B) Performance for decoding of task identity in IFJ, auditory

cortex (AC, right hemisphere) and motor (VocMC, right hemi-

sphere) cortex across the training period. Chance is 50%. All

errors bars represent standard error of the mean.

duration of sensory-motor translation for each

task (Figure 5A), then the (absolute) difference in

the duration of response selection activity under

dual- and single-task conditions in the posttraining

session may be so small as to be temporally irre-

solvable with fMRI—i.e., we should no longer

observe differences in BOLD duration between

dual- and single-task trials.

To test these predictions, we probed, in four new

subjects, the time course of activity in IFJ prior to

and after extensive training in single- and dual-

task conditions. This experiment employed high

temporal resolution fMRI (5 Hz sampling rate; see Experimental

Procedures) in order to resolve the duration of neural activity in

IFJ that could not be inferred in the first experiment due to its

low temporal resolution (0.5 Hz sampling rate). The behavioral

data of this new experiment mirrored those of the previous

experiment, with large multitasking RT costs prior to training

(�500 ms) that were greatly reduced posttraining (�100 ms;

see Figure S3). A comparison of the BOLD response peak

latency (a sensitive measure of the duration of the BOLD signal

[Dux et al., 2006; Henson et al., 2002]) in left IFJ indicated that

activity peaked approximately 500 ms later in the dual-task

condition than in the single-task condition prior to training

(t(3) = 4, p < 0.03, two-tailed paired-samples t test; Figure 5B).

After training, however, there were no longer differences in the

duration of BOLD activity between the dual- and single-task

conditions (t = 1.5, p > 0.2), and these durations of activity for

both the single- and dual-task conditions peaked earlier than

those prior to training (ts > 3.18, p % 0.05, two-tailed paired-

samples t test). Taken together, these results strongly support

the hypothesis that training reduces processing time in IFJ,

thereby leading to greatly reduced neural and behavioral dual-

task costs after training.

Conclusions
In this study, we distinguished between several neural mecha-

nisms that could account for efficient multitasking with training.

One model posited that training leads to a shift in sensory-motor

information away from slow, deliberate processing in prefrontal

cortex to fast and efficient processing in task-specific pathways.
132 Neuron 63, 127–138, July 16, 2009 ª2009 Elsevier Inc.



Neuron

Multitask Training Speeds Up Neural Processing
Figure 5. Effect of Training on Duration of

Activity in IFJ

(A) Central stage shortening model of successful multi-

tasking. Upper panel, pretraining. According to this

model, sensory information proceeds through a series

of stages, including stimulus perception, central

processing (response selection/sensory-motor trans-

lation) and response execution. Behavioral evidence

suggests that the central stage of response selection

is severely capacity limited, allowing only one sen-

sory-motor translation operation to be carried out at

a time, and resulting in multitask slowing (Pashler,

1994). Colors depict distinct sensory-motor tasks.

Lower panel, posttraining. Training may optimize the

efficiency of response selection for each task, thereby

reducing central processing time and leading to

a negligible delay of the second task. This model

predicts considerably longer duration of IFJ activity

in dual-task than in single-task trials prior to training,

but not after training.

(B) Left panel, left IFJ ROI (red circle) on SPM of

conjunction of AudVoc open contrast and VisMan

open contrast (example subject). Middle and right

panels, BOLD time courses for the AudVoc, VisMan,

and Dual-Task trials in the pre- and posttraining fMRI

sessions. In the pretraining fMRI session, multitasking

affects both signal amplitude and duration because

the BOLD response integrates neural activity over

time. However, only signal peak latency can be used

as an unambiguous measure of duration of neural

activity as amplitude can be affected by neural activity

intensity and/or duration (Dux et al., 2006). Another

measure of duration of neural activity, BOLD response

width at half amplitude maximum (Richter et al., 1997), also suggests longer activity duration in the dual-task condition than in the single-task condition pretraining

(t(3) = 3.4, p < 0.04, paired-samples t test), but not posttraining (t < 1, p > 0.7). The early signal peaks near the onset of the time courses are due to vocal artifacts.

These artifacts do not affect the later, main activation peaks (Birn et al., 2004).
A second model assumed instead that training results in the

functional segregation of neuronal ensembles that process

each of the sensory-motor tasks in prefrontal cortex, thereby

creating independent streams of information processing for

each task. Finally, a third model held that efficient multitasking

develops as a result of the improved efficiency of information

processing through the prefrontal cortex. The results of four

distinct analyses performed on two experimental data sets are

largely consistent with the latter ‘‘improved efficiency’’ account.

Of course, it remains possible that subtle interregional changes

in connectivity patterns that escaped detection by our analyses

nevertheless contributed to the development of efficient multi-

tasking. However, the fact that the effective connectivity analysis

was sufficiently sensitive to distinguish the particular tasks that

subjects were engaged in, together with the robustness of the

peak amplitude, pattern classification, and latency results,

suggest that the development of efficient multitasking, at least

with respect to the current paradigm, is primarily achieved by

the shortening of a central capacity-limited stage of information

processing in human prefrontal cortex rather than by a functional

reorganization of the brain circuits supporting multitasking. It

should be noted, however, that the conclusion that increased

speed of information processing in prefrontal cortex underlies

efficient multitasking does not imply that this type of neural

change can only occur in posterior prefrontal cortex, or that it
supports all forms of improvement in cognitive and multitasking

capacity. For example, it is conceivable that more anterior

regions of prefrontal cortex become implicated in limiting multi-

tasking performance as the stimulus-response associations

become more abstract and require greater levels of cognitive

control (Koechlin and Summerfield, 2007). Likewise, it will be

important to determine the extent to which the neural mecha-

nisms limiting performance in the PRP generalize to other

divided-attention deficits, including those that occur within

modality and at more perceptual stages of information process-

ing (Chun and Potter, 1995; Marois and Ivanoff, 2005; Raymond

et al., 1992). The fact that the PRP can be observed with several

cognitive processes other than response selection (Carrier and

Pashler, 1995; Ruthruff et al., 1995; Ulrich et al., 2006), including

those that occur within modality (Chun and Potter; Jolicoeur,

1999), raises the prospect that the present findings could apply

to other multitasking domains.

While future studies will determine the extent to which the

present results generalize across multitasking situations and

brain regions, our findings provide a mechanistic blueprint for

the development of efficient multitasking with training. Accord-

ing to this account, multitasking interference results from the

funneling of information from distinct sensory-motor tasks onto

overlapping neural ensembles in prefrontal cortex, thereby

creating a bottleneck of information processing at the central
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stage of decision-making/response-selection. The effect of

training is to speed up information processing through this

prefrontal bottleneck, thereby reducing temporal processing

overlap of the sensory-motor tasks in this brain region. This

account accords very well with neurophysiological data sug-

gesting that learning of arbitrary sensory-motor associations

reduces the latency of neural activity in macaque prefrontal

cortex (Asaad et al., 2000; Wise and Murray, 2000) and with

behavioral studies hypothesizing that training improves

multitasking performance by reducing the duration of central

processing (Ruthruff et al., 2001; Ruthruff et al., 2003; see

Figure S1). Our findings also argue that decreased prefrontal

activity with training, a result frequently observed during the

performance of cognitive tasks (Erickson et al., 2007; Kelly and

Garavan, 2005), may not signify a lesser role of prefrontal cortex

in multitasking with training, but rather a more efficient one

(Jonides, 2004; Poldrack, 2000). By the same token, in allowing

us to observe how the brain solves the multitasking problem

unconfounded by changes in sensory input, motor output or

task instructions, the present training study has uncovered

a key rate-limiting step in our ability to multitask, and that is

the poor efficiency of information processing in human posterior

prefrontal cortex.

EXPERIMENTAL PROCEDURES

Experiment 1

Subjects

Seven right-handed members of the Vanderbilt University community

(4 females, 23–30 years) with normal or corrected-to-normal vision partici-

pated in the experiment for financial compensation. The Vanderbilt University

Institutional Review Board approved the experimental protocol and informed

consent was obtained from the subjects.

Experimental Overview

Over the course of this experiment subjects performed three types of session;

one brief familiarization session, three fMRI sessions and eight to twelve

behavioral training sessions conducted over a 2 week period (see below).

The familiarization session was intended to expose the subjects to the stim-

ulus-response mappings and was administered immediately preceding the

first fMRI session. fMRI sessions occurred prior to the first behavioral training

session (pretraining), after the third, fourth, or fifth behavioral training session

(depending on subject’s performance; midtraining), and after the final behav-

ioral training session (posttraining). Subjects typically performed one session

per day, although in a few instances two sessions were carried out in a day

(morning and afternoon) to accommodate scheduling conflicts. Because

subjects performed a varying number of behavioral sessions, session number

for each subject was normalized from one to eight using the following formula:

ROUND((session number / max(session number)) * 8) in order to facilitate sub-

sequent analyses.

Tasks

For each trial in all the sessions, subjects performed either one (single-task

condition) or two (dual-task condition) distinct sensory-motor tasks. The

visual-manual (VisMan) task required a manual response to a visual stimulus,

while the auditory-vocal (AudVoc) task required a vocal response to an audi-

tory stimulus. These tasks were chosen, as they did not overlap in either

sensory or output modalities and followed the ‘‘standard pairing’’ as outlined

by Hazeltine et al. (2006). Both tasks were two-alternative discrimination

(2AD) tasks, mapping two stimuli to two responses. The visual stimuli, sub-

tending approximately 6.4� of visual angle (Figure 1A), were two gray-scale

faces with similar skin tone, hair color, neutral facial expression, and hairline

presented on a gray background. Subjects responded to each face with

a distinct button press using the right index or middle finger. The auditory

stimuli were two discriminable sounds (a complex tone and an edited natural
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sound) used previously (Dux et al., 2006). Each sound required a distinct vocal

response, consisting of the following pseudosyllables: ‘‘Tay’’ and ‘‘Koo.’’ The

visual and auditory stimuli were each presented for 200 ms and, on dual-

task trials, simultaneously. Stimulus-response mapping assignments were

counterbalanced across subjects for both tasks. The visual and auditory

stimuli were presented with equal frequency and, in dual-task trials, paired

in a counterbalanced manner across all familiarization, training, and fMRI

sessions.

Familiarization Session

The primary purpose of the familiarization session was to teach the subjects

the stimulus-response mappings for each task and to familiarize them with the

experimental protocol of the ensuing fMRI and behavioral training sessions.

Only accuracy was stressed during the familiarization session, which con-

sisted of a total of five runs. In the first three runs, only single-task trials

were performed. The first run consisted of 12 VisMan trials, the second of 12

AudVoc trials, and the third of 16 randomly intermixed single-task trials (eight

of each). During the fourth and fifth runs subjects performed a combination of

randomly intermixed single- and dual-task trials: the fourth run consisted of six

AudVoc, six VisMan, and 12 dual-task trials, while the fifth run consisted of six

AudVoc, six VisMan and six dual-task trials. In total, subjects performed 82

trials during the familiarization session, including 18 dual-task trials. The famil-

iarization session lasted approximately 20 min, with the experimenter present

in the testing room for the entire duration in order to score vocal responses (see

below).

Each run of the familiarization session was subject-initiated and began with

an instruction screen describing the task(s) that the subject would be perform-

ing. For runs involving the VisMan task, the face stimuli were presented on the

instruction screen to allow subjects ample study time before beginning the

trials. Likewise, for runs involving the AudVoc task, three examples of each

sound were played during the instruction period. Throughout each run,

subjects were asked to fixate a small black square (0.1� of visual angle) at

the center of the screen.

During runs one through four, each trial began with a two second fixation

period that ended with the presentation of the stimulus/stimuli for 200 ms.

Stimulus onset also marked the beginning of the response period, which lasted

4 s. The response period was either immediately followed by a 2 s feedback

period (for VisMan trials of runs one, three, and four) or by a scoring period

during which the experimenter entered the vocal response made by the

subject (for AudVoc trials of runs two through four). The scoring period began

with a prompt requiring the experimenter to indicate the vocal response made

(Tay, Koo, No response) and ended when the experimenter made his

response. This scoring period generally lasted less than a second. The scoring

period, or the response period for VisMan trials, was then followed by a feed-

back period that lasted for 2 s. If the response was correct for the VisMan task,

the words ‘‘Face task CORRECT’’ were presented in green just above the fixa-

tion marker, and if the response was incorrect the words ‘‘oooh—you got the

face wrong!’’ were presented in red just above fixation. Similar feedback was

provided for the AudVoc task just below the fixation marker, with the word

‘‘tone’’ substituted for the word ‘‘face.’’ Following the feedback period, the

next trial ensued. Each trial during runs one through four was roughly eight

or nine seconds in duration depending on the duration of the scoring period

(trial duration = eight seconds + length of scoring period).

Run five familiarized subjects with the run structure of an fMRI session. The

trials were carried out as in the first four runs except that there were no scoring

and feedback periods following the 4 s response period and the fixation period

was extended to 12 s (total trial duration of 16 s). Due to the extended period

between stimulus presentations, an alerting cue (doubling of fixation size) was

presented for 2 s prior to stimulus onset. By this last familiarization run,

subjects had reached high performance accuracy (>95% accuracy in first

fMRI session) in each task under both dual- and single-task conditions.

The familiarization session, as well as the behavioral training sessions, were

conducted in a psychophysics lab on a G4 eMac computer operating OSX,

running Matlab 7 (7.3 R2006b) and the Psychophysics toolbox version 3.08

(Brainard, 1997; Pelli, 1997). The screen refresh rate was 72 Hz. The presenta-

tion of auditory stimuli and collection of vocal responses were performed with

a Platronics DSP digital headset with built-in microphone. Manual responses

were made using a standard QWERTY keyboard.
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Behavioral Training Sessions

There were two types of runs in the behavioral training sessions: short inter-

trial interval (short-ITI) runs and long-ITI runs. The purpose of the short-ITI

runs was to maximize the number of training trials subjects were exposed

to, whereas the long-ITI runs served to ensure that training effects were also

obtained at the trial presentation rate that would be used in the fMRI sessions

(see below). Subjects performed four short-ITI and six long-ITI runs per training

session, with run types randomly intermixed. Each training session consisted

of 540 trials (432 short-ITI and 108 long-ITI trials), lasting about 90 min.

Each training session began with the presentation of an instruction screen

that reminded subjects of the tasks that they would be performing, and also

provided them with both face stimuli to study. In addition, each auditory stim-

ulus was played three times to remind subjects of the stimulus-response

mapping for the AudVoc task. Instructions stressed that subjects were to

respond quickly and accurately and that equal emphasis should be placed

on both tasks. To encourage fast and accurate responding a reward system

was employed in which subjects accumulated points for trials in which the

RTs for correct responses were lower than a deadline. Points were lost for

incorrect responses. At the conclusion of the experiment, points translated

into bonus pay (most subjects received �$16). Deadlines were initially set to

2 s for the initial short-ITI run, but were subsequently adjusted based on

single-task performance after each short-ITI run. Specifically, for each task

the mean and standard deviation of reaction times were calculated from all

single-task trials performed during a given short-ITI run. Normal distributions

with these means and standard deviations were then used to calculate the

reaction time at the 75th percentile and this value was used as the deadline

for both single- and dual-task trials for the next run. The reward system was

explained to subjects prior to the first behavioral session.

Subjects initiated each run by pressing the spacebar. In short-ITI runs, trials

consisted of a 2 s fixation of a central black square (1�) followed by stimulus

presentation for 200 ms. Stimulus onset marked the beginning of a 2 s

response period during which manual and vocal responses were digitally

recorded. The response period was followed by a 2 s feedback period that

provided subjects with the response times and deadlines for each task, as

well as accuracy feedback for the VisMan task (no accuracy feedback could

be provided for the AudVoc task because accuracy was scored offline—the

auditory responses were recorded as .wav files and the RTs were determined

by analysis of the spectrograms of these recordings). Long-ITI trials were iden-

tical to short-ITI trials except that the feedback period was replaced with a 2 s

posttrial period during which only the fixation square was present and the fixa-

tion period was extended to 12 s, with the last 2 s of this period serving as an

alerting cue by doubling the size of the fixation square. Trial duration was

therefore 6 s and 16 s for the short- and long-ITI trials, respectively. Each

short-ITI run consisted of 108 trials (36 trials/condition), while each long-ITI

run consisted of 18 trials (6 trials/condition).

Each run ended with a screen that provided a summary of the subject’s

performance. This information included the deadline in effect for that run for

each task, the average response time for both single- and dual-task trials for

each task, accuracy for the VisMan task and the deadline that would be in

effect for the next run. New deadlines were calculated only after short-ITI

runs because there were only six trials per condition in the long-ITI runs. The

new deadlines would be in effect until after the next short-ITI run. As there

was no difference in the pattern of performance between the short- and

long-ITI runs across the experiment, we combined these data in Figures 1

and S3.

fMRI Sessions

fMRI sessions consisted of eight slow-event related runs that were identical to

the long-ITI runs performed in the behavioral sessions except that a 12 s fixa-

tion period was added at the end of each run. There were 18 trials per run (with

an equal number for each Trial Type randomly ordered), for a total of 144 trials

per session. Prior to the first run of each fMRI session, an instruction screen

reminded each subject of the task, stimuli and the response time deadlines

for each task. Response deadlines were set based on the previous behavioral

session.

Subjects completed three fMRI sessions. Session 1 (pretraining) was con-

ducted immediately after the familiarization session, when multitasking inter-

ference should be maximal. The second session (midtraining) was undertaken
once dual-task performance had shown significant improvement from the

practice regimen but well before dual-task performance ceased improving.

The third session (posttraining) was run once subjects’ behavioral data indi-

cated that performance for each of the two tasks in the dual-task condition

was no longer improving relative to the single-task trials (in three consecutive

sessions).

Data Acquisition

Anatomical 2D and 3D high-resolution T1-weighted images were acquired

with conventional parameters on a 3T Philips Intera Achieva scanner at the

Vanderbilt University Institute of Imaging Science. The visual display was pre-

sented on an Avotec (Stuart, FL) LCD panel and back-projected onto a screen

positioned at the rear of the magnet. Subjects lay supine in the scanner and

viewed the display on a mirror positioned above them. The auditory stimuli

were presented and the vocal responses were recorded using a Commander

XG MR compatible headset (Resonance Technology Inc, Northridge, CA).

Manual responses were recorded using a five-key keypad (Rowland Institute

of Science, Cambridge, MA). Functional (T2*) parameters were as follows:

TR 2000 ms, TE 35 ms, FA 79�, FOV 24 cm, 128 3 128 matrix with 33 slices

(3.5 mm thick, 0.5 mm skip) acquired parallel to the AC-PC line. Stimulus

presentation was synchronized with each fMRI volume acquisition.

General Data Analysis

Image analysis was performed using Brain Voyager QX 1.4 (Brain Innovation,

Maastricht, The Netherlands) and with custom Matlab software (MathWorks,

Natick, MA). Data preprocessing included 3D motion correction, slice scan

time correction and linear trend removal. All functional data were aligned to

the first localizer run and anatomical T1-weighted data were transformed

into standardized Talairach space (Talairach and Tournoux, 1988).

SPMs were created using a multiple regression analysis, with regressors

defined for the VisMan, AudVoc and Dual-Task trials and convolved with

a double gamma hemodynamic response function (SPM2, http://www.fil.ion.

ucl.ac.uk/spm), consisting of a positive gamma function and a small, negative

gamma function reflecting the undershoot. Central processing areas were iso-

lated by identifying brain regions that were significantly activated by both the

VisMan and AudVoc tasks (i.e., conjointly activated by AudVoc open contrast

and VisMan open contrast) in the pretraining fMRI session, although we ascer-

tained that the same results were obtained when these regions were isolated

from the posttraining scanning session. Sensory or motor areas were isolated

by directly contrasting the two single tasks (AudVoc-VisMan). For both of these

analyses, we used a voxel-wise analysis thresholded at a false discovery rate

(FDR) of q < 0.05, except for one subject where a lower threshold of p < 0.005

(uncorrected) was employed because of low activation levels. Exclusion of this

subject from the analysis did not alter the pattern of results.

BOLD Amplitude Analysis

A region of interest (ROI) was defined around the peak voxel of the activated

foci by including all voxels above statistical threshold up to a maximum size

of 343 mm3. ROIs were defined from fMRI session 1 (pretraining); however,

an identical pattern of results was observed when we defined ROIs using

fMRI session 3 (posttraining). Individual subjects’ time courses were extracted

from the isolated ROIs and percent signal change was calculated relative to

the two time points prior to stimulus/stimuli onset of each trial, and averaged

across subjects. The peak volume of a time course was defined as the volume

with the greatest signal amplitude between stimulus onset and the eighth

volume following this time point (16 s from onset). t tests on peak volumes

were used to assess for differences in response amplitude across conditions,

using a random effects model.

Effective Connectivity Analysis

An effective connectivity analysis between sensory, prefrontal, and motor

ROIs was performed for each single-task condition (the dual-task condition

was not used for this analysis). The sensory-prefrontal-motor pathways exam-

ined consisted of the right VC, left IFJ, and left ManMC, and of the left AC, left

IFJ, and left VocMC. To assess for any laterality effect, the above analysis was

repeated with the sensory-motor AudVoc ROIs in the right hemisphere (e.g.,

right AC, left IFJ, right VocMC). This path model yielded highly similar patterns

of results to the former model. In a final connectivity analysis, the strength of

the direct sensory-motor connections (i.e., right VC projecting to left ManMC,

and left AC projecting to left VocMC, right AudVoc ROIs were also used) were

also tested.
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Raw time-series data from each ROI were first filtered to remove signals of

no interest. Filtered data consisted of the residuals after fitting a linear model

containing the global signal and six estimated rigid-body motion parameters at

each time point, plus a high-pass filter set of discrete cosine basis functions

with a cutoff of 150 s. These filtered time-series were then converted to percent

signal change relative to their mean value over time, and were separated into

individual trial segments. Task-specific time series data were then created by

concatenating the individual trials for each single-task trial-type (AudVoc and

VisMan; Rogers et al., 2004; Rowe et al., 2002).

For each pair of ROIs, the functional connectivity between them was calcu-

lated as the Fisher-transformed correlation coefficient (Z) of the two ROI time

series. Effective connectivity in the form of path coefficients was then calcu-

lated by fitting the full path model (see above and Figure 3). Because the

models contain no loops or reciprocal connections, ordinary least-squares

techniques were employed (Berry, 1984). The coefficients for a given path

model were then averaged across subjects. As all connectivity measures

were calculated within subject and within task, second-level statistical analysis

was performed by treating task as a repeated-measure and subject as the unit

of observation. Finally, given the effect of training on response amplitude

(Figure 2), the connectivity analysis was also carried out after equating trial

BOLD response amplitude between sessions 1 and 3 to ensure that gross

amplitude changes between these sessions did not drive the connectivity

results. There was no difference in the overall pattern of results after perform-

ing this correction and we present the amplitude equated data in Figure 3.

Multivariate Pattern Classification Analysis

Adapting ensemble classification methods developed by Kamitani and Tong

(2005, 2006), a neural decoding analysis was performed to assess whether

training lead to increased task selectivity in IFJ. Although any effect of training

on neuronal task selectivity should be manifested in both the single-task and

dual-task conditions, only the former was used for MVPA because the indi-

vidual BOLD responses for each task cannot be resolved in dual-task trials.

ROIs and Preprocessing. Voxels used for task decoding were selected from

three ROIs: left IFJ, right AC, and right VocMC (identical patterns of results

were observed when we used other sensory-motor ROIs: right VC, left AC,

left ManMC, and left VocMC). The voxels from IFJ were rank ordered accord-

ing to their conjoined responses on both the AudVoc and VisMan single-task

trials, whereas the AC and VocMC voxels were isolated on statistical maps

generated from contrasting the AudVoc task and the VisMan task activity as

described above. These ROIs were isolated using the pretraining scanning

session. We verified, however, that the decoding results were the same

when the posttraining session was used to define and order the ROIs. ROIs

were defined by isolating the peak voxel in a given foci and then selecting vox-

els around this peak up to a maximum size of 4096 mm3. These ROIs were

larger than those employed in the amplitude analysis described above in order

to increase variability and therefore our likelihood of detecting patterns of acti-

vation across ROIs that distinguished between the two tasks. An identical

pattern of amplitude results was obtained in left hemisphere IFJ when we

employed these larger ROIs; namely significant differences between dual-

task and single-task trials pre- but not posttraining.

For each ROI, the 100 voxels with highest t values were selected for the

decoding analysis (Kamitani and Tong, 2005, 2006) (average min and max

t values for the 100 voxels across subjects: IFJ 1.91–6.29; AC 0.27–3.80;

VocMC �0.47–2.88; absolute min and max t values: IFJ 0.76–10.69; AC

0–7.24; VocMC �3.31–4.70). For each selected voxel, the time courses from

the two single-task conditions were extracted and the signal intensity of

each voxel was averaged over a 6 s time window (from 4 s to 10 s after stimulus

presentation) in order to capture the peak of the hemodynamic response

related to stimulus presentation and task performance. Percent-signal change

for each run was calculated relative to a baseline corresponding to the last 6 s

of each fixation period of each trial, averaged across all trials within the run.

The decoding analysis was also performed with and without the application

of a spatial normalization procedure that normalized the response amplitudes

of individual voxels relative to the average of the entire time course within each

run. This was done to minimize baseline amplitude differences across runs and

sessions; however, this procedure made no difference to the overall pattern of

results (the spatially normalized data are shown in Figure 4). For the classifier

data training set, the resulting activity patterns were labeled according to
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which of the two tasks participants were performing on a given trial and served

as the input for the task classifier analysis.

Classification Analysis. fMRI activity patterns from IFJ, AC, and VocMC were

analyzed using a linear classifier to predict which of the two behavioral tasks

subjects were performing on a given trial. Linear support vector machines

(SVM; Vapnik, 1998) were applied in order to obtain a linear discriminant func-

tion that could distinguish between the two behavioral tasks. Mathematically,

this function can be expressed by:

gðxÞ= wixi + wo

where xi is a vector specifying the fMRI amplitude of the voxel i, wi is a vector

specifying the weight of each voxel i, and wo is the overall bias. For a training

data set, linear SVM computes the optimal weights and bias for the discrimi-

nant function, such that this discriminant function, g(x) satisfies:

gðxÞ > 0 when fMRI activity is induced by one task;

gðxÞ < 0 when fMRI activity is induced by the other task:

To evaluate task classification performance, we performed a leave-one-run-

out cross-validation procedure (Kamitani and Tong, 2005, 2006). This tech-

nique operates by testing the data from a single run, after training the decoder

on the data from all other runs, thereby ensuring that independent samples are

used for training and test. This procedure was repeated for all runs and perfor-

mance was then averaged to produce a mean index of task classification

accuracy (% correct classification) for each ROI.

Experiment 2

The purpose of this experiment was to examine the effect of dual-task training

on the latency of IFJ activity using time-resolved fMRI. The behavioral para-

digm and fMRI data acquisition and analysis for this experiment are as

described in Experiment 1 except where otherwise specified below.

Subjects

Four right-handed members of the Vanderbilt University community (3 males,

25–30 years), with normal or corrected-to-normal vision, participated in this

experiment for financial compensation. These subjects did not participate to

Experiment 1.

fMRI Sessions

Subjects performed identical trials to those of Experiment 1, with the sole

difference that participants were only scanned pre- and posttraining in Exper-

iment 2.

Data Acquisition. Functional (T2*) parameters: TR 200 ms, TE 35 ms, FA 30�,

FOV 22 cm, 64 3 64 matrix with 3 coronal slices (8 mm thick, 0.5 mm skip)

acquired perpendicular to the AC-PC line, with the most posterior slice going

through the AC. This slice prescription encompassed the IFJ in all four subjects

(BA 9; ±45 (7.1), 9.6 (1.6), 25.3 (7.8); one subject only had a right hemisphere

IFJ ROI).

Data Analysis. Data preprocessing included 3D motion correction, slice scan

time correction, linear trend removal, and high-pass filtering (0.01 Hz).

The peak volume of a time course was defined as the volume with the great-

est signal amplitude between 2 s post-stimulus/stimuli onset and 14 s

following this time point to avoid confounding peak activations with the early

magnetic susceptibility and motion artifacts associated with the vocal

response (Figure 5B). Since the vocal artifact is limited to within the first couple

of seconds of responding, it does not affect the later peak hemodynamic

response (Birn et al., 2004).

SUPPLEMENTAL DATA

Supplemental Data include one table and three figures and can be found

with this article online at http://www.cell.com/neuron/supplemental/S0896-

6273(09)00458-9.
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