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pattern classification algorithms to predict or decode task parameters from
individual fMRI activity patterns. For fMRI decoding, it is important to choose an appropriate set of voxels (or
features) as inputs to the decoder, since the presence of many irrelevant voxels could lead to poor
generalization performance, a problem known as overfitting. Although individual voxels could be chosen
based on univariate statistics, the resulting set of voxels could be suboptimal if correlations among voxels
carry important information. Here, we propose a novel linear classification algorithm, called sparse logistic
regression (SLR), that automatically selects relevant voxels while estimating their weight parameters for
classification. Using simulation data, we confirmed that SLR can automatically remove irrelevant voxels and
thereby attain higher classification performance than other methods in the presence of many irrelevant
voxels. SLR also proved effective with real fMRI data obtained from two visual experiments, successfully
identifying voxels in corresponding locations of visual cortex. SLR-selected voxels often led to better
performance than those selected based on univariate statistics, by exploiting correlated noise among voxels
to allow for better pattern separation. We conclude that SLR provides a robust method for fMRI decoding and
can also serve as a stand-alone tool for voxel selection.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Conventional fMRI data analysis has primarily focused on
voxel-by-voxel functional mapping using the general linear
model, in which stimuli or behavioral parameters are used as
regressors to account for the BOLD response (Friston et al.,
1995;Worsely et. al., 2002). Recently, much attention has been
paid to pattern classification, or decoding, as an alternative
approach to conventional functional mapping. In this
approach, fMRI activation patterns of many voxels can be
used to characterize subtle differences between different
stimuli or subjects' behavioral/mental states. The pioneering
work by Haxby et al. (2001) has demonstrated that broadly
distributed fMRI activity patterns can discriminate pictures of
visual objects, which cannot be easily distinguished by the
conventional functional mapping (see also Strother et al.,
2002; Spiridon and Kanwisher, 2002; Cox and Savoy, 2003;
Carlson et al., 2003; Mitchell et. al., 2004; Laconte et. al., 2005;
O'Toole et al., 2005 for other examples). Furthermore, the
decoding approach has proved useful in extracting informa-
rights reserved.
tion about fine-scale cortical representations, which has been
thought to lie beyond the resolution of fMRI. Kamitani and
Tong (2005, 2006) showed that low-level visual features, such
as orientation andmotion direction, can be reliably decoded by
pooling weakly selective signals in individual voxels. Since
cortical columns representing orientation or motion direction
are thought to be much smaller than standard fMRI voxels, the
signal in each voxel may arise fromvoxel sampling with biases
due to variability in the distribution of cortical feature columns
or their vascular supply. Decoding analysis can exploit such
subtle information, available in individual voxels, to obtain
robust selectivity from the ensemble activity pattern of many
voxels (‘ensemble feature selectivity’). For comprehensive
reviews, see Haynes and Rees (2006) and Norman et al. (2006).

For fMRI decoding, selecting an appropriate set of voxels as
the input for classification analysis is important for several
reasons. First, voxel selection could improve decoding perfor-
mance. fMRI decoding analysis takes a form of supervised
learning (classification or regression), in which voxel values
are the input variables or ‘features’, and a stimulus/task
parameter is the output variable or ‘labelled’ category. In
supervised learning, too many features can sometimes lead to
poor generalization performance, a problem called overfitting.
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With many adjustable model parameters associated with the
features, the learning model may fit to the noise present in the
training data, and generalize poorly to novel test data. In a
typical fMRI experiment, only tens or perhaps hundreds of
samples (task blocks or volumes) are obtained, while the
whole brain can contain asmanyas a hundred thousand voxels
or features. Thus, fMRI decoding can easily lead to overfitting if
all available voxels are used as input features. Support vector
machines (SVM), one of themost popular classifiers in the fMRI
decoding literature, avoids this problem by simultaneously
minimizing the empirical classification error and maximizing
the margin (Boser et al., 1992; Vapnik, 1998). However,
generalization performance of SVM will still be degraded if
too many irrelevant features are included.

Second, voxel selection is also useful for understanding
neural information coding. Voxels can be selected based on
separate anatomical or functional knowledge, so that decoding
performance for one set of voxels can be comparedwith that of
another. The higher the performance is, the more likely it is
that the voxels represent information relevant to the task.
Although careful examination is necessary to determine
whether the voxels represent the decoded task parameter or
some other correlated variable (Kamitani and Tong, 2005),
comparisons of decoding performance for different brain areas
can provide a powerful method for mapping the information
available in local regions (see also Kriegeskorte et al., 2006).

In most previous studies, voxels have been selected based
on anatomical landmarks, functional localizers (e.g., retino-
topic mapping), or a voxel-by-voxel univariate statistical
analysis obtained from training data or data from a separate
experiment. The selected voxels were then used as input
features for decoding analysis. An alternative to voxel
selection for reducing dimensionality is to project the original
feature space into a subspace of fewer dimensions using
principal component analysis (PCA) (Carlson et al., 2003) or
independent component analysis (ICA). The new dimensions
can then be used as input features for decoding analysis. Such
two-step methods for feature selection and decoding analysis
have proven effective. But they could be suboptimal because
the voxel/feature selection step does not take into considera-
tion the discriminability of multi-voxel patterns.

In this paper, we introduce novel linear classification
algorithms for binary and multi-class classification, which
we will refer to as sparse logistic regression (SLR) and sparse
multinomial logistic regression (SMLR), respectively. (Note
that the term SLR will be used to refer to both binary and
multi-class classifiers if the distinction is not critical). SLR is a
Bayesian extension of logistic regression, which simulta-
neously performs feature (voxel) selection and training of
the model parameters for classification. It utilizes automatic
relevance determination (ARD) (MacKay, 1992; Neal, 1996) to
determine the importance of each parameter while estimating
the parameter values. This process selects only a few
parameters as important and prunes away others. The
resulting model has a sparse representation with a small
number of estimated parameters. In fMRI decoding, this
sparse estimation approach provides a method for voxel
(feature) selection, which could improve decoding perfor-
mance by avoiding overfitting. Furthermore, voxels selected
by SLR may help reveal specific brain regions, within a large
set of input voxels, that are relevant to a task.

We use SLR not only as an alternative to conventional
classification methods such as Fisher's linear discriminant and
SVM, but also as a feature selection or ‘feature ranking’ tool. To
rank the relevance of voxels, we apply SLR repeatedly to sets of
samples randomly selected from training data, and obtain an
overall rank of each voxel based on its frequency of selection.
After voxels are selected by this ranking procedure, any model
or algorithm could be used for classification. We use an
independent test data set, which is not used for feature
selection, in evaluating classification performance. If test data
were implicated in the feature selection process, performance
would become erroneously better than chance even in the
absence of discriminable patterns (Baker et al., 2007).

In this study, we first evaluate the performance of SLR using
simulated data and then demonstrate characteristics of voxels
selected by SLR using two real fMRI data sets. Using simple
simulation data, we show that SLR can indeed select relevant
features (voxels) among a large number of irrelevant ones.
This allows SLR to maintain high classification performance in
the presence of irrelevant features whereas other classifica-
tion methods, such as SVM and regularized logistic regression
(RLR), are less robust. Next, we apply SLR to fMRI data
obtained while observers viewed a stimulus in one of four
visual quadrants. We find that SLR selects voxels whose
locations are consistent with known functional anatomy.
Using fMRI data of orientation grating stimulus experiments,
we also find that SLR-selected voxels may differ from those
selected by univariate comparisons of different task condi-
tions and can lead to superior performance. Further analyses
suggest that SLR can exploit correlations among voxels, which
cannot be detected by the conventional univariate statistics,
and thereby attain superior decoding performance.

Methods

Classification algorithm

In this section, we first describe logistic regression (LR) and
multinomial logistic regression (MLR), which provide prob-
abilistic models for solving binary and multi-class classifica-
tion problems, respectively. The parameters in the models are
estimated by the maximum likelihood method. This method,
however, can only be applied when the number of samples is
larger than the number of features. Here, the logistic
regression method is extended to a Bayesian framework by
using a technique known as the automatic relevance deter-
mination (ARD) from the neural network literature (MacKay,
1992; Neal, 1996). By combining LR or MLR with the ARD,
sparse logistic regression (SLR) or sparse multinomial logistic
regression (SMLR) is obtained. ARD provides an effective
method for pruning irrelevant features, such that their
associated weights are automatically set to zero, leading to a
sparse weight vector for classification. Throughout the paper,
scalars and vectors are denoted by italic normal face letters
(e.g. x, θ) and by bold-faced letters (e.g. x, θ), respectively. The
transpose of a vector x is denoted by xt.

Logistic regression (LR)
The linear discriminant function that separates two classes

S1 and S2 is represented by the weighted sum of each feature
value;

f x;θð Þ ¼∑
D

d¼1
θdxd þ θ0; ð1Þ
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where x=(x1, …, xD)t∈RD is an input feature vector in D
dimensional space and θ=(θ0, θ1, …, θD)t is a weight vector
including a bias term (hereafter we may omit a bias term). The
hyper-plane f(x;θ)=0 determines the boundary between two
classes. LR allows one to calculate the probability that an input
feature vector belongs to category S2, througha logistic function,

p ¼ 1
1þ exp −f x;θð Þð ÞuP S2jxð Þ: ð2Þ

Note that p ranges from 0 to 1, and is equal to 0.5 when
f(x;θ)=0 (i.e. on the boundary) and approaches to 0 or 1
when f(x;θ) approaches minus infinity or infinity (i.e. far
from the boundary). This probability p is interpreted as the
probability that an input feature vector x belongs to class
S2 (conversely, x belongs to class S1 with probability 1−p).

For mathematical formulation, let us introduce a binary
random variable y such that y=0 for S1 and y=1 for S2. Given
N input–output data samples {(x1,y1),…, (xN, yN)}, the like-
lihood function is expressed as

P y1; N ; yN jx1; N ;xN;θð Þ ¼∏
N

n¼1
P ynjxn;θð Þ¼∏

N

n¼1
pynn 1−pnð Þ1−yn ;ð3Þ

pnuP yn ¼ 1jxn;θð Þ ¼ 1
1þ exp −f xn;θð Þð Þ : ð4Þ

Since each term in the product of Eq. (3) represents the
probability of observing the nth sample (pn if yn=1, 1−pn if
yn=0), the product represents the probability observing the
entire set of data samples. Thus we would like to find the
parameter vector θ such that this likelihood function is
maximized. This maximization is equivalent to maximizing
the logarithm of the likelihood function,

l θð Þ ¼∑
N

n¼1
yn logpn þ 1−ynð Þ log 1−pnð Þ½ �:

The function l(θ) is a rather complicated nonlinear
function because pn implicitly depends on a parameter
vector θ. Since the gradient and Hessian of l(θ) can be
obtained in the closed form, this maximization can be done
by the Newton method efficiently (Bishop, 2006, pp. 205–
208). It is noted that this optimization always converges to a
unique maximum point because the Hessian matrix is
positive definite everywhere in the parameter space. For a
test sample xtest for which the class is unknown, the class S2
is assigned if f(x;θ)N0 (or equivalently if ptestN0.5), and the
class S1 if f(x;θ)b0.

Multinomial logistic regression (MLR)
In case of a multi-class classification problem, each class

has its own linear discriminant function;

fc x;θ cð Þ
� �

¼∑
D

d¼1
θ cð Þ
d xd þ θ cð Þ

0 c ¼ 1; N ;C; ð5Þ

where C is the number of classes. Then the probability of
observing one of classes Sc is calculated using the softmax
function (Bishop, 2006, p. 356) as

P Scjxð Þ ¼
exp fc x;θ cð Þ

� �� �

∑
C

k¼1
exp fk x;θ kð Þ

� �� � c ¼ 1; N ;C: ð6Þ
Note that the number of weight parameters to be estimated
is C×D since each class has its own weight parameter vector
(Fig. 1(a)). Using training data, these weight parameters are
estimated by maximizing the following likelihood function,

P y1; N ;yNjx1; N ;xN; θ
� � ¼∏N

n¼1
∏
C

c¼1
p cð Þy cð Þ

n
n ð7Þ

p cð Þ
n ¼ P Scjxnð ÞuP y cð Þ

n ¼ 1jxn;Θ
� �

¼
exp xt

nθ
ðcÞ

� �

∑
C

k¼1
exp xt

nθ
ðkÞ

� � : ð8Þ

This maximization is again attained by the Newton method
since the gradient and Hessian can be written in a closed form
(Bishop, 2006, pp. 209–210). In order to treat the multi-class out-
put label in a similar way to Eq. (3), a binary vector y=[y(1),…, y(C)]
is introduced such that y(c)=1 if x belongs to class Sc and y(c)=0
otherwise. For a test sample xtest for which the class is unknown,
the class that maximizes P(S1|xtest),…, P(SC|xtest) is assigned.

Automatic relevance determination (ARD)
For neuroimaging data, it is often the case that the number

of samples is fewer than the number of features (voxels). LR
and MLR are not applicable to such data because of the ill-
conditioned Hessian matrix. Therefore, some constraint must
be imposed on the weight parameters. One method is to
introduce a regularization term using L2 norm, or equivalently,
to assume a Gaussian prior distribution with a zero mean
vector and a spherical covariance matrix (regularized logistic
regression, RLR). Automatic relevance determination (ARD)
can also attain this end by assuming a Gaussian prior with a
zero mean vector and a diagonal covariance matrix whose
diagonal elements are adjustable hyper-parameters regulating
possible values of corresponding weight parameters.

RLR assumes the prior distribution given by P(θ|α)=N(0,
α−1ID) where ID is the identity matrix of size D ×D. SLR
assumes the ARD prior given by

P θdjαdð Þ ¼ N 0;α−1
d

� �
d ¼ 1; N ;D; ð9Þ

where θd is the dth element of θ. The difference between RLR
and SLR priors is that all of the weight parameters share one
single variance parameter in RLR whereas every weight
parameter has its own adjustable variance parameter in SLR.
In the full-Bayesian formulation, SLR further assumes the non-
informative prior distribution for hyper-parameters,

P0 αdð Þ ¼ α−1
d d ¼ 1; N ;D: ð10Þ

The hyper-parameter is referred to as the relevance
parameter. This parameter controls the possible range of a
corresponding weight parameter (see Fig. 1(b)).

The ARD prior can be applied to MLR in a similar way. The
priors are assumed for each element in the weight parameter
vectors of each class θ(1), θ(2),…, θ(c),

P θ cð Þ
d jα cð Þ

d

� �
¼ N 0;α cð Þ−1

d

� �
d ¼ 1; N ;D; c ¼ 1; N ;C ð11Þ

P0 α cð Þ
d

� �
¼ α cð Þ−1

d d ¼ 1; N ;D; c ¼ 1; N ;C: ð12Þ



Fig. 1. Two elements of sparse logistic regression (SLR): the (multinomial) logistic regression model (a) and the automatic relevance determination (ARD) (b). (a) Each class or label
has its own discriminant function, which calculates the inner product of the weight parameter vector of the label (θ) and an input feature vector (x). The softmax function transforms
the outputs of the discriminant functions to the probability of observing each label. The label with the maximum probability is chosen as the output label. Binary logistic regression is
slightly different from multinomial logistic regression. The probability can be calculated by the logistic transformation of a single discriminant function that separates two classes
(corresponding to (θ1−θ2)tx). SLR uses this conventional model for (multinomial) logistic regression, but the estimation of weight parameters involves a novel algorithm based on the
automatic relevance determination. (b) SLR treats the weight parameters as random variables with prior distributions. The prior of each parameter θi is assumed to have a Gaussian
distribution with mean 0. The precision (inverse variance) of the normal distribution is regarded as a hyper-parameter αi, called a relevance parameter, with a hyper-prior
distribution defined by a gamma distribution. The relevance parameter controls the range of the corresponding weight parameter. If the relevance parameter is large, the probability
sharply peaks at zero as prior knowledge (left panel), and thus the estimated weight parameter tends to be biased toward zero even after observation. On the other hand, if the
relevance parameter is small, the probability is broadly distributed (right panel), and thus the estimatedweight parameter can take a large value after observation. While our iterative
algorithm computes the posterior distributions of themodel, most relevance parameters diverge to infinity. Thus, the correspondingweight parameters become effectively zeros, and
can be pruned from the model. This process of determining the relevance of parameters is called the ARD. For the details of the algorithm, see Appendix A.
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The probabilistic classification models, consisting of Eqs. (3),
(4), (9), (10) and (7), (8), (11), (12), are called sparse logistic
regression (SLR) and sparse multinomial logistic regression
(SMLR), respectively. The weight parameters are estimated as
the marginal posterior mean. Since the marginal posterior
distributions cannot be derived in a closed form, we apply the
variational Bayesian approximation and the Laplace approx-
imation (see Appendix A for details). The algorithm to calculate
the posterior mean becomes an iterative algorithm that
alternately updates two equations: weight parameters are
updated while fixing relevance parameters and relevance
parameters are updated while fixing weight parameters. It
turns out thatmost of the estimatedαd s diverge to infinity, and
thus the correspondingweights (θd s) become zeros. As a result,
the solution leads to a sparsemodel wheremany of the features
xd are effectively pruned. Faul and Tipping (2002) have analyzed
the mechanism of sparsity from a mathematical perspective.

SLR-based feature selection procedure

Here, we describe the method for feature selection based
on SLR. The decoding procedure consists of three steps; (1)
feature selection, (2) training of a classifier and (3) evaluation
of generalization performance. This section focuses on the
feature selectionmethod in the first step. Any classifier such as
Fisher's linear discriminant, LR, SVM or SLR, could be used in
the second and the third steps, once the features are selected.

Our method can be regarded as a kind of variable ranking
method. The variable ranking method involves assigning a
score to every feature, and then selecting a certain number
of features according to their scores. For example, in the T-
value ranking method, a T-value that quantifies the
statistical difference between two conditions of interest is
assigned to every feature. Features are then selected based
on their T-values.

SLR can be used to assign scores to features based on the
classification performance and selection frequency, which we
refer to as selection counting value (SC-value). The basic idea
is that features that are repeatedly selected with good
classification performance among a variety of training data
sets could be important, so high SC-values should be assigned.
To implement the idea, we use a form of cross validation. The
first step to computing SC-values is to divide the original
training data set into two data sets according to some pre-
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specified proportion (for example, 80%–20%). One data set is
used for estimating weight parameters by SLR and the other
used for evaluating classification performance. By generating a
number of random divisions of the original data set and
repeating the steps of parameter estimation and performance
evaluation, we can obtain numerous estimates of the weight
vectors with their corresponding measures of classification
accuracy. Then the SC-value can be defined by the total
frequency of each feature selected, weighted by classification
accuracy (see Fig. 2 for schematics). More precisely speaking,
let θ kð Þ and p(k) denote the estimated parameter vector and
classification performance (percent) resulting from the kth
division. Then the SC-value for the dth feature is defined by

SC dð Þ ¼
XK

k:p kð ÞNpchancef g
I θd kð Þ≠0� �� p kð Þ d ¼ 1;…;D; ð13Þ

where I(•) denotes an indicator function that takes the value of
1 if the condition inside the brackets is satisfied, 0 otherwise.
K is the number of repetitions and θd kð Þ is the estimate of the
dth element of θ kð Þ. In order to exclude the results of poor
classification performance, only data sets with classification
performance exceeding chance level pchance are included in
the summation. It should be noted that an additional data set
that is not used for calculating SC-values is required to
evaluate generalization performance of the selected features.

Shuffle measure

We developed a shuffle measure to quantify the effect of
correlations between features on classification performance.
The shuffle measure quantifies the extent to which classifica-
tion performance is facilitated by the presence of correlated
Fig. 2. SLR-based voxel ranking procedure. Awhole data set is randomly separated into K pair
weight parameters, which results in sparse parameter selection. Then, the classification perfo
by the count of selection in K-time SLR estimations, weighted by the corresponding test pe
structures in the data. Computing the shuffle measure
involves randomly permuting (shuffling) the order of samples
within each class and each feature dimension and then
comparing classification performance using the original
input data with that using the shuffled input data. The
rationale behind shuffling is that random permutation of the
order of samples will remove any correlations between
features while preserving the local set of values observed for
each feature and condition.

For simplicity, let us consider a binary classification problem
and focus on one feature dimension. Samples of this feature
dimension are denoted by a column vector z=[z1(1),…, zN(1), z1(2),
…, zN(2)]t= [z(1),z(2)]t, where zn

(c) is the nth sample of class c and
z(c) is collection of samples belonging to class c. By randomly
permuting the order of samples within z(1) and z(2)separately,
we obtain shuffled feature values zshuf=[zshuf(1) ,zshuf(2) ]t. After the
shuffle operation above, any correlations between the shuffled
feature dimension and the other feature dimensions are
eliminated. Note that shuffling does not change the marginal
distribution because only the order of samples is changed. By
applying the shuffle operation to all feature dimensions, the
correlations between all pairs of the dimensions can be
removed. Using the shuffled feature values and the original
feature values, we define the shuffle measure as follows;
• Train parameters of a classifier using the original feature
values and then evaluate classification accuracy (percent
correct) poriginal.

• Train parameters of a classifier using the shuffled feature
values (shuffling applied to all the dimensions) and then
evaluate classification accuracy pshuffle.

• The shuffle measure is defined by pcorrelation=porginal−pshuffle.
s of training and test data sets. For each pair, SLR is applied to the training set to learn the
rmance is evaluated using the test set. The score of each parameter (SC-value) is defined
rformance (percent correct).
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Since the shuffle operation in step 2 uses random numbers,
pshuffle should be calculated as the average of many repetitions
of step 2 in order to remove potential noise due to random
numbers.

Simulation data

Data generation
The simulation data were generated from two D dimen-

sional normal distributions with mean μ1 and covariance Σ1

for class 1, and with mean μ2 and covariance Σ2 for class 2,
respectively. The means and covariances are given by

μ1 ¼ ½ [0:1;0:2; N ;0:9;1:0
10

; [0; N ;0
D−10

�;

μ2 ¼ [0;0; N ;0½ �
D

Σ1 ¼ Σ2 ¼
1 0

1
O

0 1

2
664

3
775;

where D can equal 10, 100, 500, 1000, 1500, 2000 input
features. Only the first 10 features were relevant for the two-
class classification; the remaining D−10 features were
irrelevant. The degree of relevance in the first 10 dimensions
was manipulated by the mean values in class 1, which started
from 0.1 and increased up to 1.0 by 0.1. Each dimension had a
variance of 1, and there was no correlation between dimen-
sions. For each D, 100 training samples and 100 test samples
(50 for each class) were created.

Data analysis
We analyzed the simulation data using three classifiers;

SLR, linear regularized logistic regression (RLR) and linear
support vector machine (SVM). For estimating weight
parameters of SLR and RLR, we used the algorithms in
Appendix A. The numbers of iterations were set to 500 for
SLR and 50 for RLR, respectively. For SVM, we used LIBSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) and applied all
the default parameters (e.g. trade-off parameter C=1). Each
feature was separately normalized to have mean 0 and
variance 1 before applying SLR, RLR or SVM. We evaluated
test performance by performing 200 Monte Carlo simula-
tions; the results show average classification performance
and its standard error.

Four quadrant stimuli experiment

Data acquisition
To evaluate the efficacy of the SLR classifier, we conducted a

simple visual experiment in which stimuli were presented in
one of the four visual quadrants on every stimulus block, and
the location of the stimulus had to be decoded.

In the four quadrant stimuli experiment, four healthy
subjects who gave written informed consent participated. The
experiment relied on a conventional block design. Red and
green (CIE coordinates 0.346, 0.299 and 0.268, 0.336,
respectively) checkerboards appeared in one of four quadrants
(upper right, lower right, lower left and upper left, abbre-
viated as ‘UR’, ‘LR’, ‘LL’ and ‘UL’ hereafter) for 15 s, followed by
15 s of a fixation period (‘F’). One run consisted of 3 repetitions
of UR-F–LR-F–LL-F–UL-F blocks. The order of blocks was not
randomized. Each subject conducted 6 runs. During the
experiment, echo-planar images of the whole brain were
obtained (TR = 3 s, TE = 49 ms, FA 90 degrees, FOV
192×192 mm, 30 slices, voxel size of 3×3×5 mm; no gap;
64×64 matrix) using a 1.5 T MRI scanner (Shimadzu Marconi,
MAGNEX ECLIPSE). A three dimensional anatomical scan was
also acquired from each subject using a T1-weighted RF-FAST
sequence (TR/TE/TI/NEX, 20 ms/2.26 ms/-/1 FA 40 degrees,
FOV 256 mm×256 mm and 256×256 matrices), yielding
sagittal slices with a slice thickness of 1 mm and an in-plane
resolution of 1×1 mm. Furthermore a three dimensional
anatomical scan with the same position as EPIs was acquired
using a T2-weighted RF-FAST sequence (TR/TE/TI/NEX,
5468 ms/80 ms/-/2 FA 90 degrees, FOV 192 mm×192 mm
and 256×256 matrices), yielding transverse slices with a slice
thickness of 5 mm and an in-plane resolution of
0.75×0.75 mm.

Data analysis
The following fMRI preprocessing steps were used. For

motion artifact removal, EPI images were realigned to the first
EPI scan and coregistered to T2 anatomical image. No spatial
smoothing was applied. The SPM2 toolbox (http://www.fil.
ion.ucl.ac.uk/spm/) was used for image processing.

For classification analysis, the input feature vector consisted
of the time-averaged BOLD response of each voxel for each
stimulus block, using all voxels available in the occipital lobe.
The occipital lobe (approximately 1500 voxels)was identified by
converting the occipital lobe of the standard MNI brain
(Maldjian et. al. 2003, 2004) to that of an individual brain
using the SPM2 deformation toolbox. Average BOLD responses
for each stimulus block were calculated based on the average
signal level for volumes 2 to 5 after stimulus onset (i.e., 6–15 s
post-stimulus), following baseline correction by subtracting the
average response within each run. Finally, average BOLD
response of each voxel for each block was concatenated across
all runs to form a vector. Vectors from many selected voxels,
with labels indicating the stimulus condition, served as input to
the classifier.

We evaluated the performance of SMLRon the four quadrant
data by using a leave-one-run-out cross-validation procedure.
Five of the six runs were used as training data (60 samples) and
the remaining run served as test data (12 samples); this process
was repeated for all runs. Feature vectors were normalized such
that each voxel had mean 0 and variance 1, using linear scaling
factors computed from training data.

The same scaling factors were applied to test data. We
performed the same analysis using a multi-class version of RLR
called regularized multinomial logistic regression (RMLR, see
Appendix A) to compare classification accuracy with and
without voxel selection. Note that the number of initial
parameters is four times the number of voxels (6000 para-
meters if 1500 voxels were used), because each of the four task
conditions has its own linear discriminant function with a
weight parameter for each voxel (Θ=(θ(UR), θ(LR), θ(LL), θ(UL))).

Orientation grating stimuli experiment

Data acquisition
We used data from Kamitani and Tong (2005), where a

subject viewed one of the eight possible orientation stimuli
while brain activity was monitored in retinotopic visual areas
(V1–V4) using standard fMRI procedures. To investigate
across-session generalization, we analyzed two experimental

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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data sets recorded about one month apart (Day 1 and Day 2)
from the same subject. The data of Day 1 and Day 2 served
as training and test data (24 blocks for each orientation in
both sessions), respectively. See Kamitani and Tong (2005)
for the details.

Data analysis
We performed binary classifications of all pairs of eight

orientations (total 28 pairs) rather than eight-class classifica-
tion. The results were then combined into four groups
according to the orientation difference between the stimuli:
22.5 degrees (8 pairs), 45 degrees (8 pairs), 67.5 degrees (8
pairs) and 90 degrees (4 pairs), as decoding accuracy depends
on the orientation difference.

Analyses were performed with voxels from V1–V4 (647
voxels in total) that were ranked by the T-value or by the
SC-value using Day 1's data. T-values were calculated for
each voxel based on the conventional T-statistics, which
compared the responses to the two orientations to be
classified. SC-values were calculated using the procedure
described above (80% training, 20% test). The voxels with theM
highest rank, either by the T-value or by the SC-value, were
chosen as the elements of the feature vector for classification
(M varied from 5 to 40). Then, the linear weights of the logistic
regression model (without sparse estimation) were estimated
using Day 1's data, and the classification performance was
evaluated using Day 2's data. Before applying logistic regres-
sion, normalization was applied such that each chosen voxel
has a mean 0 and variance 1. The above procedure was
repeated for all of the 28 pairs. Average classification
performance for T-value ranked voxels and SC-value ranked
voxels were compared at four levels of orientation difference.

We then conducted the shuffle analysis on the T-value and
SC-value ranked voxels to investigate the effect of voxel
correlation on classification performance. The shufflemeasure
was calculated for each pair and voxel number, by repeating
the shuffling of training data 300 times.
Fig. 3. Evaluation of SLR using simulation data. Data samples for binary classificationwere ran
to be informative with graded mean differences. Note that as the problem here is binary, t
classification performance is plotted as a function of the number of initial input dimension
plotted. The solid, dotted and dashed lines indicate the results for SLR, regularized logistic reg
regression model as SLR, but does not impose sparsity in estimating weight parameters. (b) T
dimensions. (c) The normalized frequency that each feature was selected by SLR in 200 repe
features. The lines indicate the results for different numbers of initial dimensions.
Results

Simulation study

We first tested the performance of SLR using a simulated
data set inwhich we fixed the number of relevant features and
varied the number of irrelevant features within the set. This
data set, though much simplified, captures a potential
problem that could occur with fMRI data: voxel patterns
inside a small brain region show activity relevant to the given
task, but the majority of voxels are irrelevant.

We compared test performance between SLR and linear
regularized logistic regression (RLR), which uses the same
logistic model as SLR but lacks the ARD procedure for reducing
the number of dimensions. We also computed the test
performance of support vector machines (SVM) for compar-
ison. In Fig. 3(a), test performances of SLR, RLR and SVM are
plotted as a function of the number of input features D. The
performance of SLR was inferior and comparable to that of RLR
and SVM, respectively, when the total number of features is
small, such that most features are relevant (note that there are
10 relevant features). However, SLR begins to outperform RLR
and SVM as the number of irrelevant features is increased.
Although the performances of SLR, RLR and SVM drop off as
the number of irrelevant features increases, the drop off is
much slower for SLR, indicating that SLR is more robust to the
presence of irrelevant features than the other twomethods. In
Fig. 3(b), the average number of features selected by SLR is
plotted. The number of selected features was slightly larger
than that of the relevant dimensions for a range of initial
numbers of input dimensions (D=100–2000). Although
several irrelevant features were selected in these cases, most
of the irrelevant features were removed. As a result, the
performance of SLR did not drop off somuch as shown in Fig. 3
(a). In the case of D=10, where all features are relevant, the
average number of selected features was fewer than 10. This
‘overpruning’ underlies the poor performance of SLR at D=10
domly generated from two Gaussian distributions. Only the first 10 dimensions were set
he number of dimensions/features is identical to that of weight parameters. (a) Binary
s/features. Mean and standard errors computed from 200 Monte Carlo simulations are
ression (RLR) and support vector machine (SVM), respectively. RLR uses the same logistic
he average number of selected dimensions by SLR is plotted against the number of initial
titions of Monte Carlo simulation is plotted against the mean differences of the first 10
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in Fig. 3(a). Fig. 3(c) shows the frequency that each of the
relevant features was selected by SLR. We can observe that
dimensions with higher relevance (large mean difference) tend
to be selected more frequently, while the overall frequencies
decrease with the number of initial features. These results
demonstrate that although feature selection by SLR tends to
overprune weakly relevant features, it automatically selects
highly relevant features, removes most of the irrelevant
features, and helps to improve classification performance in
the presence of many irrelevant features.

Analysis of four quadrant data

Next, we applied SLR to experimental fMRI data obtained
from a simple visual stimulation study. In each block of this
experiment, a pie-shaped flickering checkerboard was pre-
sented in one of the four visual field quadrants (see Methods).
Decoding analysis was performed to predict which visual
quadrant received stimulation, using fMRI activity patterns
from the visual cortex. This data set allowed us to test if the
location of SLR-selected voxels is consistent with known
functional anatomy of retinotopic visual cortex (Engel et al.,
1994). As the classification problem here involves four classes,
we used sparse multinomial logistic regression (SMLR), the
multi-class version of SLR. Since each of the four task conditions
has its own linear discriminant function, defined by a weight
parameter for each voxel (Θ=(θ(UR), θ(LR), θ(LL), θ(UL))), SMLR can
be used to identify relevant voxels for each of the four task
conditions.

We evaluated the performance of SMLR and RMLR using a
leave-one-run-out cross-validation procedure. Test perfor-
mance and the number of parameters shown are averages
over 6 cross-validation data sets. Table 1 summarizes
classification accuracy and the number of features used with
and without sparse estimation for four subjects. The number
of parameters with sparse estimation is the total number of
non-zero parameters in θ(UR), θ(LR), θ(LL), θ(UL). Note that the
number of features used for RMLR is equal to the initial
number of features for SMLR. Starting from approximately
6000 parameters, SMLR selected very few parameters (8.4±
2.2 across subjects) yet still achieved high decoding accuracy
(91.3±8.7% across subjects; chance level, 25%). Its perfor-
mance was comparable to that of RMLR (89.9±9.2% across
subjects) using all occipital voxels. This demonstrates that
SMLR can select a small number of effective parameters
Table 1
Comparison of SMLR and RMLR in test performance and the number of parameters for
the decoding of four quadrants

This table summarizes the results of leave-one-run-out cross validation for four
subjects. The column of ‘Test performance’ shows the average correct percentages and
the standard deviations calculated by SMLR and RMLR. The column of ‘Number of
parameters’ shows the averaged numbers of parameters (and the standard deviations)

Table 1
Comparison of SMLR and RMLR in test performance and the number of parameters for
the decoding of four quadrants

This table summarizes the results of leave-one-run-out crossvalidationforfoursubjects.The
column of ‘Test performance’ shows the average correct percentages and the standard
deviationscalculated by SMLR and RMLR. The column of ‘Number of parameters’ shows
the averaged numbers of parameters (and the standard deviations) selected by SMLR and
those used by RMLR. Note that RMLR does not perform voxel/feature selection by itself.
Thus, the number of parameters used by RMLR is four (i.e., the number of classes) times
the number of initial input voxels.
without degrading classification performance. However, we
did not find significant improvement in performance with
sparse estimation by SMLR. This is presumably because the
initial voxels had been pre-selected by the occipital mask, so
that many of the voxels contained information useful for the
classification task.

We inspected the locations of voxels selected by SMLR. The
images in the center of Fig. 4 show frequently selected voxels
(identified more than 3 times in 6 cross-validation steps) with
the occipital lobe mask overlayed on the T2-anatomical image
for subject 1. Note that each of the four linear discriminant
functions, which imply the presence of the stimulus in each
quadrant, had its own set of selected voxels. The color
indicates the corresponding quadrant for each selected
voxel. In this subject, only one voxel was selected for three
quadrants, and three for the remaining quadrant. The
locations of these voxels nicely matched the known retino-
topic organization of visual cortex: the voxels for the four
quadrants were found in the corresponding region of the
visual cortex (e.g., the voxel for the upper-left quadrant was
found in the ventral bank of the right calcarine sulcus). The
selected voxels also matched well with voxels that showed
high F-values from the 1-way ANOVA analysis (data not
shown). The average BOLD time courses (30 s from the
stimulus onset) of the selected voxels for each stimulus
location are also depicted in Fig. 4. Each voxel shows a very
selective response to the stimulus presented in the corre-
sponding quadrant. These results demonstrate that SMLR can
automatically find voxels that are selectively activated by the
individual task conditions.

It should be noted that we observed variability in the
selected voxels, even though the training data sets used for
the 6-fold cross-validation procedure involved considerable
overlap. This indicates that the voxels selected by SLR are
somewhat sensitive to the contents of the training data set.
However, if we focus on the voxels consistently selected over
multiple iterations, most of these were found near the cal-
carine sulcus in the primary visual cortex (by visual inspec-
tion of sagittal slices), and their relative positions matched
well with the retinotopic organization of V1. These tendencies
were found in most cases, except for conditions UR and UL of
subject 3.

Analysis of orientation data

Finally, we applied SLR to fMRI data obtained while a
subject viewed gratings of eight different orientations
(Kamitani and Tong, 2005). Gratings of different orientations
induce only subtle differences in activity in each voxel, unlike
the stimuli presented in the four different quadrants. Thus,
multiple voxels must be combined to achieve high levels of
orientation-selective performance, which we call ‘ensemble
feature selectivity’. SLR could provide an effective means to
find combinations of voxels for accurate decoding by remov-
ing irrelevant voxels.

For this analysis, we introduce the SC-value ranking
method that sorts voxels according to the selection frequency
by SLR weighted with the cross-validation accuracy. Then we
compare it with the T-value ranking method based on the
voxel-by-voxel univariate statistics that directly compare two
conditions to be classified.

First we compared the difference between the two ranking
methods, by plotting SC-values and T-values for voxels sorted



Fig. 4. Decoding of four quadrant stimuli. The locations of voxels selected by SLR are shown on the anatomical image. Filled squares indicate selected voxels for each of the four
quadrants as in the legend. Note that in the multinomial logistic regression model, each class (quadrant) has its own weight parameters (see Fig. 1). The color indicates the class to
which the selected weight parameter belongs. The lighter region shows the occipital mask, fromwhich an initial set of voxels was identified. Only a few voxels were selected for this
task (six voxels in total for this subject), and the selected voxels for each quadrant were found in the vertically and horizontally flipped locations, consistent with the visual field
mapping in the early visual cortex. Trial-averaged BOLD time courses (percent signal change relative to the rest) are plotted for each of the selected voxels. Time 0 corresponds to the
stimulus onset. The color here indicates the stimulus condition (one of the four quadrants) as in the legend.
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by the SC ranking. Fig. 5 shows an example from the binary
classification of 0 vs. 135 degrees. Although voxels with high
SC-values tend to have high T-values, there is a substantial
disagreement between them. Similar trends were observed in
some other pairs. Thus, voxels selected by SLR are not
Fig. 5. Difference between SC-values and T-values. SC-values (solid line) and T-values
(bars) are plotted for voxels sorted by the SC-values. These values were obtained for the
classification of 0 vs. 135 degrees of orientation.
consistent with those selected by univariate functional
mapping.

Second, we investigated if SC-ranked voxels lead to better
performance than T-value ranked voxels. Fig. 6 shows test
performance for the SC-ranked voxels and the T-value ranked
voxels. Percent correct classification is plotted against the
number of voxels selected from the top of the ranks. The
results of 28 binary classifications are grouped according to
the orientation differences (22.5, 45, 67.5 and 90 degrees). SC-
ranked voxels generally outperformed T-value ranked voxels.
The performance differences using the top-ranked 40 voxels
are 6.5%, 6.3%, 10.4% and 4.7% for orientation differences of
22.5, 45, 67.5 and 90 degrees, respectively. Significant
differences in the overall performance profiles were observed
for all four orientation comparisons (two-way ANOVA,
repeated measurement, [ranking method]×[voxel number],
significant [ranking method] effect Pb0.05, no significant
[voxel number] effect except 90 degree difference group, and
no significant interaction).

It may seem puzzling that voxels with low T-values,
which do not produce distinctive responses to different task
conditions, can lead to higher classification accuracy. How-
ever, it is known that non-distinctive features, which in this
case have low T-values, can make the multivariate patterns
of two (or more) classes more discriminable if they are
correlated with distinctive features (e.g., Averveck et al.,
2006). Fig. 7(a) shows such an example, where the values of
the first two voxels in Fig. 5 are displayed in a scattered plot.
The red diamond and blue cross denote samples labeled as 0
degrees and 135 degrees, respectively. The gray line is the
linear boundary estimated by logistic regression using the



Fig. 6. Comparison of classification performance between the SC-value and the T-value rankings. The test performance for the classification of two orientations, chosen from eight
orientations (0, 22.5, 45,… degrees), is plotted against the number of voxels. Voxels were sorted either by the SC-values or by the T-values, and those with highest ranks were used.
The results of all orientation pairs were grouped by the orientation differences. Panels (a–d) summarize the results of 22.5 degree (8 pairs of orientations), 45 degree (8 pairs), 67.5
degree (8 pairs), and 90 degree (4 pairs) differences, respectively. Voxel ranking was computed for each pair of orientations. The blue and red lines indicate test performance for the
SC-value ranking and the T-value ranking, respectively. The shaded areas represent the standard errors.
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first five voxels (corresponding to the left-most point of x
axis in Fig. 6(b)) as the feature vectors. Thus, the boundary is
a projection from the five dimensional feature space.
Histograms of the values of the first and the second voxel
are shown along the horizontal and the vertical axes,
respectively. These histograms indicate that the first dimen-
sion poorly discriminates between the two classes, when
compared to the second dimension. However, it can also be
Fig. 7. Contribution of voxel correlation to classification. (a) The values of the top two voxe
diamonds and the blue crosses represent 0 degree and 135 degree samples in the training
regression. Histograms show the distributions of the samples along the axes of the first and
voxel (x axis) is poorly discriminative (as indicated by the low T-value in Fig. 5), while the s
orthogonal to the discriminant boundary), the distributions of two classes become even mo
than the second voxel alone. The first voxel could contribute to the discrimination via it
discriminative itself. (b) The values in the original data (a) were shuffled within each voxel an
class. The histograms of two individual voxels are identical to those of the original data (a). B
on the second voxel.
seen that the presence of the first dimension makes the two
dimensional patterns more discriminable. This occurs
because the two voxels are negatively correlated in terms
of their mean response to the two classes (‘signal correla-
tion’) while they are positively correlated for the samples
within each class (‘noise correlation’) (Averveck et al., 2006).
Thus, SLR seems to be able to exploit noise correlation for
achieving high decoding accuracy.
ls in the SC-value ranking (Fig. 5) are shown in a scatter plot and histograms. The red
data set, respectively. The gray line is the discriminant boundary estimated by logistic
the second voxels, and along the axis orthogonal to the discriminant boundary. The first
econd voxel (y axis) is more discriminative. When these voxels are combined (the axis
re discriminative. Note that the discriminant boundary provides better discrimination
s correlation with the second voxel, even though it has a low T-value and is poorly
d class so that the correlation between voxels was removed from the distribution of each
ut the discriminant boundary is different: the discrimination is almost solely dependent



Fig. 8. Effect of shuffling on the performance of SC-ranked voxels and T-ranked voxels. The same analysis as in Fig. 6 was performed with shuffled training data. The difference in test
performance between the original and the shuffled training data was calculated (shuffle measure). The average shuffle measure (over 300 times shufflings) is plotted as a function of
the number of voxels, for SC-ranked voxels (blue) and T-ranked voxels (red) and for four orientation differences.
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Finally, the effect of voxel correlations on test classifica-
tion performance was evaluated by using a shuffle proce-
dure that removes correlations by randomly permuting the
order of samples within each class and each dimension (see
Methods for details). Fig. 7(b) shows the distribution of the
samples after the shuffling of the samples in Fig. 7(a). It can
be seen that shuffling removes the correlation between the
first and the second voxels while the unidimensional
histograms are unaffected. Next, we calculated the differ-
ence in test performance between the original data and the
shuffled data, in which deviations above zero indicate
improved classification due to correlations between voxels.
The shuffle procedure was applied to binary classifications
using all the voxel numbers in Fig. 6 of all 28 pairs of eight
orientations, and results are plotted by the four orientation
differences (Fig. 8). Shuffle measures for the top 40 SC-
ranked voxels, respectively, reached 4.1%, 5.3%, 5.2% and 8.5%
for the groups of 22.5, 45, 67.5 and 90 degree difference,
while those for T-value ranked voxels were much smaller
(−0.7%, 1.6%, 2.1% and 8.0.%). Furthermore, if we examine the
difference in test performance between the curves resulting
from SC-value and T-value ranking in Fig. 6 and those in
Fig. 8, the shapes look very similar. The correlation value
between the difference curves in Figs. 6 and 8 was 0.73 on
average across the 28 pairs. This suggests that the difference
in test performance between SC-value ranking and uni-
variate T-value ranking is partially explained by the benefit
of selecting voxels with noise correlation when using the
SC-value ranking method. It should be noted that the shuffle
measure (or any measure that evaluates higher moment)
may not work reliably in a high-dimensional feature space
because samples are distributed only sparsely (well-known
as ‘the curse of dimension’). Therefore, some caution should
be taken to interpret the results of shuffling when the
number of voxels is large.

Discussion

We have introduced a novel linear classifier for fMRI
decoding, sparse logistic regression (SLR). SLR is a binary/
multi-class classifier with the ability to automatically select
voxels relevant for a given classification problem. Using a set
of simulation data and two sets of real experimental data, we
have demonstrated the following: (1) SLR can automatically
select relevant features, and thereby prevent overfitting to
some extent; (2) the locations of SLR-selected voxels are
consistent with known functional anatomy; (3) SLR-selected
voxels were different from those selected by the conven-
tional voxel-wise univariate statistics, and the former out-
performed the latter in classification; (4) this difference in
classification performance can be accounted for in part by
the correlation structure among the selected voxels.

The simulation study demonstrated that SLR can outper-
form other classification methods for data sets with a large
number of irrelevant features, by automatically removing
them. The performance of other classifiers, such as regularized
logistic regression (RLR) and support vector machine (SVM),
was degraded remarkably with increase of the number of
irrelevant features. As shown in the casewhere all the features
are relevant (D=10), SLR did not always select all the relevant
features, but captured many of the highly relevant features.
Thus, the effect of omitted relevant voxels on classification
performance is expected to be small. Even highly relevant
features were selected less frequently with more irrelevant
features. As a result, the performance of SLR dropped
gradually with the number of irrelevant features, but the
slope was less steep than those of the other two methods.

Results from the quadrant visual stimulation experiment
suggested the possibility of interpreting sparsely estimated
parameters from a physiological point of view. In decoding
analysis, classification performance is often used as an index
for the functional selectivity of an area, or a set of voxels.
Here, we were able to identify relevant brain regions by the
non-zero weight parameters selected by SLR. In SMLR (sparse
multinomial logistic regression, the multinomial version of
SLR), each class has its own set of parameters. Thus, the
distribution of selected voxels for each class provides a class-
specific cortical map. It should be noted, however, that since
this mapping indicates voxels that most efficiently classify
the data from different experimental conditions, they are not
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the complete set of voxels that may be involved in a given
experimental condition. This method can be regarded as a
thresholded version of the SVM-based mapping method
proposed by LaConte et al. (2005), in which weight para-
meters estimated by linear SVM are used for mapping. Our
method may be more robust, as it takes the variability of
estimation into consideration (see the alpha-step of the SLR
algorithm in Appendix A). For further improvement of
mapping, it may be preferable to map voxels common to
several training data sets using a cross-validation technique,
which is the basis of the SLR-based voxel selection method
(or the selection count (SC) ranking method).

The analysis of the orientation data showed that SC-value
ranked voxels were different from T-value ranked voxels, and
that SC-ranked voxels outperformed T-value ranked voxels in
the classification of orientation. Furthermore, we found that
this difference in performance can be explained in part by the
correlation structure among voxels. Although the classifica-
tion performance shown in Fig. 6 was calculated using
logistic regression, qualitatively similar results were obtained
when linear SVM, linear RLR, or Gaussian mixture classifier
(MATLAB, classify.m) was used. There are a few remarks to be
made about this analysis. First, we only considered up to 40
voxels when comparing the performance of SC-value ranked
voxels and that of T-value ranked voxels. This is because SC-
values of rank below 40 became almost zeros, thus it was
impossible to rank those voxels reliably by SC-values. Second,
the shuffle measure indicates the benefit of voxel correlation
under the assumption that the distributions of training and
test data sets are stationary. Values of this shuffle measure
can be affected by non-stationarity between the distributions
of Day 1 and Day 2. However, as the SC- and T-value rankings
are both calculated from the same training data set, they
should not have specific biases in terms of (non-)stationarity.
Thus, even in the presence of non-stationarity, the difference
in shuffle measure between the SC- and T-value rankings
should reflect the difference in the benefit of voxel correla-
tion. Third, we observed significantly non-zero shuffle
measures even for T-value ranked voxels. Although voxel
selection based on T-value ranking ignores correlations
between voxels, voxels selected for their high T-value could
nonetheless be correlated with each other. Fourth, the
comparison between T-value ranked voxels and SC-value
ranked voxels actually confounds two factors: the difference
in the algorithm (univariate T-value vs. multivariate SLR) and
the difference in the data sampling method. In order to
control the latter factor, we have computed a bootstrap
distribution of T-value using a resampling procedure analo-
gous to that used for the SC-value ranking. Then, voxels were
ranked by the average or the normalized average (divided by
the standard deviation) of the distribution. In both cases, the
test percent correct did not change from that with the
original T-value ranking, in which each T-value was calculated
only once using the whole training data, thus indicating that
the difference in the algorithm was the main factor for the
comparison.

SLR is a convenient classifier in several respects. It can
work even when the number of training data samples is less
than the number of voxels (features). It can minimize
overfitting by automatically removing irrelevant voxels,
and can be used for voxel selection. It does not require
adjusting parameters manually. Thus, the application of SLR
could prove as useful as SVM, which has been gaining
popularity in several recent fMRI studies (Cox and Savoy,
2003; Mitchell et al., 2004; LaConte et al., 2005; Kamitani
and Tong, 2005, 2006; Haynes et al., 2007 and so on). It is
interesting to compare the characteristics of SLR and SVM.
Both SLR and linear SVM are defined by a linear discrimi-
nant function, and involve sparse estimation of parameters.
However, the parameters in SLR are associated with features,
while the parameters in SVM are associated with samples.
The linear discriminant function of SLR is f x;θð Þ ¼ θtx ¼

d¼1

D
∑ θdxd while that of SVM is the kernel representation,
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for features and samples, respectively, and D and N are the
total numbers of features and samples, respectively. When the
parameter vector θ is sparsely estimated in the former
representation, only features associated with non-zero θi s
decide the discriminant function. Thus, the discriminant
function for SLR lies in the space of lower dimension than
the original dimension D. On the other hand, when the
parameter vector θ is sparsely estimated in the latter
representation, only samples associated with non-zero θi s
(called support vectors) decide the discriminant function.
Thus, the discriminant function for SVM lies in the space of the
original dimension D. Therefore, only SLR is equippedwith the
feature selection property. Because of this capability of feature
selection, SLR seems toworkbetter than SVM if a feature vector
consists of many irrelevant features, as indicated in our
simulation results.

To obtain the optimal voxel subset from an initially large
voxel set, an exhaustive combinatorial search is generally
required. This search, however, becomes intractable with even
a modest number of voxels. An alternative approach is to
handle each voxel independently, as the T-value ranked voxel
selection procedure does. But this method neglects the
dependency among voxels. A good compromise may be the
searchlight method suggested by Kriegeskorte et al. (2006),
where the correlation structure among a local set of voxels
(voxels within a sphere of 4 mm radius) in a ‘searchlight’ is
utilized. This method, however, does not take into account
potential correlations between spatially remote voxels. In
contrast, SLR-based voxel selection can exploit the correlation
structure among all the voxels in the initial voxel set, without
requiring an exhaustive combinatorial search, although the
result may be suboptimal. For regression problems, Jo-Anne
Ting et al. (2008 to appear) compared matching between
features selected by the ARD method and those selected by
the brute-force method. They showed that most of features
(neurons) selected by the ARD methods matched with those
selected by the brute-force method (over 90%). Their result
might also support the validity of feature selection by SLR.

A drawback of SLR is the computational cost (time and
memory). As mentioned in Appendix A, the estimation
algorithm is an iterative algorithm with the Hessian matrix
inversion of size D×D, where D is the number of feature
dimensions or voxels. In the case of 10,000 dimensions, it is
intractable to keep amatrix of size 10,000×10,000 inmemory.
Even if a matrix can be kept in memory, a matrix inversion of
size D×D also requires computation time proportional to D3.
In our example of the four quadrant experiment, it takes about
1 h to analyze the data of one subject performing the whole
leave-one-run-out procedure with a Linux machine with a



1426 O. Yamashita et al. / NeuroImage 42 (2008) 1414–1429
2.66 GHz CPU and a 4 GB memory. One approach to overcome
this computational problem is direct approximation of the
logistic function using a variational parameter (Jaakkola and
Jordan, 2000; Bishop and Tipping, 2000). This approach does
not require the computation of the Hessian matrix explicitly.
Recently, we have implemented this estimation algorithm.
Although this approximation is only valid for binary classifica-
tion, we can now conduct a whole-brain classification
analysis. Another approach is the component-wise sequential
update procedure. Two different algorithms based on this
approach have been proposed for the logistic regression
model with the ARD model (Tipping and Faul, 2003) and for
the multinomial logistic regression with the Laplace prior
(Krishnapuram et al., 2005). These algorithms require less
memory and less computation than our method. In particular,
the latter algorithm only requires memory and computation
time proportional to D, which are much smaller than those
required by our algorithm. Comparison of computational time,
classification performance and survived voxels between our
algorithm and these sequential algorithms could be an
interesting future work.

Our current method is limited to linear classification. It is
possible to extend the framework to nonlinear discriminant
functions by combining a kernel function with the automatic
relevance determination (ARD) technique. But this approach
could cost much more computational resources and suffer
from the problem of local minima more severely.

Althoughwe focused on ‘voxel’ selection for fMRI decoding,
SLR can be applied to the pattern classification of other
neuroimaging signals such as EEG, MEG and NIRS. In
particular, its application to brain–computer interface (BCI)
(Wolpaw et al., 2002), is of great interest. SLR could be used to
determine relevant channels (Lal et al., 2004) or frequency
bands in advance, and thus may provide a tool to customize
the input features to BCI for individual subjects.
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Appendix A

The parameter estimation algorithm of sparse multinomial
logistic regression (SMLR) and its rough derivation are
presented. The algorithm is identical to that of the relevance
vector machine except that we treat the multi-class problem
with the full-Bayesian approach rather than the binary
problem with the marginal likelihood approach. For the
relevance vector machine, see Tipping (2001).

Let the input feature vector inD dimensional space denoted
by x∈RD and the output label by y=[y(1),…, y(c)] such that y(c)=1
if x belongs to class c and y(c)=0 otherwise (“1-of-m encoding”).
Given N training data {(x1,y1),…,(xN,yN)}, the likelihood and
prior distributions of SMLR is, respectively, expressed by the
following multinomial distribution,

P YjX;Θð Þ ¼∏
N

n¼1
∏
C

c¼1
p cð Þy cð Þ

n
n ða1Þ
where

p cð Þ
n ¼

exp xt
nθ

ðcÞ
� �

∑
C

k¼1
exp xt

nθ
ðkÞ

� � ða2Þ

and xnt denotes a transpose of a column vector xn. In addition
the hierarchical automatic relevance determination (ARD)
priors (MacKay, 1992; Neal, 1996) are assumed,

P θ cð Þ
d jα cð Þ

d

� �
¼ N θ cð Þ

d ; 0;α cð Þ−1
d

� �
d ¼ 1; N ;D; c ¼ 1; N ;C ða3Þ

P0 α cð Þ
d

� �
¼ C α cð Þ

d ;γ cð Þ
d0 ;α

cð Þ
d0

� �
d ¼ 1; N ;D; c ¼ 1; N ;C ða4Þ

where N(x;μ,S) denotes the Gaussian distribution with mean

μ and covariance S, and C α;γ0;α0ð Þ~αγ0−1 exp − γ0
α0

α
� �

denotes the gamma distribution with mean E(α)=α ̄0 and the
degree of freedom γ0. Note that we use a bar for the mean
parameter of the Gamma distribution in order to discriminate
a variable of the distribution and the expectation parameter of
the distribution. Eq. (a1) is the likelihood function in which
each term of the product is given by the multinomial
distribution with probabilities pn(1),…, pn(c) calculated from the
linear discriminant functions xnt θ(1),…, xnt θ(c) by Eq. (a2).
Eq. (a3) is a prior distribution of weight parameters θ(c)=
[θ1(c),…,θD(c)]t and Eq. (a4) is a hyper-prior distribution of
hyper-parameters α(c)= [α1

(c),…, αD
(c)]t. A vector Θ=[θ(1)t,…,

θ(c)t,… θ(C)t]t is a collection of weight parameter vectors.
The hyper-parameter αd

(c) is referred to as the relevance
parameter, and it controls the importance of the corresponding
weight parameter by adjusting the variance of the normal
distribution in Eq. (a4). The parametersαPd0

(c) and γd0
(c) in Eq. (a4)

determine the expectation and the a-priori confidence of each
relevance parameter, respectively. If we have prior knowledge
on the importance of each parameter, it can be used to set the
value of the confidence γd0

(c). However, it is rare that such
knowledge is available a-priori, and thus the non-informative
prior (obtained by substituting γd0

(c)=0 into Eq. (a4)),

P0 α cð Þ
d

� �
¼ α cð Þ−1

d d ¼ 1; N ;D; c ¼ 1; N ;C ða5Þ

is often used. We used this non-informative prior in all the
analyses in this paper.

The estimation of weight and relevance parameters can be
done by calculating the following posterior distributions,

P ΘjY;Xð Þ ¼ ∫P Θ;AjY;Xð ÞdA ða6Þ

P AjY;Xð Þ ¼ ∫P Θ;AjY;Xð ÞdΘ: ða7Þ

Because it is difficult to analytically integrate the right hand
sides of Eqs. (a6) and (a7), the calculation requires either
computational and stochastic approximations such as the
Markov Chain Monte Carlo (MCMC) method or analytical and
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deterministic approximations such as variational Bayesian
(VB) method (Attias, 1999; Sato, 2001). The algorithm derived
here is based on the VB method, since the MCMC method
cannot be applied to high-dimensional problems because of
its computational cost.

The VB method assumes the following conditional inde-
pendence condition for the joint posterior distribution,

p Θ;AjY;Xð Þ ¼ Q Θð ÞQ Að Þ ða8Þ

where Q(Θ)and Q(A) denote the marginal posterior distribu-
tions given Y and X (for simplicity, Y and X are omitted from
the expressions). Under the assumption (Eq. (a8)), the cal-
culation of the posterior distributions can be reformulated by
maximization of the variational free energy (see Attias, 1999
for details)

F Q Θð Þ;Q Að Þð Þ ¼ ∫Q Θð ÞQ Að Þ log p Y;Θ;AjXð Þ
Q Θð ÞQ Að Þ dΘdA:

This maximization is done by the iterative algorithm
consisting of Eqs. (a9) and (a10),

θ step½ � logQ Θð Þ ¼ hlog p Y;Θ;AjXð ÞiQ Að Þ þ const; ða9Þ

α step½ � logQ Að Þ ¼ hlog p Y;Θ;AjXð ÞiQ Θð Þ þ const; ða10Þ

where 〈x〉Q(x) is the expectation of x w.r.t the probability
distribution Q(x). By substituting the SMLR model Eqs. (a1)–
(a4) into Eqs. (a9) and (a10), [θ step] and [α step] are,
respectively, written as

logQ Θð Þ ¼∑
N

n¼1
∑
C

c¼1
y cð Þ
n xt

nθ
ðcÞ− log ∑

C

c¼1
exp xt

nθ
ðcÞ

� �( )" #

−
1
2
∑
C

c¼1

θðcÞthA cð ÞiQ Að Þθ
ðcÞ þ const ða11Þ

logQ Að Þ ¼∑
C

c¼1
∑
D

d¼1
−
1
2
hθ cð Þ2

2 iQ Θð Þα
cð Þ
d −

1
2
logα cð Þ

d

� �
þ const: ða12Þ

In [θ step], we further apply the Laplace approximation, a
quadratic approximation around the maximum Θ, to the right
hand side of Eq. (a11). Then [θ step] is rewritten;

logQ Θð Þ≈−1
2

Θ−Θ
� �t

H Θ−Θ
� �

þ const ða13Þ

where H denotes the negative Hessian matrix at the
maximum. The values θ and H can be obtained by the Newton
method using the gradient and the Hessian matrix respec-
tively given by

AE
AΘ

¼ AE

Aθð1Þt N ;
AE

AθðcÞt

� �t

AE

AθðcÞ ¼∑
N

n¼1
y cð Þ
n −p cð Þ

n

n o
xi−A

cð ÞθðcÞ c ¼ 1;…;C;
and

A
2E

AΘAΘt ¼ −∑
N

n¼1 ð p 1ð Þ
n

: : : 0
p 2ð Þ
n

O
0 : : : p Cð Þ

n

2
664

3
775

−

p 1ð Þ
n p 1ð Þ

n p 1ð Þ
n p 2ð Þ

n

p 2ð Þ
n p 1ð Þ

n p 2ð Þ
n p 2ð Þ

n ⋮
⋱

: : : p Cð Þ
n p Cð Þ

n

2
664

3
775Þ� xnxt

n:

Here we define p ið Þ ¼ exp xt θðiÞ
� �

=∑
C

exp xt θðcÞ
� �

,
n n
c¼1

n

E Θð Þu∑
N

n¼1
∑
C

c¼1
y cð Þ
n θðcÞtxn− log ∑

C

c¼1
exp θðcÞxn

� � !" #

−
1
2
∑
C

c¼1

θðcÞA
cð ÞθðcÞ

and A
cð Þ ¼ diag hα cð ÞiQ Að Þ

� �
. ⊗ denotes the Kronecker product.

The maximum Θ is the estimate of the weight vector, which is
the approximation of the posterior mean of P(Θ|Y,X). The
matrix H is the negative value of A

2E
AΘAΘt at the maximum Θ.

From the functional form of Eq. (a13), Q(Θ) is the Gaussian
distribution N(Θ;Θ,S), where S=H−1.

In [α step], given Q(Θ)∼N(Θ;Θ,S), integrating the first term
in Eq. (a12) with respect to Q(Θ) leads to

logQ Að Þ ¼∑
C

c¼1
∑
D

d¼1
−
1
2

θ
cð Þ2
d þ S c;cð Þ

dd

� �
α cð Þ

d −
1
2
logα cð Þ

d

� �
þ const: ða14Þ

where θ
cð Þ
d and Sdd

(c,c) are the posterior mean and the posterior
variance of θd(c), respectively (elements of Θ and S correspond-
ing to θd(c)). From the functional form of Eq. (a14), Q(A) is the
product of the Gamma distributions Q(αd

(c))∼Γ (αd
(c);γd

(c),αPd
(c)),

of which degree of freedom and the mean parameter are
respectively given by

γ cð Þ
d ¼ 1

2
d ¼ 1; N ;D; c ¼ 1; N ;C

α cð Þ
d ¼ 1

θ
cð Þ2
d þ S c;cð Þ

dd

d ¼ 1; N ;D; c ¼ 1; N C
:

To accelerate convergence, the following modified update
rule motivated by the notion of the effective degree of
freedom (MacKay, 1992) is employed,

α cð Þ
d ¼ 1−α cð Þ

d S c;cð Þ
dd

θ
cð Þ
d

� �2 d ¼ 1; N ;D; c ¼ 1; N ;C:

The updated mean parameters α cð Þ
d are used in the next [θ

step].
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The algorithm is summarized as follows:

1. [Initialization] Set the initial values for α cð Þ
d

α cð Þ
d ¼ 1 d ¼ 1; N D; c ¼ 1; N ;C:

2. [θ step] Update Q(Θ), given Q Að Þf∏c;d C α cð Þ
d ;γ cð Þ

d ;α cð Þ
d

� �
.

Q(Θ) is the Gaussian distribution,
Q(Θ)∼N(Θ;Θ,S),
where its mean Θ is given by the maximum of the function,

E Θð Þu
XN
n¼1

XC
c¼1

y cð Þ
n θ cð Þtxn− log

XC
c¼1

exp θ cð Þtxn

� � !" #
−
1
2

XC
c¼1

θ cð ÞtA
cð Þθ cð Þ:

The maximization is done by the Newton method using the gradient vector and the
Hessian matrix,

AE

Aθ cð Þ ¼
XN
n¼1

y cð Þ
n −p cð Þ

n

n o
xi−A

cð Þθ cð Þ c ¼ 1; :::;C
A
2E

AΘAΘt ¼ −
XN
n¼1

p 1ð Þ
n

: : : 0
p 2ð Þ
n

O
0 : : : p Cð Þ

n

2
664

3
775−

p 1ð Þ
n p 1ð Þ

n p 1ð Þ
n p 2ð Þ

n

p 2ð Þ
n p 1ð Þ

n p 2ð Þ
n p 2ð Þ

n
..
.

. .
.

: : : p Cð Þ
n p Cð Þ

n

2
66664

3
77775

0
BBBB@

1
CCCCA� xnxt

n

where A
cð Þ ¼ diag α cð Þ

� �
and α cð Þ ¼hα cð ÞiQ α cð Þð Þ.

The covariance S is given by − @2E
@Θ@Θt

� �−1
after convergence (i.e. evaluated at the maximum Θ).

Let θ
cð Þ
d and Sdd

(c,c) denote the posterior mean and variance of θd(c), respectively.

3. [α step] Update Q(αd
(c)), given Q(θd(c)).

Q(αd
(c)) is the Gamma distribution,

Q α cð Þ
d

� �
fC α cð Þ

d ;γ cð Þ
d ;α cð Þ

d

� �
d ¼ 1; N ;D; c ¼ 1; N ;C;

where its mean parameter α cð Þ
d and the degree of freedom γd

(c) are, respectively, updated as,

α cð Þ
d ¼ 1−α cð Þ

d S c;cð Þ
dd

θ
cð Þ
d

� �2 d ¼ 1; N ;D; c ¼ 1; N ;C

γ cð Þ
d ¼ 1

2
d ¼ 1; N ;D; c ¼ 1; N ;C

4. [Pruning] If the mean parameters α cð Þ
d (i.e. the relevance parameters) exceed some pre-specified big threshold value (108 in our code), the

corresponding weight parameters are effectively regarded as 0. Thus the corresponding dimensions are removed from the later estimation
algorithm.

5. [Judge convergence] Iterate [θ step] and [α step] alternatively until the amount of parameter changes becomes small enough or until the
number of iterations exceeds a pre-specified number.
We find that most of the relevance parameters diverge to
the infinity after iterations (about 200 iterations in case of the
quadrant stimuli experiment). The weight parameters corre-
sponding to large relevance parameters become effectively
zeros, thus we can prune these weight parameters. In practice,
we prune weight parameters whose relevance parameters
exceed a pre-specified threshold (108 in our code) to avoid
computational ill-conditioning. This accelerates the speed of
the algorithm significantly because it decreases the number of
parameters while iterations. As initial relevance parameters,
we used a vector whose elements are all one. The algorithm
may converge to different estimates when different initial
parameters are used, but we observed that the algorithm
worked quite robustly for a modest range of initial parameters
(from 1 to 1000).

Regularized logistic regression is obtained by introducing a
single hyper-parameter that controls the total L2-norm of a
weight parameter vector. In contrast, SLR uses a number of
hyper-parameters, each of which controls the L2-norm of a
corresponding weight parameter. This is formulated by
replacing the prior distribution (a2) with P(Θ|α)=N(0,αID ×C),
where α is a scalar hyper-parameter and ID ×C is an identity
matrix of size D×C. We obtain the algorithm to estimate
parameters of RLR by slightly modifying the α step in the

above algorithm to α ¼ DC−α∑S c;cð Þ
dd

∑ θ cð Þ
dð Þ2 .
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