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Abstract

We employed a parametric psychophysical design in combination with functional imaging to examine the influence of
metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a
bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity
and monocular perspective cues that specify different slants (slant rivalry). Psychophysical results revealed that perceptual
alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed
systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the
onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations,
implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and
depth processing (LOC and V3A) were sensitive to the degree of slant, but failed to show increases in activity when these
cues were in conflict.
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Introduction

Bistability is a powerful paradigm to investigate perception and

its underlying neural mechanisms, a phenomenon during which

perception alternates between two interpretations of a single,

constant stimulus [1]. A defining characteristic of bistability is the

rate at which perception alternates. The frequency of perceptual

alternations is influenced by a number of factors including visual

attention [2,3], mood disorders [4] and neurological disorders [5].

Although there has been considerable investigation into neural

correlates of bistable perception [6–15] little is known about the

neural mechanisms representing the degree of perceptual

incongruence between conflicting inputs.

Bistable perception is thought to result from neural competition

between conflicting perceptual representations. This suggests that

if the level of incongruence between two competing representa-

tions increases, neural competition increases, possibly resulting in

more frequent alternations.

To test this, we use slant rivalry [16] in which bistable

perception originates from conflict between two slant-defining

cues, binocular disparity and monocular perspective, resulting in

perceptual alternations between a perspective-dominated and

disparity-dominated percept, Fig. 1a. This stimulus is well suited

because incongruence can be metrically altered by independently

changing perspective and disparity-defined slants. Previously, we

found that the temporal dynamics of slant rivalry are similar to

other examples of perceptual bistability [17], that slant-defining

signals adapt independently [18], and we used functional imaging

to identify cortical activation correlating with the perception of

stereoscopic slant [19].

Here, we investigated whether the degree of perceptual conflict

or incongruence has a systematic effect on the dynamics of bistable

perception and the strength of cortical responses. If so, it would

demonstrate that the brain takes into account the relative

difference between interpretations in its attempt to reconcile these

into a coherent, stable perceptual experience. In the psychophys-

ical experiments, we used a subset of stimuli from a slant-rivalry

stimulus space, defined by independently varying disparity and

perspective-defined slants (Fig. 1b) to determine the effect of

incongruence on alternation rates.

Using fMRI, we investigated the neural correlate of perceptual

conflict, which with prolonged viewing, leads to more frequent

perceptual alternations. Alternations have been shown to activate

areas of extrastriate, parietal and prefrontal cortex [8–11,19].

Here, we specifically investigated the cortical response to the level

of incongruence. To isolate these responses, stimuli were presented

briefly to minimize the likelihood of alternations occurring.

We predicted that brain areas sensitive to perceptual conflict

should show differential activity as a function of incongruence,

independent of the level of disparity- and perspective-defined

slants. By presenting stimuli too briefly to allow for perceptual

alternations, we were able to isolate changes in activity as a

function of incongruence independent of activity associated with

perceptual alternations.

Using this novel parametric approach, we show that alternation

rates are accurately predicted by the incongruence between
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perceptual interpretations. We further demonstrate that the

anterior part of the intraparietal sulcus shows systematic increases

in activity as a function of perceptual incongruence.

Methods

Subjects
Ten subjects participated in this study. Of these subjects, seven

were available for extensive psychophysical testing performed

outside of the MRI scanner. The remaining three participated

only in the imaging experiment. Subjects had normal or corrected-

to-normal vision. Subjects’ stereovision was tested using a

stereoanomaly test that capitalized on their ability to distinguish

between crossed and uncrossed disparities of magnitudes between

21 to 1 deg, without the possibility that eye movements could

mask a deficiency [20]. Subjects’ stereovision differed along a

continuous spectrum. For example, on one side of the spectrum

subject LD was excellent at distinguishing the signs and

magnitudes of both the crossed and the uncrossed disparities.

On the other side of the spectrum MD was just above chance in

distinguishing the signs and magnitudes of disparity and RV was

entirely unable to do so. We included RV as a subject as he

provides converging evidence for the relationship between

perceptual incongruence and cortical activation: due to his poor

stereovision, the subject showed no effect of incongruence on

alternation rates, as well as showing no change in cortical

activation in response to changes in incongruence. This makes it

unlikely that the observed pattern of activation found in other

subjects was due to attentional confounds, unrelated to the

processing of depth information and perceptual conflict. Func-

tional imaging procedures were approved by the FC Donders

Centre for Cognitive NeuroImaging. Informed written consent

was obtained prior to scanning.

Visual Stimuli
Slant-Rivalry Stimuli. Using the OpenGL graphics engine,

a wire frame rectangle (consisting of four vertical and four

horizontal lines) was rotated about the vertical axis to create the

trapezoidal shape (perspective-defined surface slant; Fig. 1a). We

created a disparity gradient (disparity-defined surface slant) by

horizontally compressing one eye’s half-image and magnifying the

other eye’s half-image. We utilized a conventional red-green

anaglyphic technique to present the stimuli stereoscopically (see for

demonstrations http://www.phys.uu.nl/,vanee). Photometric

measurements demonstrated that only minute amounts of the

green and the red light leaked through the red (0.4%) and the

green (0.2%) filter, respectively. We independently varied the

disparity- and perspective-defined slant in steps of 20u between

260u and 60u, creating a stimulus set of 49 slant-rivalry stimuli

(see Fig. 1b). The level of incongruence between slant-specifying

cues was defined as the absolute difference in angle between cues,

relative to the fronto-parallel plane. Average stimulus-width was

2.1u. Average height of the stimulus was 4.8u (left side) and 3.3u
(right side). The background (13.8u by 11.9u) consisted of an array

of small squares (0.5u by 0.5u) to facilitate stereofusion; 80% of the

squares in this array were shown to prevent fixation in the wrong

depth plane (i.e. wallpaper effect). The slant rivalry display was

shown within an aperture in the background at fixation.

For the slant-rivalry psychophysical experiments, we used 28

out of the 49 possible stimuli, corresponding roughly to half of the

symmetric stimulus space. For the slant-estimation psychophysical

experiments, we used all 49 possible stimuli. For the functional

imaging experiments, we included four high incongruence stimuli

(80, 100, 100u and 120u of incongruence respectively) of the other

Figure 1. Stimulus design and used configurations. (A) To
produce slant rivalry between the perceived surface slant dominated by
perspective and the slant dominated by disparity, we independently
varied perspective- and disparity-defined slants. Due to foreshortening,
slant-rivalry stimuli with different perspective settings have slightly
different sizes (average sizes are shown). Stimuli were presented within
an aperture of a surrounding pattern (13.8u by 11.9u) consisting of small
squares (0.5u by 0.5u) providing a zero-slant reference that prevented
depth contrast illusions. (B) 49 different slant-rivalry stimuli were created
by varying disparity-defined and perspective-defined slant independently
between 260u and 60u, in step of 20u. For the psychophysical experiments,
we used 28 out of 49 possible stimuli, corresponding roughly to half of the
symmetric stimulus space. For the functional imaging experiments, we
included four high incongruence stimuli (80u, 100u, 100u and 120u of
incongruence) of the other half of the stimulus space while removing two
low incongruent (incongruence of 20u) from the set that was used for the
psychophysical experiments. This was done to balance the number of high
incongruence stimulus versus the low incongruence stimuli.
doi:10.1371/journal.pone.0005056.g001

Incongruence
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half of the stimulus space while removing two low incongruent

stimuli (incongruence of 20u) from the set that was used for the

psychophysical experiments. This was done to balance the number

of high and low incongruence stimuli (in the full stimulus set, 120u
of incongruence occurred only twice, while 0u of incongruence

occurred 7 times), see Table 1. For the psychophysical

experiments, stimuli were presented using a LaCie monitor

(resolution 160061200 pixels) with subjects seated at 52 cm

distance from the screen. During functional imaging, stimuli were

presented using an EIKI projector (LC-X986, resolution 8006600

pixels) onto a transparent screen positioned at the rear end of the

MR scanner. Subjects viewed these through a mirror attached to

the head coil. Distance to the screen via the mirror was 80 cm.

Red and green filters were attached to MR-suited glasses for

viewing of our stereoscopic stimuli.

Polar Retinotopic Mapping / MT+ and LOC Localization

Stimuli. To delineate borders between visual areas, we relied on

retinotopic mapping data collected in a prior scanning session.

Polar retinotopic mapping was done using methods described in

detail previously [19,21–24]. We used two rotating wedges to map

the visual field based on previously described methods [14].

Contained within these wedges was a contrast-reversing

checkerboard pattern that flickered at 8 Hz. We used this

method of two wedges since it produces a more stable stimulus,

reducing unwanted eye movements. For mapping of MT+, we

used a block design consisting of epochs of randomly located

stationary dots, interleaved with epochs of randomly located dots

moving away from the center (outward radial motion at a velocity

of 3u/s). For mapping of LOC [25–27], we used a block design

consisting of epochs of objects (faces, houses, scenery and man-

made objects) or scrambled versions of the same images, described

in detail in [27].

Procedure
Psychophysical Experiments: Slant Estimation. During

the slant-estimation psychophysical experiments, subjects viewed

stimuli for a duration of 3 seconds, after which they estimated both

the perceived slant that was dominated by the disparity cue and

the perceived slant that was dominated by the perspective cue.

They did so using a schematic top view of the stimulus, adjusting

the orientation of two lines representing the slants [16] as seen

from above. A sensible objection to this metrical slant-estimation

method is that it is hard to interpret the data because a slant angle

that is estimated at 35 deg in one trial might look like 40 deg in

another trial. Previous work has demonstrated, however, that

subjects have a relatively constant internal reference and that they

do not regard this task as difficult. This estimation method has

been used previously for real planes and when subjects wore

distorting lenses [62]. In addition, a similar metrical depth

estimation method was successfully used for volumetric stimuli

[63]. All 49 possible stimuli were presented 4 times.

Psychophysical Experiments: Slant Rivalry. During the

slant-rivalry psychophysical experiments, subjects viewed stimuli

for a duration of 210 seconds. A total of 28 different stimuli were

presented twice in each of a total of four sessions. Subjects were

required to maintain fixation at the center of the stimulus (which

they can easily do when viewing a slant rivalry stimulus [17,28]),

using two buttons to indicate the predominance of either percept.

Subjects were instructed to report which side (left or right side) of

the stimulus was perceived as closer, relative to the other side. As

an additional control, after each trial, subjects again estimated

both the perceived slant that was dominated by the disparity cue

and the perceived slant that was dominated by the perspective cue.

Slant Rivalry Functional Imaging Experiments. During

the functional imaging experiments, subjects viewed a total of 30

different stimuli (see Table 1 and see Fig. 1), each presented twice

per run using a jittered event-related design. Stimuli were presented

for 1 second, interleaved with blank displays containing a yellow

fixation dot, lasting between 3 and 7 seconds. These interstimulus

intervals were chosen randomly such that the orthogonality of the

resulting design matrix was maximal (average correlation ,0.1

between predictors). Subjects were instructed to keep fixation either

on the fixation dot (during fixation epochs) or on the center of the

stimulus. Runs (6 to 7 per subject) lasted 720 seconds.

Retinotopic mapping/localization of MT+ and LOC.

Retinotopic mapping and functional mapping of area MT+ was

performed using methods identical to those described previously

[19,21]. All subjects performed three polar mapping runs,

consisting of 10 cycles (full hemifield rotation of two wedges),

lasting a total of 456 seconds. In addition, subjects performed one

run of MT+ localization and one run of LOC localization. MT+

Table 1. Summary of the slant-rivalry stimuli used in the
imaging experiments.

Perspective Disparity Incongruence

60 260 120 Slant 60, Incongruent

60 240 100

60 220 80

60 0 60

60 20 40

60 60 0 Slant 60, Congruent

40 260 100

40 240 80 Slant 40, Incongruent

40 220 60

40 0 40

40 40 0 Slant 40, Congruent

20 260 80

20 240 60

20 220 40 Slant 20, Incongruent

20 0 20

20 20 0 Slant 20, Congruent

0 260 60

0 240 40

0 220 20

0 0 0 Slant 0

220 240 20

220 220 0 Slant 20, Congruent

220 20 40 Slant 20, Incongruent

240 260 20

240 240 0 Slant 40, Congruent

240 40 80 Slant 40, Incongruent

240 60 100

260 260 0 Slant 60, Congruent

260 40 100

260 60 120 Slant 60, Incongruent

The color coding of the columns indicates the subset of stimuli used for the
congruent/incongruent analysis described in Figure 5. These particular stimuli
represent cases in which there equal slant information in both perspective and
disparity-defined cues, either opposite (bright red) or equal in slant.
doi:10.1371/journal.pone.0005056.t001

Incongruence
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localization runs consisted of six 16-second epochs of stationary

dots and six 16-second epochs of outward radial motion,

interleaved with 16-second fixation rest periods. During LOC

localization runs, subjects viewed 16-second epochs of various

image types (see above), interleaved with 16 second epochs

containing a blank fixation screen. Within image epochs, a total

of 25 randomly chosen stimuli were shown for 500 msec,

interleaved with 160 msec blanks. Contrasting epochs containing

objects (houses, faces, scenery, man-made objects) with scrambled

versions of the same objects localizes area LOC [27].

Magnetic Resonance Imaging
All images were acquired using a 3 Tesla Siemens TRIO with

exception of a high-resolution T1 anatomical scan acquired using

a 1.5 Tesla Siemens Sonata. Scanners were located at the FC

Donders Centre for Cognitive NeuroImaging, Nijmegen, The

Netherlands. We used a 1-mm resolution 3D-MPRAGE (optimized

contrast between gray and white matter) for high-resolution anatomical

scans. All functional images were collected using Echo Planar

Imaging (EPI). For runs with bistable stimuli we used 25 horizontal

slices (TR = 2000 ms, TE = 30; 64664 matrix; voxel size

Figure 2. Slant estimates for three representative subjects. Subjects estimated both the perceived surface slant that was dominated by the
disparity cue and the perceived slant that was dominated by the perspective cue. Each data point represents one single estimate. The abscissa
reflects the slant defined by disparity (left) and perspective (middle). From these estimates, we calculated the subjective level of incongruence (right).
For subjects JX and LD, estimates are reliable, although somewhat underestimated, resulting in a correlation between objective and subjective
incongruence. For subject RV, who is deliberately included because his stereovision proved to be poor, estimation of the disparity-defined slant is
poor, and as a result so is the correlation between objective and subjective incongruence. Errorbars denote SD.
doi:10.1371/journal.pone.0005056.g002

Incongruence
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3.5 mm3). For retinotopic mapping we used 25 horizontal slices

(TR = 3000 ms, TE = 30; 64664 matrix, voxel size 36363 mm).

Cortical Flattening and Area Border Delineation
The cortical sheets of the individual subjects were reconstructed

as polygon meshes based on the high-resolution T1 scans. The

white-gray matter boundary was segmented, reconstructed,

smoothed, inflated and flattened [29]. Area border delineation

using the polar retinotopic mapping was done using methods

previously described [22–24,30,31]. Using the correlation between

wedge position and neural activity, borders were identified on the

basis of field-sign alternations and areas were drawn in on the

flattened sheet manually.

Functional MR Data Analysis
We used BrainVoyagerQX (BrainInnovation, the Netherlands) and

Matlab (Mathworks) for all functional data analysis as well as for the

creation of flattened cortical representations. Before analysis, we

removed the first three volumes of every scan. All remaining

functional images were subjected to a number of preprocessing

steps: 1) motion correction, 2) slice timing correction 3) linear

trend removal using a high pass filter and 4) transformation of the

functional data into Talairach coordinate space [32]. We

convolved the duration of the stimuli (1 second) with a standard

hemodynamic model of BOLD activation [33] and estimated the

changes in BOLD signal given a particular stimulus using the

general linear model or GLM [34].

To map areas showing an effect of incongruence on activation,

we used a random-effects GLM group analysis (threshold: p,0.001),

contrasting the stimuli with the three highest incongruencies (80u,
100u, 120u) against the stimuli with the three lowest incongruen-

cies (0u, 20u and 40u). The data from the resulting clusters of

activation for which this contrast reached statistical significance

was then further analyzed using linear regression to determine the

correlation between stimulus measures and cortical activation

(level of disparity-defined slant, level of perspective-defined slant,

level of incongruence).

For a region-of-interest-based analysis of the visual areas (V1,

V2, V3, V3A, VP, V4V and MT+), we used only the voxels that

were activated significantly (p,0.001, corrected) by the extent of

the stimulus.

In an additional analysis, we compared normalized BOLD

signal changes of stimuli with identical and equal levels of disparity

and perspective-defined slants (e.g. 60u disparity-defined slant / 60u
perspective-defined slant, no incongruence) with stimuli of identical but

opposite levels of disparity and perspective-defined slants (e.g. 60u/
260u, incongruence 120u) within these various regions of interest.

Incongruence remains at 0u if one increases the level of both slant-

cues (from 0u to 60u, in steps of 20u) according to a common sign

or direction. By contrast, increasing the level of both slant cues

while making them opposite in sign does increase incongruence

from 0u (0/0) to 120u (e.g. 60u/260u). At each level of cue-defined

slant, we compared the activation associated with same sign stimuli

(no incongruence) with those of opposite sign (incongruent) using a

student t-test statistic. Event-related averages were created by

calculating average time courses using a fixed time window (24 to

+18 sec) that was centered on the time a particular stimulus was

presented.

Results

Psychophysical results: Slant Estimates
In the first analysis, we investigated the relationship between

objective measures of slant (actual presented slant) and subjective

measures of slant (perceived slant). From this, we could derive an

estimate of subjective incongruence, based on the perceived

angular difference (in the 3D depth plane) between the disparity-

defined and perspective-defined slant. Objective incongruence

reflected the actual angular difference between these conflicting

slant cues. In accordance with earlier findings, perceived slants

were typically underestimated with regard to the slant information

present in the stimulus [20,28]. In addition, low levels of

incongruence (e.g. 20 or 40u) were perceptually reconciled and

perceived as being congruent: subjects typically reported perceiv-

ing an intermediate slant, indicating that the conflicting cues were

integrated into a coherent percept, as was shown in greater detail

in a previous study, suggesting a Bayesian estimator that reconciles

available slant cues [35]. Slant estimates for three representative

subjects (JX, LD and RV) are shown in Fig. 2a. For these three

subjects, the correlation between presented and estimated

perspective-defined slant was quite accurate (middle column),

although the actual slant was underestimated. The correlation

between presented and estimated disparity-defined slant was

somewhat less reliable, and even quite low in one of the subjects

(RV, bottom row). We deliberately included RV because of his poor

stereovision. We argued that if this subject was poor in estimating

slant on the basis of stereoscopic depth cues, the effect of

incongruence (based upon the conflict between disparity and

perspective) should be minimal or even absent. Indeed, while the

estimated incongruence for subjects JX and LD corresponded well

with the actual incongruence, the estimated incongruence of RV
clearly does not. In accordance with this performance and his poor

stereovision, this subject also showed a weak correlation between

incongruence and alternation rates, as well as between incongru-

ence and cortical activation (see below). Table 2 summarizes the

statistics of the correlation between presented and perceived

disparity- and perspective-defined slants and between presented

and perceived incongruence for all subjects (r-squared values

derived from the fits). Finally, the reliability of slant estimates does

not seem to depend on incongruence: estimation accuracies are

similar for all levels of incongruence. Apparently, the conflict

between slants does not interfere with the consistency of subjects’

Table 2. Summary of the correlation between perceived and
presented disparity- and perspective-defined slants (columns
1 and 2) and between perceived and presented incongruence
(column 3).

Perspective Disparity Incongruence

JB 0.91 0.86 0.79

TK 0.97 0.97 0.94

LD 0.90 0.85 0.87

AK 0.83 0.53 0.46

MD 0.77 0.57 0.40

RV 0.94 0.00* 0.04*

GB 0.97 0.89 0.86

JX 0.93 0.68 0.69

DW 0.93 0.52 0.70

CK 0.88 0.22 0.33

WS 0.93 0.72 0.21

With the exception of subject RV, all subjects show a significant correlations
between presented and perceived measures of slant and incongruence. Values
indicate R-squares derived from the fits between perceived and presented
measures. Astrix indicate fits not reaching significance (p.0.05).
doi:10.1371/journal.pone.0005056.t002
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estimates of each slant component, although, at the same time, it

can have profound effect on how the stimulus is perceived.

Psychophysical results: Alternation rates
A first novel finding was that alternation rates increase with

higher incongruencies. Fig. 3 shows group psychophysical data.

Comparing the increase in alternation rate (Fig. 3a) with both

objective (Fig. 3b) and subjective incongruence (Fig. 3c) of the

presented stimuli reveals the latter to be more correlated with

alternation rates than the former. The effect of incongruence on

alternation rates can also be observed directly on a trial-by-trial

basis (shown for objective incongruence in Fig. 3d and subjective

incongruence in Fig. 3e). Here, individual differences in alternation

rate become apparent: the magnitude of the increase in alternation

as a result of incongruence varies between subjects. Nevertheless,

for all subjects an increase in alternation rate was observed for

higher incongruencies. Although objective and subjective mea-

sures of incongruence are both predictive of alternation rates,

subjective incongruence was more closely related to the alternation

rate than the stimulus’ objective incongruence. Fig. 3f summa-

rizes the statistical results, showing that of all measures, subjective

incongruence appears to be the best predictor of alternation rate,

outperforming prediction of alternation rate on the basis of

disparity and perspective cues (both objective and subjective) and

objective incongruence. Statistical analyses of these results show

that objective incongruence is a better predictor of alternation rate

than both objective disparity-defined slants (paired sample t-test,

t5 = 9.52, p,0.01) and objective perspective-defined slants (paired

sample t-test, t5 = 9.85, p,0.01). In addition, subjective incongru-

ence outperforms subjective disparity-defined slants (paired sample t-

test, t5 = 13.31, p,0.01) as well as subjective perspective-defined

slants (paired sample t-test, t5 = 31.05, p,0.01). The difference

between subjective and objective incongruence failed to reach

significance, due to the opposite effect observed in subject RV, for

whom objective incongruence outperforms subjective incongru-

ence as being the better predictor of alternation rates. Taken

together, though, these results suggest that the mechanism

underlying the temporal dynamics of slant rivalry is sensitive to

the difference between interpretations of surface slant cues, rather

than their absolute levels.

fMRI results: Activation of the anterior intraparietal

sulcus correlates with incongruence. To examine the

influence of incongruence on cortical activation, we used

functional magnetic resonance imaging (fMRI) while subjects

viewed a subset of the slant rivalry stimuli, presented briefly for

1 second. These short durations allowed us to study the effect of

incongruence on cortical activity prior to the onset of alternations.

Even so, in some instances subjects reported alternations. The

chance of an alternation occurring during the 1-second

presentation increased as a function of incongruence, mimicking

the psychophysical results. At the highest level of incongruence,

alternations were experienced in less than 30% of all trials. In

addition, most alternations (68%) were alternations from the

perspective-dominated percept towards the disparity-dominated

percept (see Fig. 4).

In a first analysis, we identified the voxels that were more active

for the three highest levels of incongruence (80, 100, 120u) versus

the three lowest levels of incongruence (0, 20, 40u). This contrast

(Fig. 5a) revealed a cluster of robust bilateral activation in the

anterior part of the intraparietal sulcus (aIPS cluster, random effects

analysis, t9.5.88, p,0.0005). The data taken from this cluster was

used to examine the precise relationship between cortical

activation and various stimulus manipulations of disparity-defined

slant, perspective-defined slant and the incongruence between

them. Fig. 5b plots the normalized BOLD signal changes for each

level of incongruence (top panel), the level of disparity-defined slant

(middle panel) and the level of perspective-defined slant (bottom panel),

Figure 3. The correlation between alternation rates and subjective incongruence in all subjects. (A) The effect of independently varying
the level of disparity-defined slant (x-axis) and perspective-defined slant (y-axis) on alternation rates (z-axis). Since the stimulus space formed by
varying disparity and perspective is symmetrical, only half of the available stimuli were presented to the subjects. Color coding depicts the level of
objective incongruence for each stimulus (dark red: low incongruence, yellow/white: high incongruence). Alternations rates increase with increased
levels of incongruence. (B) The objective level of incongruence for all test stimuli (z-axis) as a function of independently varying disparity- (x-axis) and
perspective-defined slant (y-axis). Objective levels of incongruence are computed as the absolute difference between the disparity- and perspective-
defined slant of each stimulus. (C) The subjective level of incongruence, as estimated by subjects, with axes identical to (B). The increase in
alternation rates depicted in (A) is better predicted by subjective incongruence (C) than by objective incongruence (B). (D) Trial-by-trial scatter plot,
correlating objective incongruencies (abscissa) with alternation rates (ordinate) for all individual subjects (color-coded). This demonstrates that
differences in alternation rates between subjects are observed, but that in all cases a positive correlation can be observed between incongruence and
alternation rate. A similar observation can be made by observing the correlation between subjective incongruence and alternation rate (E).
Summarizing all psychophysical results, (F) shows that of all measures (objective disparity, perspective, incongruence; subjective disparity,
perspective, incongruence), subjective incongruence is the best predictor of subsequent alternation rates. The only exception is subject RV, in
accordance with his poor stereovision.
doi:10.1371/journal.pone.0005056.g003

Figure 4. Percentage of trials in which a perceptual alternation
occurred during the imaging experiments. Although stimuli were
presented briefly (1-second), alternations were occasionally being
reported. The likelihood of an alternation increased at higher levels of
incongruence, mimicking the psychophysical results. In addition, the
majority of these alternations (68%) involved switches from the
perspective-dominated percept to the disparity-dominated percept.
doi:10.1371/journal.pone.0005056.g004
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together with the results from a linear regression analysis. The

activation within the aIPS cluster of activation correlates positively

with all three measures. More importantly, activation correlates

with the level of incongruence: higher levels of incongruence

between perceptual states evoke a higher response within the

intraparietal cluster of activation. One concern is that the

activation also seems to correlate highly with the absolute level

of disparity- and perspective-defined slant. As explained above, the

level of incongruence of a stimulus is inevitably correlated with the

level of both disparity and perspective-defined slants to some

degree, as higher levels of slant are necessary to create higher levels

of incongruence. It is therefore crucial to compare stimuli with

different levels of incongruence with congruent stimuli containing

identical levels of disparity- and perspective-defined slant. We

therefore compared cortical responses to stimuli in which

disparity- and perspective-defined slants specified identical but

opposite levels of slant (creating incongruence, e.g. 60u and 260u) with

those of equal slant (no incongruence, e.g. 60u and 60u). By comparing

the difference in evoked activation between stimuli containing

equal (no incongruence) and opposite (incongruence) levels of disparity-

and perspective-defined slant, we can separate activation changes

correlated with increased levels of incongruence from activation

changes correlated with increased levels of slant. The results for

this particular analysis are shown in Fig. 5c. Here, for our aIPS

cluster of activation, increasing the level of disparity and

perspective-defined slant does not lead to an increase in activation

when these slants are in agreement (dark red line). If, however, slant

levels increase in opposite directions, the effect of which is an

increase in incongruence between slants (bright red line), we see an

increase in associated cortical activation. At the group level, this

effect does not reach significance for the comparison between

incongruent and congruent slants of 20u (t18 = 1.14, p = 0.269), but

the comparisons between incongruent and congruent slants of 40u
and 60u show that incongruent slants are associated with higher

signal changes than are congruent slants of the same magnitude

(40u: t18 = 2.45, p = 0.024, 60u: t18 = 3.00, p = 0.007). Taken

together, our data demonstrate that the activation in IPS is

strongly correlated with incongruence, independent of disparity

and perspective-defined slants.

One potential concern is that the increase in activation as a

function of incongruence might be due to the confounding

presence of alternations, as these were more likely to occur under

conditions of high incongruence. Even though a relatively low

percentage of trials were accompanied by a perceptual alternation

(reaching a maximum of about 30 percent for trials with the

highest levels of incongruence), we nevertheless removed these

trials for an additional analysis. Analysis of only the non-

alternation trials revealed the same pattern of results as was

obtained from the entire data set, with statistically significant

effects of comparable magnitude found in both cases.

The effect of increasing incongruence on cortical activation

within aIPS can also be seen in plots showing event-related

averages of BOLD signal changes (Fig. 6, three representative subjects).

Furthermore, Fig. 7 shows that for each subject, an increase in

activation is observed for higher incongruencies, although the

magnitude, shape and slope of this relationship varies between

subjects. Specifically, the subject showing the weakest relationship

between incongruence and cortical activation (RV) was also poor

at processing disparity-defined slant. This subject showed a poor

correlation between objective and subjective levels of incongru-

ence (Fig. 2), as well as a weak correlation between incongruence

and alternation rate (Fig. 3).

Fig. 8 plots the direct comparison between equal and opposite

slant stimuli for each individual subject, demonstrating that in

most subjects, increases in activation are observed when disparity-

and perspective-defined slants increased in opposite directions,

compared to when they increased congruently. In summary,

activation in the anterior IPS is correlated with incongruence,

independent of disparity- and perspective-defined slants.

fMRI results: The effect of incongruence in lower visual

areas. We also investigated the effects of incongruence on

cortical responses in retinotopic visual areas V1 through V4V as

well as areas LOC and MT+, using a region-of-interest-based

analysis (Fig. 9). For each individual subject, we identified these

visual areas using conventional retinotopic mapping and

localization techniques (see methods). The effect of increased

incongruence, increased absolute disparity, and perspective-

defined slants on each of these areas was then ascertained.

Interestingly, the activation within early visual areas V1, V2 and

V3 seems to decrease for higher levels of disparity-defined slant

(although this did not reach significance). This pattern is abruptly

reversed in dorsal visual area V3A, which shows positively

correlated activity with increased disparity-defined slant. The

correlation between activation and increased perspective-defined

slant did not reach significance, although it showed a similar

relationship. Of all regions of interest, only area LOC (lateral

occipital complex) and area MT+ showed an increase in activity

for higher levels of incongruence. However, the effect of

incongruence could not be dissociated from the increases due to

the level of disparity- and perspective-defined slant. A comparison

between slant conditions of equal and opposite sign revealed that

areas LOC and MT+ showed a positive increase in activity as a

function of slant, but activity was no greater for incongruent

stimuli than for congruent stimuli that shared the same degree of

disparity- and perspective-based slant.

Discussion

During rivalry between perceptual interpretations of visual

slant, we found that the dynamics of bistable perception are

influenced by incongruence: increased incongruence between

slants led to increased alternation rates. Furthermore, subjective

(i.e. perceived) incongruence predicted alternation rates more

accurately than objective (i.e. presented) incongruence, suggesting

that the dynamics of bistable perception are dependent not on the

absolute magnitude of cues or the objective incongruence between

cues, but instead depend on the perceived incongruence between

these cues. The transformation from objective to subjective

Figure 5. Imaging Results (A). Results of random-effects GLM analysis, contrasting the three highest levels of incongruence (80u,100u and 120u)
against the three lowest levels of incongruence (0u, 20u and 40u). Bilateral activation for this contrast was found along the anterior part of the
intraparietal sulcus. (B) Changes in percentage BOLD signal as a function incongruence (top), disparity-defined slant (middle) and perspective-defined
slant (bottom). (C) Comparison of the difference in evoked activation between stimuli containing equal (no incongruence) and opposite
(incongruence) levels of disparity and perspective-defined slants. Increasing the level of disparity- and perspective-defined slants did not significantly
increase the activation when these slants were kept identical (e.g. perspective-defined slant: 60u, disparity-defined slant: 60u, dark red line). If slant levels
are increased in opposite directions, then this increase in incongruence is associated with increased cortical activation. Taken together, these data
demonstrate that activation that the activation cluster within IPS reflects incongruence, independent of disparity- and perspective-defined slant. Error
bars denote SEM.
doi:10.1371/journal.pone.0005056.g005
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incongruence is likely to be a function of how different cues are

weighted and combined by subjects.

A neural correlate of these systematic increases in perceptual

incongruence was identified bilaterally in the anterior part of IPS

and to a lesser extent in areas MT+ and LOC. However, for these

two latter areas, activation related to incongruence could not be

dissociated from activation related to increasing the absolute

perspective- and disparity-defined slant. By presenting stimuli

briefly, we focused on activation related to the initial perception

(both sensory and perceptual) of the stimulus, prior to the onset of

alternations. It is commonly believed that bistable perception

arises from neural competition between conflicting perceptual

signals [1,36]. However, there has been little systematic investi-

gation of how the brain responds to varying levels of perceptual

incongruence prior to entering bistable perceptual states. Here, we

show that systematic increases in response strength as a function of

perceptual incongruence can be found in anterior IPS, an area

implicated in the processing of depth [37–42]. An fMRI study of

disparity processing in both humans and monkeys found that a

region in the posterior (or caudal) intraparietal sulcus was

responsive to stereoscopic depth in both species [43]. Single-unit

recordings in macaque caudal intraparietal sulcus (CIP) have

revealed neurons that are sensitive to surface orientation based on

cues such as perspective, texture and disparity [40–42]. Moreover,

the majority of CIP neurons are biased towards disparity-defined

surfaces, showing greater sensitivity to disparity-defined slants as

compared to perspective- or texture-defined slants. Compared to

these regions of interest, the activation found in the present study is

located more anteriorly along the IPS. Previous studies have

shown that the anterior IPS is activated when subjects perform a

surface orientation discrimination task that requires discriminating

between surfaces defined by texture, perspective and disparity

[38]. This suggests that both posterior IPS (homologue to macaque

CIP) and anterior IPS are both part of the dorsal stream of visual

processing, which is responsible for integrating depth cues to

represent the spatial organization of the local environment and for

guiding actions within that environment. The sensitivity of the

intraparietal sulcus to the degree of perceptual incongruence

suggests that it may have an important role in signaling the need to

reinterpret potentially ambiguous depth cues contained in the

visual scene, thereby initiating bistable perception.

In our stimulus, incongruence arose from conflicting depth cues,

while in other forms of visual bistability it arises, for example, from

half-images that cannot be binocularly fused (i.e. binocular

rivalry). As an alternative explanation, the activity within the

intraparietal sulcus might signal perceptual incongruence, regard-

less of its (sub)modality (e.g. depth). Indeed there is a growing

literature that suggests a role for the parietal cortex (particularly

the IPS) in binding visual, auditory, and tactile information (review

in [44]).

It has been suggested that the prefrontal cortex might be

involved in initiating perceptual alternations under conditions of

bistability [8,9]; might these same regions have a role in detecting

perceptual incongruence? We found some suggestion of prefrontal

regions showing increased activity as a function of the degree of

incongruence, but these effects did not reach significance. In a

previous study of slant rivalry, we also found no reliable evidence

of increased activity in prefrontal areas during spontaneous

Figure 6. Event-related averages. Event-related averages of the
activation evoked by different levels of incongruence for three
representative subjects. The higher the level of incongruence, the
higher the evoked BOLD signal changes in aIPS. Error bars denote SEM.
doi:10.1371/journal.pone.0005056.g006
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perceptual alternations [19]. In our view, the precise functional

role of the prefrontal cortex in bistable perception remains

unclear. A previous fMRI study showed evidence of covariation of

activity between regions of the prefrontal cortex and early visual

areas during binocular rivalry [9]. Parallel studies using magne-

toencephalography (MEG) have reported widespread intra- and

inter-hemispheric synchronized activity during binocular rivalry

[45], with evidence of these dynamic networks extending from

early visual areas to higher order areas of the parietal and frontal

lobe. However, a recent study found that the differences in frontal

activity between two perceptual states might be explained by

differences in observer biases for those two perceptual states [46].

Concerning the frontal MEG activity that is thought to

accompany visual rivalry [45], a recent study reported that

measures of coherence between different sensors may be

dominated by signals from a common occipital source [47],

suggesting that previous claims about widespread synchronized

networks during binocular rivalry are premature.

We found that activity in area V3A increased with greater

disparity-specified slants, consistent with the proposed role of this

region in stereoscopic depth perception [48–54]. In previous work,

exploiting the benefit of using the slant-rivalry stimulus to

dissociate between sensory processing of disparity and the

sensation of stereopsis, we have found a clear correlation between

the activity in V3A and perceptual alternations towards a

disparity-dominated percept [19]. Collectively, these findings

suggest that V3A reflects a relatively early stage of visual

processing involved in extracting the disparity-defined slant of

surfaces.

Area LOC showed increases in activation for higher levels of

incongruence. However this effect could not be dissociated from

activation resulting from changes in the level of disparity- and

perspective-defined slant. Area LOC is commonly associated with

the processing of visual shape [25] and is sensitive to shapes

defined by many visual cues [26], including disparity [27]. There is

further evidence that the ventral route of visual processing relies on

multiple depth cues to determine shape. For example, some V4

neurons show strong tuning to orientation in the third dimension

conveyed by disparity cues [55]. Inferior temporal (IT) neurons in

the macaque monkey show selectivity for disparity-defined shapes

[56–58]. In addition, some of these neurons also show selectivity to

texture-defined slants, consistent with their proposed role in

representing 3D shape [59]. Of particular relevance to the present

study, it has been found that LOC is able to integrate different

depth cues (e.g. perspective and disparity) to extract 3D information

from objects [60].

Area MT+ showed a similar pattern of results as was found for

area LOC; activity increased with to increasing levels of

incongruence, but this effect could not be dissociated from

changes in the levels of perspective and disparity-defined slant.

Although MT+ is typically considered an area involved in

processing motion signals, macaque MT does contain disparity-

Figure 7. Correlations between incongruence and cortical
activation for all individual subjects. Overall, all subjects show a
significant increase in activation for higher incongruencies. However,
for RV this increase is somewhat weak. This fits nicely with the
psychophysical results: this subject was poor at estimating the level of
disparity-defined slant (Fig. 2) and, as a result, the level of
incongruence within a stimulus. In addition, the influence of
incongruence on alternation rate was also low for this subject. Error
bars denote SEM, insets show the statistical result of the linear
regression between incongruence and normalized BOLD signal
changes, expressed in the fit parameter R-squared.
doi:10.1371/journal.pone.0005056.g007
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sensitive cells, which show a topographic organization similar to

direction tuning. Furthermore, MT cells appear to be tuned to

disparity-defined slants [61]. Nevertheless, the shape selectivity in

MT makes it an unlikely candidate to be involved in the process

needed to resolve the ambiguity and the level of this ambiguity

between slant-specifying cues.

What type of neural mechanism might underlie both the

increased alternation rate and the increased activation found at

higher incongruencies? Although there is much debate about what

exactly competes during bistable perception, it is generally

assumed that some form of neural competition must underlie it.

The competition model is a suitable candidate to account for the

positive correlation we find between alternation rate and

incongruence. We suggest that when representations are quite

similar (low incongruence), neural populations coding these

representations (partially) overlap. Increasing incongruence leads

to a decrease in overlap between neural representations, leading to

increased competition. This increased competition could account

for the higher alternation rates. Also, the decrease in overlap

would involve more and more neurons being recruited to

represent the two percepts as they become increasingly distinct,

thereby increasing the net activity across both neuronal popula-

tions. Alternatively, the increase in dissimilarity increases the

strength of mutual inhibition between both neural populations. In

both cases, higher incongruencies will lead to a higher metabolic

demand of these neurons, leading to a higher BOLD signal in

fMRI, providing a possible explanation for our results that show

increased incongruence increases cortical activation.

In conclusion, we used a novel approach to study the

mechanisms of depth perception and perceptual bistability by

combining psychophysics and functional imaging. Our aim was

to investigate how the brain responds to increasingly incongruent

information. This allowed us to identify the influence of

parametric changes in incongruence on both perceptual processes

and the cortical mechanisms that underlie these processes. Our

results demonstrate that alternation rate increases with higher

incongruencies for slant rivalry. Interestingly, perceived (subjec-

tive) incongruence predicted alternation rate more accurately

than presented (objective) incongruence. We found increased

activation within the anterior part of the intraparietal sulcus (IPS)

at higher incongruencies. These effects were present even prior to

the onset of perceptual alternations, as we presented the stimuli

too briefly for alternations to occur and shape the pattern of

activity we observed. This suggests that this area is important for

assessing the level of incongruence between perceptual states.

Possibly, the activation of these areas in response to a specific

Figure 8. Comparison of activity levels. Comparison of activity
levels in the intraparietal sulcus for stimuli containing equal (no
incongruence) and opposite (incongruence) levels of disparity- and
perspective-defined slants, plotted for individual subjects. Here, the
data is somewhat less reliable, as these graphs are created from a small
subset of the total number of stimuli presented. Regardless, a similar
trend is observed for most subjects: increasing incongruence is
accompanied by increased cortical activation, while increasing slant
levels while keeping them equal in sign (no incongruence) did not
increase cortical activation. Symbols denote whether a particular
comparison (e.g. incongruent slants of 40u versus congruent slants of
40u) was found to be significantly different. The data of subject RV did
not show this trend, in accordance with this subject’ poor estimation of
disparity-defined slants and the weak relationship between cortical
activation and incongruence. These data show that activation reflects
perceived incongruence, independent of disparity- and perspective-
defined slants. Error bars denote SEM.
doi:10.1371/journal.pone.0005056.g008
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perceived incongruence may influence or determine the frequen-

cy of subsequent perceptual alternations. We account for

increased alternation rate and activation by assuming that

perceptual representations become more distinct and less

overlapping at higher incongruencies, thereby recruiting more

neurons for the competitive process in bistability. To summarize,

we demonstrate that the brain takes into account the relative

difference between interpretations in its attempt to reconcile these

into a coherent and stable perceptual experience and that

evidence of this reconciliation process can be seen in both the

temporal dynamics of bistability and in cortical responses prior to

the onset of bistability.
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