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Neuroscientists  have  long  observed  that  brain  activity  is naturally  variable  from  moment-to-moment,  but
neuroimaging  research  has  largely  ignored  the  potential  importance  of this  phenomenon.  An  emerging
research  focus  on within-person  brain  signal  variability  is  providing  novel  insights,  and  offering  highly
predictive,  complementary,  and  even  orthogonal  views  of brain  function  in  relation  to  human  lifespan
development,  cognitive  performance,  and  various  clinical  conditions.  As a result,  brain  signal  variability
is  evolving  as  a bona  fide  signal  of  interest,  and  should  no  longer  be dismissed  as meaningless  noise  when
rain signal variability
oise
omplexity
ynamics

mapping  the  human  brain.
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Recent progress in cognitive neuroscience has been tremen-
ous, largely due to the use of noninvasive forms of functional
euroimaging over the last several decades (primarily functional
agnetic resonance imaging (fMRI), electroencephalography

EEG), and magnetoencephalography (MEG)). The examination of
euroimaging data is naturally complex, involving many vox-
ls/electrodes/sensors and time points, at each of which a brain
ignal can be measured. The complexity of these data forces
esearchers to collapse them in some meaningful way. Typically,
his often results in either focusing on central tendency of a given
ime series within-subject (e.g., calculating voxel means for specific
ask blocks in a block design study in fMRI; taking the trial aver-
ged evoked potential wave form in EEG), on calculating spectral
ower density (e.g., more typical for EEG and MEG), or on using
unctional connectivity methods (e.g., correlation-based or graph
heory metrics; independent component analysis; dynamic causal

odelling) to capture point-to-point relations between brain
egions. Interestingly, the within-person variability of moment-
o-moment brain responses typically is either completely ignored
r is attributed to various confounds that are deliberately mini-
ized (in the name of improving signal-to-noise ratios). However,

n increasing body of work directly examining within-subject brain
ignal variability has revealed a host of powerful, and in many
ases unexpected, links to healthy brain function, task perfor-
ance, development, and various clinical conditions. Our intention

n this brief review is to promote the idea that researchers should
irectly consider signal variability as a within-subject measure
f interest in neuroimaging research, and importantly, that vari-
bility is a functional property of the human brain. We  begin by
iscussing how researchers in areas of neuroscience outside of
euroimaging have studied and characterized signal variability.
e then summarize relevant neuroimaging progress by discussing

tudies that have examined moment-to-moment brain signal vari-
bility across various samples and experimental designs. Finally,
e discuss several key issues with, and provide several sugges-

ions for, conducting research on neuroimaging-based brain signal
ariability.

. Brain activity is variable, and variability is often
unctional

Various subdisciplines (cellular, systems, behavioural) within
euroscience have long shown that the brain is inherently vari-
ble from moment to moment at every level of the nervous system,
o matter how its function is measured (Faisal et al., 2008; Stein
t al., 2005). However, exactly what this variability represents has
emained unclear. Typically, many researchers intuitively conceive
f variability as neural “noise,” a nuisance factor that presumably
nterferes with the efficiency of neural processes. In contrast, in
n excellent review several decades ago, Lawrence Pinneo (1966)
rgued that neural variability “is not merely noise” (p. 245); rather,
t enables sensory discrimination and learning, and perhaps sur-
risingly, the stable and functional output of a neural system.
pecifically, he noted that the “tonic” activity of the brain (fluctu-
ting, ongoing activity) provides the substrate for effective neural
unction, a concept borrowed from Arduini (1963) that is now cen-
ral to the pervasive study of the brain’s default activity (Deco
t al., 2011; Raichle, 2010; Raichle et al., 2001, 2007). “Phasic” or
timulus-driven activity represents a relatively small proportion of
otal activity, and is argued to operate on existing tonic activity
o permit behaviours of interest, a conceptualization that reaches

ack at least to Lashley (1951) and to one of Sherrington’s disciples
Brown, 1914). Appropriately, Arieli et al. (1996) eloquently noted
hat “the effect of a stimulus might be likened to the additional
ipples caused by tossing a stone into a wavy sea” (p. 1863).
havioral Reviews 37 (2013) 610–624 611

Many extant notions of why variability is not simply noise and
can be highly functional extend beyond that of a focus on tonic and
phasic activity. For example, connectionist and cellular research
suggest that networks formed in the presence of greater noise are
more robust to disruption, thus enhancing learning and environ-
mental adaptation, and helping to maintain optimal performance
(Basalyga and Salinas, 2006; Faisal et al., 2008). This robustness may
result from noise actually reducing the average weight attributed to
any one network node; thus, if one element of a network is compro-
mised, the chances of network disruption remain relatively small.
Others have suggested that substantial trial-to-trial brain variabil-
ity derives from coherent spontaneous oscillations throughout the
cortex (Fox et al., 2005; Laskaris et al., 2003; Nir et al., 2008; Varela
et al., 2001). From this perspective, signal variability may  reflect
functional connectivity between regions, a topic that has recently
been explored in neuroimaging (Mišić et al., 2011a; Vakorin et al.,
2011). Further, stochastic resonance (SR) research suggests that
adding moderate noise to neural systems can help enhance the
detection of weak signals, allowing subthreshold neurons to fire
and potentially enhancing neural synchrony across multiple sen-
sory modalities (Basalyga and Salinas, 2006; Faisal et al., 2008; Li
et al., 2006; Lugo et al., 2008; McDonnell and Abbott, 2009; Ward,
2003; Ward et al., 2006). When noise is too low (inability to detect
weak signals) or too high (noise saturates the signal), neural pro-
cesses remain suboptimal; as a result, SR phenomena are often
represented along an inverted U-shaped curve. A broader and more
generalizable term that does not depend on signal detection for
definition (as SR does) is “stochastic facilitation,” which describes a
variety of computational, animal, and human studies in which neu-
ral computations simply prove more effective in the presence of
stochastic, biologically relevant noise (McDonnell and Ward, 2011;
for a brief discussion of possible points of intersection between
stochastic facilitation and studies of in vivo brain signal variability,
see Garrett et al., 2011a).

Signal variability can also reflect greater dynamic range (i.e., the
range of possible responses to incoming stimuli). Greater dynamic
range is generally beneficial to the adaptability and efficiency of
neural systems because it permits a greater range of response
to a greater range of stimuli. Interestingly, broad-scale dynamic
range is best achieved when synaptic excitation and inhibition
are well-balanced (Shew et al., 2009, 2011), producing a natural
ebb and flow in the system. As a nonlinear dynamical system,
the healthy brain functions at the “edge of criticality,” an opti-
mal  balance between myriad possible metastable states, which
evolves also over multiple time scales via a static set of struc-
tural connections (Deco et al., 2011, 2009; Ghosh et al., 2008;
Honey et al., 2007, 2009; McIntosh et al., 2010). Self-organized
criticality is often evidenced by the presence of power-law (e.g.,
1/f) structure, mono-/multifractal scaling, and neuronal avalanche
(i.e., coordinated bursts of neural activity which exhibit power-
law characteristics) behaviour (see Achard et al., 2008; Bak et al.,
1987; Bassett et al., 2006; Beggs and Plenz, 2003; Beggs and Timme,
2012; Bullmore and Sporns, 2009; Ciuciu et al., 2012; Fraiman and
Chialvo, 2012; Plenz and Thiagarajan, 2007; Shew et al., 2009, 2011;
Suckling et al., 2008; Tagliazucchi et al., 2012; Yang et al., 2012).
Remarkably, dynamic range, information capacity, and informa-
tion transfer optimize when brain networks are at criticality, signal
variability is optimal, and network synchrony is maximally vari-
able (Shew et al., 2009, 2011; Shew and Plenz, 2013; Yang et al.,
2012). When variability is lacking, there is also little capacity for
the brain to explore its state space, yielding the potential for
the system to remain rigidly in a single state (Deco et al., 2009;

Deco and Jirsa, 2012). Without the continual, fluctuating and vari-
able “hum” of tonic brain activity then, state-to-state transitions
may  prove more difficult (either spontaneously or when required).
Overall, such findings suggest that signal variability may index
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nd/or facilitate neural malleability and adaptability from moment
o moment.

Approximations to Bayes optimality within the brain may  also
o hand in hand with signal variability (Beck et al., 2008; Knill
nd Pouget, 2004; Ma  et al., 2006). In this context, “Bayes opti-
al” suggests that a population of neurons will generally select a

esponse that approaches the theoretical optimum from a distribu-
ion of potential responses, given some stimulus input. If neurons
red in exactly the same manner every time a specific stimulus was
ncountered (i.e., purely deterministically), one would be less able
o adapt to different circumstances that involve that same stimulus.
opulations of neurons may  effectively encode probability distri-
utions of responses (i.e., a probabilistic population code) given
he reliability of incoming signals. Based on the proximity of the
timulus to each neuron’s preferred stimulus criteria, an optimal
esponse can be chosen. Importantly, the brain may  also combine
nformation from stimuli of varying reliabilities (through a simple
dditive process that requires the presence of adequate neuronal
ariability) to optimize its responses (Ma et al., 2006). In general,
his could result in reliable and adaptable neuronal firing in the
resence of stimulus uncertainty.

At a related, yet higher level of abstraction, signal variabil-
ty may  represent itinerant (wandering) dynamics in complex,
elf-organizing neural systems. Friston et al. (2012) argue that

 characteristic feature of the brain is its tendency to destroy
ts own fixed points (i.e., not settling in to any particular state;
riston, 2010; Friston and Ao, 2012), which is key for enabling and
aintaining itinerancy. There are several prominent connectionist

onceptualizations of how itinerancy emerges and manifests. For
xample, populations of relatively weak attractors in close proxim-
ty to one another (such as Milnor attractors) can enable “chaotic
tinerancy;” given that no attractor dominates the attractor land-
cape in this scenario, a natural itinerant exploration of the neural
tate space emerges (Friston et al., 2012; van Leeuwen, 2008).
nother conceptualization refers to “multi-stability and switch-

ng” in neural systems (see Jirsa et al., 1994). In such models,
ttractors are typically stronger than Milnor attractors, but the
resence of noise drives the system from one attractor to the next
cross moments, revealing itinerancy at local and network levels.
n either case, itinerant dynamics are natural and can be functional.
riston et al. (2012) argue that itinerancy is necessary during Bayes-
ptimal perception (and is a crucial element for long-term free
nergy minimization (see Friston, 2010)); the authors state: “. . .if
euronal activity represents the causes of sensory input, then it
hould represent uncertainty about those causes in a way  that pre-
ludes overly confident representations. This means that neuronal
esponses to stimuli should retain an optimal degree of instabil-
ty that allows them to explore alternative hypotheses about the
auses of those stimuli” (p. 3). This sentiment is convergent with
hat of Pouget et al. noted above (Beck et al., 2008; Knill and Pouget,
004; Ma  et al., 2006). Relatedly, van Leeuwen (2008) noted that
eural itinerancy can operate as a novelty detector, enables state
pace exploration, and permits learning by discovery. Importantly,
nd again in line with Pouget et al., van Leeuwen (2008) argues that
andering dynamics provide/represent a necessary level of system
exibility from moment to moment, allowing the system to con-
erge on optimal responses despite imperfect stimuli. Because the
rain cannot know exactly what it will encounter across moments,

t would be ideal if it did not become locked into any particularly
igid response pattern, an inefficiency problem cleverly referred to
y van Leeuwen as neural “overfitting” (p. 87).

In summary, a variety of prominent ideas and potential explana-

ions (e.g., dynamic range, Bayesian optimization, itinerant dynam-
cs) exist that attempt to explain why signal variability should
xist in neural systems. It is important to note that these poten-
ial explanations are not mutually exclusive, and various scenarios
havioral Reviews 37 (2013) 610–624

are plausible in which more than one may  come into play (e.g.,
dynamic range may  be necessary for itinerant dynamics-enabled
Bayes optimality (and free energy minimization); without enough
dynamic range, the brain could not sample the environment
broadly enough over time, precluding the development of Bayes-
optimal regimes). Although there is much work to be done before
agreement is reached on exactly what signal variability “is”, this
selective summary provides some context and justification for why
moment-to-moment brain signal variability is not only ubiquitous
at every level of the nervous system (Faisal et al., 2008), but is also
a vital component of healthy neural function. As a result, this work
helps provide a theoretical and empirical grounding for the focused
examination of within-person variability in neuroimaging signals,
to which we  turn next.

2. Within-subject brain signal variability measures reveal
powerful and novel insights into human brain function

Over the past several years, scientists have begun to use neu-
roimaging to examine temporal brain signal variability as an
individual differences measure of interest across a variety of sam-
ples and paradigms. A selection of these studies that focus on
human development, cognitive performance, and clinical compar-
isons are described below. However, prior to discussing this body of
work, we will first define what we mean by “temporal variability”
in neuroimaging signals, and what types of measures have been
used to quantify it.

In the vast majority of applications, temporal signal variability
reflects a direct measure of the magnitude of some aspect of vari-
ability from moment to moment in a neuroimaging time series.
The simplest forms of such measures include variance (He, 2011),
standard deviation (Garrett et al., 2010, 2013; Wutte et al., 2011),
and mean square successive differences (Leo et al., 2012; Samanez-
Larkin et al., 2010). Each of these measures taps related forms of
overall distributional width. SD is simply the square root transfor-
mation of variance. MSSD (Neumann et al., 1941) is akin to variance,
except that instead of a single, static mean serving as an anchor
point, each time point is compared to the immediately preceding
time point when calculating sums of squares. Another commonly
applied family of measures examines signal complexity, or tem-
poral unpredictability. One such measure is multiscale entropy
(MSE; Costa et al., 2002, 2005), which is a derivation of Shan-
non’s entropy (Shannon, 1948) and Pincus’ early calculations of
approximate entropy (Pincus, 1991). The MSE  algorithm calculates
sample entropy (Richman and Moorman, 2000) across multiple
increasingly coarse-grained time scales. Sample entropy of each
coarse-grained time series serves as an index of signal complexity
by evaluating the occurrence of repetitive patterns; low MSE  values
reflect more deterministic or regular time series, and high MSE  val-
ues indicate more complex and information rich signals. A number
of other related complexity-type measures have also been applied
in past studies (e.g., Omega complexity, Lempel-Ziv complexity,
Lyapunov exponent, neural complexity; see Takahashi, 2012).

Another conceptualization and application of signal variability is
dimensionality (e.g., principal components analysis (PCA, McIntosh
et al., 2008); correlation dimension (Grassberger and Procaccia,
1983)). The more dimensions required to capture the variance
among trials in a given voxel/electrode/sensor, the more variabil-
ity that exists between those trials. Thus, when trials differ greatly
from one another, they are less likely to be captured in the same
latent dimension. Finally, in the frequency domain (via Fourier

transformation), signals are represented as a sum of sinusoids, and
the calculation of power (or spectral density) provides an index of
the amplitude of sinusoidal oscillations within and across frequen-
cies over a time series. In this way, power can serve as a specific
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orm of signal variability. Recent fMRI studies have examined the
mplitude (or fractional amplitude) of low frequency fluctuations
ALFF; Zou et al., 2008; Zuo et al., 2010) as a measure of resting state
uctuations, which is equal to taking the square root of the power

n a particular frequency range. Relatedly, wavelet transformations
llow measures of power/energy that can be calculated for more
pecific frequencies, wave forms, or time windows.

With various measures of signal variability in mind, we now
ighlight a series of recent applications of signal variability meas-
res across samples and task types.

.1. Childhood to young adulthood

Pre-adulthood neural development is characterized by multi-
le processes that could impact signal variability levels, including
he maturation of neurotransmitter systems, pruning, myelina-
ion, and functional network change (Fair et al., 2009; Hasan et al.,
007; Johnson, 2001; Li, 2012; Li et al., 2010; Power et al., 2010;
owell et al., 2003, 2004; Supekar et al., 2009; Toga et al., 2006;
ddin et al., 2011; Westlye et al., 2010). In particular, development
ields increasing global (relative to local) network integration (Fair
t al., 2009; Supekar et al., 2009), which could enable a balanced
rofile of neural differentiation and specialization coinciding with
eightened process simultaneity, information capacity, and sig-
al variability/complexity (Mišić et al., 2010; Tononi, 1998; Tononi
t al., 1994). However, the study of developmental changes in brain
ignal variability per se (and relations with cognition and network
unction), have only recently been explored with neuroimaging.

In one study, McIntosh et al. (2008) examined relations between
ignal variability, age, and behaviour using EEG in a cross-sectional
ample of 8–15 and 20–33 year olds on a face recognition task. The
uthors found that signal variability (whether measured using PCA
r MSE) was higher in the young adult group compared to children
nd adolescents (see Fig. 1a), and was associated with higher face
ecognition accuracy and more consistent reaction time responses
reliable R2 values ranged from 0.3 to 0.7). Comparing even younger
hildren (1–66 months old) to adult controls, Lippe et al. (2009)
xamined EEG-based MSE  during basic visual (black and white
heckerboard stimuli) and auditory (50 ms  broad band noise) stim-
lation. As in McIntosh et al. (2008),  results indicated that MSE  was
reater with increasing age in both conditions (when modeled with
ontinuous age, R2s = ∼.36). Interestingly, visual (higher MSE) and
uditory (lower MSE) conditions were differentiable in the younger
roups, but diminished with maturation and were indistinguish-
ble in adults. The researchers suggested this effect could reflect
lower maturation (and possibly lesser functional integration) in
obes critical for auditory processing (temporal and prefrontal cor-
ices) at early ages, relative to those regions more important for
isual processing (Redcay et al., 2007; Sowell et al., 2004).

In another comparison of children/adolescents (6–16 years) and
dults (20–41 years) Mišić and colleagues (2010) examined MEG-
ased MSE  on a one-back working memory task involving face
timuli. One block of trials contained upright faces and the other
ontained inverted faces. Consistent with McIntosh et al. (2008)
nd Lippe et al. (2009),  the authors found greater MSE  across the
ortex with maturation. This effect was most prominent in the pos-
erior cingulate/precuneus for both task conditions. The upright
ace condition was generally distinguished by higher variability
han the inverted face condition, primarily in the fusiform gyrus
nd anterior cerebellum. As in Lippe et al. (2009),  the difference in
SE  between conditions decreased with age; thus, adults showed

reater signal variability overall, but this level of variability was

ore consistent across conditions. Finally, higher MSE  correlated
ith higher accuracy, faster mean RT, and lower RT variability (see

ig. 1b for magnitudes). The authors concluded that greater vari-
bility during the upright compared to the inverted face condition
havioral Reviews 37 (2013) 610–624 613

may  be attributable to naturally increased configural, holistic, and
integrative processing present when viewing faces in their natural
orientation. Thus, the authors present evidence for the sensitivity of
MSE  in distinguishing stages of development and task conditions.

Links have also been made between signal variability and func-
tional connectivity. In a re-examination of the data from Lippe
et al. (2009) noted above, Vakorin et al. (2011) explored the extent
to which developmental increases in signal variability reflected
either the localized specialization of network nodes, or the height-
ened integration between distal regions. To address this question,
the authors decomposed total signal variability at individual EEG
channels into “local” (variability near the electrode site) and “dis-
tributed” entropy sources (i.e., variability as a result of the mutual
information between a given electrode and other electrodes), and
then gauged how these sources varied with development. Results
indicated that development was marked by a decrease in local
entropy and an increase in distributed entropy, thus supporting
an “integration” model of heightened signal variability with mat-
uration from 1–66 months of age. Mišić et al. (2011b) expanded
on the link between network connectivity and signal variability
by examining EEG-based functional connectivity metrics (using
graph theory) and MSE  in a sample of ten-year-olds. The authors
focused on the centrality of each network node with respect to
the number of connections it made (“degree”), the ease with
which the node could be reached from other nodes in the network
(“efficiency”), and the tendency of the node to occupy a position
on the shortest paths between other pairs of nodes in the net-
work (“betweenness”). All three graph metrics positively correlated
strongly (R2 = .45 to .72) with MSE  across multiple time scales and
brain regions (see Fig. 1c for a snapshot); thus, the greater the signal
complexity in a given node, the greater its network centrality.

These studies support the utility of examining EEG- and MEG-
based signal variability development across children, adolescents,
and young adults. Across studies, greater signal variability is
associated with maturation and better cognitive performance, dis-
tinguishes different cognitive conditions and stimulus types, and
reflects the development of network integration and centrality.

2.2. Aging

A series of recent studies has also begun to examine differ-
ences in within-person brain signal variability across adulthood
and into old age. Like early development, human aging is an excel-
lent context for investigating signal variability. The concepts of
“noisy” and inefficient processing in adult aging were initially dis-
cussed between the 1960s and the 1980s (Cremer and Zeef, 1987;
Salthouse and Lichty, 1985; Welford, 1981, 1965). Human and com-
putational modeling evidence (Li et al., 2001; Macdonald et al.,
2009) suggest that various neural processing inefficiencies asso-
ciated with older age reflect degradations in neurotransmission
(Bäckman et al., 2006) and the integrity of white and grey mat-
ter (Raz, 2005; Raz and Rodrigue, 2006), and functional network
change (e.g., Andrews-Hanna et al., 2007; Grady, 2012; Grady et al.,
2010). However, until recently, the notion of age-related neural
noise has not been formally tested in vivo by examining within-
subject brain signal variability/noise directly.

Within a sample of young and older adults, Garrett et al. (2010)
investigated the presence of age differences in fMRI-based blood
oxygen level-dependent (BOLD) signal variability during fixation
blocks. To measure signal variability in each person and in each
voxel, the authors calculated a modified time series standard
deviation (SDBOLD) following a series of preprocessing steps (e.g.,

block normalization to limit variance overestimation due to low
frequency drifts). The authors then compared standard deviation
(SD)- and typical mean-based spatial patterns on their zero-order
and partialled age-predictive effects. Results indicated that not only
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as the SDBOLD pattern robust (R2 = .81), this pattern was virtually
rthogonal to that determined using mean BOLD signal, thus
evealing a distinctive subset of age-relevant brain regions that
ould not have been discovered with mean-based measures.
otably, the unique age-predictive power of the SDBOLD pattern

unique R2 = .27) was more than five times that of the mean-based
attern (unique R2 = .05). Critically, contrary to earlier notions of
ge-related neural noise, but in line with the child-developmental
tudies noted above, younger adult brains were generally more
ariable overall than older adult brains, particularly in cortical
egions.

In addition to age differences, associations between variability
nd performance emerged as well. In a subsequent study, Garrett
nd colleagues (Garrett et al., 2011b)  examined task-related SDBOLD
n relation to age, and reaction time (RT) speed and consistency
n younger and older adults on three cognitive tasks (perceptual
atching, attentional cueing, and delayed match-to-sample). Mul-
ivariate models revealed that younger, faster, and more consistent
erformers exhibited significantly higher signal variability on all
-based MSE  was  associated with development, accuracy, and faster and more stable
ed strongly with graph-theoretic network efficiency (top panel), which increased
nterior and posterior electrodes (bottom panel).

three tasks (R2 values ranged from ∼.20 to .65; see Fig. 2a). Thus,
beyond age, it appears that signal variability indexes individual dif-
ferences in behavioural efficacy in older samples. As in Garrett et al.
(2010), SDBOLD and mean-based spatial patterns were essentially
orthogonal, any regions that did overlap were largely opposite in
directionality of effect, and meanBOLD relations to age and perfor-
mance were generally weaker (R2 values ranged from ∼.10 to .36).
Interestingly, younger, better performing adults not only presented
with greater signal variability overall, but they also exhibited a
greater range of variability levels across regions; older, poorer per-
formers’ variability levels were far less differentiated from region to
region. In concert with the findings by McIntosh et al. (2008),  Lippe
et al. (2009) and Mišić et al. (2010), the Garrett et al. results (2010,
2011) provide preliminary support for an inverted u-shaped life-
span developmental curve of brain signal variability from infancy
(lower variability) to young adulthood (high variability) to older

adulthood (lower variability), as well as a generally monotonic and
positive association between signal variability and cognitive per-
formance.
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D)  Garrett et al. (2013): Younger adults were characterized by greater increases in
Using a different set of analysis methods and functional tasks,
nother study (Samanez-Larkin et al., 2010) examined BOLD mean
quare successive difference (MSSDBOLD)1 values for each voxel

1 It is noteworthy that SDBOLD(which is preceded by block normalization to
inimize low frequency drift effects on variance calculations) was  found to be sta-

istically redundant with MSSD (Garrett et al., 2011b), thus allowing these measures
o  be directly compared.
and (C) mediated positive relations between age and risk-seeking mistakes (RSM).
 variability from fixation to task (PMT, ATT, DMS), in yellow/red regions.

in younger, middle-aged, and older adults across the entire time
series of a financial decision task. Results of this study indicated that
MSSDBOLD was greater with increasing age, primarily in a number
of subcortical regions (e.g., right caudate nucleus, right thalamus,
midbrain; see Fig. 2b). Although age was associated with increasing

variability, again there was  a relationship between MSSD and task
performance. Specifically, higher variability in the nucleus accum-
bens (NAcc) correlated with suboptimal financial decisions, and this
relationship between NAcc variability and performance reliably
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ediated the zero-order effect between age and performance (see
ig. 2c for depiction and path coefficients). Surprisingly, in this task
he authors found no brain regions that decreased in variability
ith age. It is worth noting that the Garrett et al. (2010, 2011b)

tudies also identified a few subcortical regions that exhibited
reater variability in older, slower, more inconsistent participants,
onvergent with the regions noted by Samanez-Larkin et al. (e.g.,
triatum, midbrain). The Garrett et al. and Samanez-Larkin et al.
tudies therefore suggest some consistency of findings at the sub-
ortical level. Future research should address differences between
ubcortical and cortical signal variability effects, directionality of
ffects, and task types. Another point of convergence with Garrett
t al. was that, for Samanez-Larkin et al., MSSDBOLD produced
esults highly differentiated from meanBOLD (i.e., meanBOLD pro-
uced no effects similar to MSSDBOLD), thus further supporting the
omplementary information offered by signal variability measures.

Recently, Garrett et al. (Garrett et al., 2013) investigated the
elationship between signal variability and changing cognitive
emands. Within a sample of healthy younger and older adults, the
uthors found that SDBOLD was an effective discriminator between
xation and external cognitive demand (using the same three cog-
itive tasks as in Garrett et al., 2011b). Across a number of regions,
ignal variability increased broadly on task compared to fixation,
articularly in younger and faster performing adults (interaction
artial �2 = .24; see Fig. 2d). Conversely, older and slower per-
orming adults exhibited fewer changes in signal variability within
nd across experimental conditions and brain regions, indicat-
ng a reduction in variability-based neural specificity. The authors
rgued that increases in signal variability on task may  represent

 more complex neural system capable of greater dynamic range
etween brain states, as well as an enhanced ability to efficiently
rocess varying and unexpected external stimuli. Remarkably,
espite sensitivity to a fixation versus task effect, SDBOLD revealed a
nidirectional spatial pattern (broad scale increases in SDBOLD from
xation to task) entirely dissimilar to a prototypical “task negative”
at fixation) vs. “task positive” spatial pattern that one would expect
hen using meanBOLD as the brain measure of interest.

MSE  of brain signals has also been examined in relation to
ging. For example, convergent with Garrett et al. (2013),  one study
Takahashi et al., 2009) of younger and older adults noted that
or young adults, EEG-based MSE  values increased after a photic
light) stimulus was administered (relative to MSE  levels imme-
iately prior to stimulus onset) for 12/14 electrodes. Older adults
id not exhibit different MSE  levels across tasks for any electrode.
he authors’ results suggest an aging-related loss of complexity and
iminished functional response to visual stimuli.

.3. Healthy young adults

Studies of signal variability in young adult-only samples have
een scarce to date. One study (Wutte et al., 2011) investigated
MRI signal variability in the human motion complex (hMT+)
uring rest and during a visual discrimination task. Higher levels
f fMRI signal variability on task compared to rest correlated with
ower discrimination thresholds (R2 = .36; see Fig. 3a), indicating
hat more variance during task is functional in the presence of envi-
onmental demand (Garrett et al., 2013; Takahashi et al., 2009). The
uthors’ result is also consistent with stochastic resonance theory,
hich suggests that endogenous or exogenous noise/variability can

ncrease the sensitivity of neuronal populations to incoming sig-
als. In another study, He (2011) examined fMRI variance from 21
egions of interest (ROIs) in a series of resting and task runs (sub-

ects were asked to press a single button when a crosshair dimmed
nscreen), each of which were seven minutes long. Divergent from
arrett et al. (2013) and Takahashi et al. (2009),  He found that vari-
nce decreased from fixation to task in 11 of 21 ROIs. However,
havioral Reviews 37 (2013) 610–624

the author’s results also indicated that signal variance is positively
correlated with scale-free signal properties (R2 = .27; see Fig. 3b),
suggesting that systems with higher signal variability may be oper-
ating nearer to a critical state. Ongoing young-only work from our
group (Garrett et al., under review) suggests that the directional
shift (up/down) in signal variability from fixation to task depends
on the exact parametric level of task difficulty for a given partici-
pant. This new work may  help address divergent findings between
He (2011) and other rest versus task studies reviewed above
(Garrett et al., 2013; Takahashi et al., 2009; Wutte et al., 2011).

Mennes et al. (2011) explored relations between fMRI-based
resting-state fractional ALFF and task-related mean activity and
cognitive performance during an Ericksen flanker task. The authors
found that fractional ALFF measures positively predicted task-
evoked activity, but only in a small subset of task-active regions.
This general finding agrees with previous work (Garrett et al., 2010;
Garrett et al., 2011b)  highlighting the occasional, but generally
absent, relation between signal variances and means. Convergent
with previous MEG  (complexity) and fMRI (SDBOLD) work (Garrett
et al., 2011b; Mišić et al., 2010; Raja Beharelle et al., 2012), the
authors also found that greater precuneus fractional ALFF (among
other regions such as anterior and paracingulate cortices, insula,
middle and orbitofrontal cortices) correlated with faster and more
consistent reaction time performance. Conversely, and in line with
Garrett et al’s. (2011) aging results, cerebellar dominant clusters
(but also including lateral occipital cortex, and postcentral, inferior
temporal, orbitofrontal and fusiform gyri) exhibited the opposite
direction of effect, in which greater fractional ALFF covaried with
slower and less consistent performance. Here in young adults, as in
older adult studies (e.g., Garrett et al., 2010; Garrett et al., 2011b;
Samanez-Larkin et al., 2010), the nature and purpose of regionally
specific links to performance require careful future examination
and theoretical development.

Finally, a recent study expanded the study of signal variabil-
ity into the domain of learning and memory. Heisz and colleagues
(Heisz et al., 2012) investigated the effects of face familiarity,
repetition, and learning on MSE  levels. Results indicated that higher
subject ratings of famous face familiarity correlated with higher
MSE values across electrodes. Within-person, higher MSE  levels
also covaried with greater experimental exposure to previously
unknown faces that were paired with audible stories (see Fig. 3c).
The authors argued that cognitive processes during the percep-
tion of familiar stimuli may  engage a broader network of regions
manifested as higher complexity/variability in spatial and temporal
domains.

These various young adult studies demonstrate that even in rel-
atively homogeneous, healthy samples, signal variability methods
can be highly sensitive indicators of task conditions and cognitive
performance.

2.4. Disease and brain injury

To the extent that brain signal variability is an index of neu-
ral dynamics, complexity, and functional performance, the utility
and sensitivity of signal variability measures should extend beyond
healthy samples, and serve as an important marker of individual
differences for clinical comparisons. Several years of notable work
on dementia, schizophrenia, traumatic brain injury (TBI), autism,
congenital blindness, mesial temporal lobe epilepsy, and other con-
ditions suggests this is indeed the case. In particular, the study
of complexity, rather than variance, has permeated these areas of
research. Depending on the nature of the pathology, available stud-

ies have been more or less mixed with regard to whether greater
signal variability characterizes healthy controls or not.

Dementia (particularly Alzheimer’s Disease, AD) and
schizophrenia have received a large proportion of past research
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ttention on signal variability/complexity. These studies have
argely focused on resting state EEG/MEG data, using various forms
f complexity measures. Regarding AD, most studies examining
ingle temporal scales to estimate complexity (see Dauwels
t al., 2010; Stam, 2005; Takahashi, 2012) find that AD patients
xhibit less signal complexity than healthy, age-matched controls
although BOLD-based signal variability findings in mild cognitive
mpairment are mixed, see Han et al., 2011; Xi et al., 2012). Some

ulti-scale findings further support this group difference across
ime scales (Escudero et al., 2006). However, other multi-scale

ndings invite different conclusions. For example, Park et al. (2007)
emonstrated an MSE-based reduction in complexity in severe
D at finer time scales, but the opposite effect tended to occur
t coarser time scales (severe AD signal complexity was higher
oints represent sample averages for 21 specific regions of brain. The lone outlier
 (EEG) increased with greater contextual familiarity with novel face stimuli (top

at  slower frequencies). A recent EEG study (Mizuno et al., 2010)
corroborated these effects. AD patients (including mild to severe
cases) had lower signal complexity (MSE) at finer scales in frontal,
temporal, and parietal electrodes. However, when comparing
severe AD cases to controls, patients exhibited higher MSE  at
coarser scales across electrodes. These findings demonstrate the
power of a multi-scale approach to quantifying signal complexity.
In both fine and coarse-grained time series, AD appears reliably
discriminable from healthy adults, albeit in opposite ways.

Similar to the bulk of AD findings, the current state of find-

ings regarding schizophrenia have been mixed, with at least as
many current studies noting greater (e.g., Hoptman et al., 2010)
as noting lesser signal variability in schizophrenics (see Fernandez
et al., 2012). However, Fernandez et al. (2012) propose that the
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bserved discrepancies may  be somewhat reconcilable; when all
vailable evidence is considered, young, medication-naïve, symp-
omatic schizophrenics are most likely to exhibit increased signal
omplexity relative to healthy controls. The apparent consistency
f this effect may  designate schizophrenia as a special case in
he study of complexity, within which the diseased group’s brain
ignals appear more complex. Similar to AD research though, multi-
cale approaches have been underutilized in past schizophrenia
esearch, with notable exceptions that highlight frequency band
pecificity of complexity effects (Takahashi, 2012; Takahashi et al.,
010). In any case, no matter the direction, biocomplexity and
ariability measures have been highly powerful discriminators of
chizophrenics and healthy controls.

The study of other clinical populations is much clearer in its
irectionality, revealing that healthy brains are more variable
nd complex. Multi-scale work on TBI (Raja Beharelle et al.,
012) investigated relations between MEG-based MSE  during

n attention task in healthy adults and patients with TBI. Lower
SE values characterized TBI patients compared to controls (see

ig. 4a). Higher MSE  also predicted more accurate and consistent
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ontrols.
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performance for healthy adults (R2 = ∼.25), and more consistent
performance for TBI patients (R2 = ∼.50). Interestingly, the relation
between MSE  and performance consistency was stronger for
people with brain injury, and depended on specific condition
(more difficult conditions revealed stronger relations) and MSE
time scale (the moderately difficult condition revealed the effect
at finer time scales; the most challenging condition revealed the
effect at coarser time scales). Nenadovic et al. (2008) also examined
the EEG-based temporal variability of phase synchronization in a
sample of children who  had experienced a TBI and resulting coma,
and compared them to age- and gender-matched controls. The
authors examined whether the variability of EEG phase synchrony
(between electrodes), analyzed during the acute phase post-TBI,
would differ from that of normal children. Brain activity was
measured during an eyes-closed condition. The authors found that
greater temporal variability of phase synchronization among EEG
electrodes strongly covaried with greater recovery and emergence

from coma twelve months after TBI (R2 = .55). Interestingly, phase
synchronization variability was highly similar between normal
controls and those patients who eventually recovered well. The
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 in left precuneus was lower across a variety of scales in traumatic brain injured
 square successive differences, MSSD) was higher in congenitally blind patients vs.
-old infants with high-risk autism spectrum disorder (ASD), relative to age-matched
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uthors suggested that variability of phase synchrony may  offer
 valuable predictor of current functional integrity (convergent
ith computational and animal work; Yang et al., 2012), as well as

uture functional outcome in brain-damaged patients.
An interesting application of fMRI signal variability measures

as recently reported in a small sample comparison of congenitally
lind and healthy adults (Leo et al., 2012). Congenital blindness
rovides an interesting context within which to examine signal
ariability. On one hand, from a perspective of biocomplexity,
ne might expect healthy adults to have more complex systems
iven the need to consistently process and integrate information
rom greater, rather than fewer, sensory sources. However, pre-
ious work suggests that the life-long absence of retinal input
an induce cross-modal plastic reorganization in early visual brain
reas, which then process stimuli conveyed by auditory, tactile,
nd olfactory senses, thus characterizing such regions by their
supramodal” and information-rich status. The authors hypothe-
ized that parietal cortex may  be an obvious hub region to transmit
ulti-modal information to visual cortex. On two different tactile

asks (spatial discrimination and motion perception), the authors
ound that blind individuals exhibited greater signal variability
using MSSDBOLD) across parietal, occipital, temporal, and frontal
egions (see Fig. 4b). Using an inferior parietal seed region, func-
ional connectivity analyses also supported positive relations with
uperior and middle occipital regions (among others), and showed
reater connectivity for the blind group. Although a larger sam-
le and the inclusion of task performance data would have added
reatly to conclusions made, this study provides a good example of
he potential sensitivity of signal variability measures to the effects
f cortical plasticity and supramodal region development.

New multi-scale research on EEG signal complexity in autism
s emerging. One group (Bosl et al., 2011) investigated group dif-
erences in resting-state MSE  in normal developing children and
hildren at high risk for autism spectrum disorder. Across all
hannels and the majority of temporal scales, MSE  tended to be
reater in normal children (see Fig. 4c). Using several machine
earning algorithms with MSE  as a feature vector, the authors
orrectly classified groups with 70–100% accuracy. Of the rel-
tively few clinical studies to utilize task data, Caterino and
olleagues (2011) examined MSE  differences between normal and
utism spectrum condition-diagnosed adults during face and chair-
atching tasks. Results indicated lower MSE  values in the autism

roup across temporoparietal and occipital regions for both tasks,
articularly within coarser scales (i.e., lower frequency scales).

mportantly, no significant differences in EEG power spectra were
bserved between groups, indicating that changes in complexity
alues are not necessarily a reflection of changes in EEG power
pectra.

Epilepsy also continues to receive attention in the study of signal
ariability. Protzner et al. (2010) applied MSE  measures to examine
ntracranial EEG-based MSE  within a sample of mesial tempo-
al lobe epilepsy patients while they performed a scene encoding
nd recognition task. Each patient presented with a history of
ight mesial temporal seizure onsets, and had electrodes implanted
ithin the right (epileptogenic) and left (healthy) hippocampi.

he healthy left hippocampus was marked by significantly higher
SE  across temporal scales, especially during scene encoding. This

uggests that cognitive demand can influence the sensitivity of sig-
al variability to differentiate damaged regions from their healthy
omologues. Other notable EEG work finds that although they may
ot differ in signal entropy across the brain relative to controls
uring normal periods (Burioka et al., 2005), epileptics are char-

cterized by gross reductions in entropy in the minutes prior to,
nd during, seizures (Burioka et al., 2005; Zandi et al., 2009).

A number of other disorders and diseases have also been tar-
ets for variability and complexity analyses (Guo et al., 2012a,b;
havioral Reviews 37 (2013) 610–624 619

Takahashi, 2012; Yu-Feng et al., 2007; Zhu et al., 2012), thus fur-
ther supporting the use of these measures for studying group
differences and clinical outcomes. However, the application of vari-
ability/complexity techniques in clinical neuroimaging remains
in its infancy, with relatively few studies taking a multi-scale
approach. As findings accumulate within and across clinical sam-
ples, stronger claims about directionality at particular frequencies
can emerge.

2.5. Summary

The aforementioned studies of brain signal variability across
the lifespan and in brain injury and disease reveal novel and
powerful insights into brain development, behavioural correlates,
and neural integrity. The cellular, animal, and neurocomputational
foundations, predictive power, and complementary nature of signal
variability suggest that methods focusing on variability will con-
tinue to bear fruit in human neuroimaging research. Although there
is a great of deal of work required to understand what the various
variability and complexity measures tell us about brain function,
these measures are remarkable in their ability to provide a unique
window into the human brain that typical brain signal analytic
methods do not provide.

3. Potential issues, preliminary solutions, and future
directions

With the emergence of signal variability research as a potential
next frontier in brain imaging, it is becoming vital that scientists
work towards best practices. As a first step, we  attempt to highlight
several key points and possible solutions we think are important at
this juncture in the field, and of which anyone doing this research
may  wish to be aware. We  also describe various next steps and
opportunities for expansion in this broad area of research.

3.1. Clearly define your desired level of signal variability
measurement precision

Beyond measure type (e.g., complexity, variance), moment-
to-moment temporal signal variability can take on many forms.
For example, in any imaging paradigm, depending on researcher
interests and available temporal resolution, one may  wish to char-
acterize single-trial variability within a given condition (McIntosh
et al., 2008), measure the variability across trials within condition
(Garrett et al., 2010; Garrett et al., 2011b; Samanez-Larkin et al.,
2010), compare variability levels between conditions (Garrett et al.,
2013; He, 2011; Mišić et al., 2010; Wutte et al., 2011), or com-
pute variability across a number of conditions or states. It is not
yet known how these different levels of variability analysis relate,
which may  be a potential source of between-study differences in
directionality or power of research findings. If temporal and/or spa-
tial resolution allow, it would be worthwhile to examine as many of
these levels of precision as possible in a given study, so that readers
can appreciate how signal variability may  differ at various levels of
data aggregation.

Relatedly, optimal task design should ensure that signal variabil-
ity can be accurately measured at one’s preferred level of precision.
In fMRI for example, SDBOLD levels respond to specific task types,
perhaps representing different variability-based “states” (Garrett
et al., 2013). However, event-related-type fMRI designs that iter-
ate through multiple successive trial types may  be less accurate at
capturing within-state signal variability that is uncontaminated by

other states. In such cases, it is possible that the brain establishes a
more balanced level of signal variability to handle the varying load
under which it is placed. This could be experimentally verified. For
electrophysiology (EEG/iEEG/MEG/ECoG), one indeed has ample
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emporal precision to examine variability at the single trial level,
ut this still does not ensure that state mixing has not occurred, to
he extent that residual variance from a preceding trial can impact
uccessive trials over particular time scales. As a result, the use of
lock designs may  be better suited to the precise measurement of
ignal variability.

.2. Preprocessing is key

When variability is the focal measure of brain function, pre-
rocessing of data (and precise documentation of specific steps
aken when publishing results) may  become even more impor-
ant than is typically the case. Various artifacts (e.g., in fMRI,
xtreme spikes due to head motion, drift artifacts, signal/slice
rop-out; in EEG, eye, muscle, cardiac movements) can have pro-
ound impacts on the statistical power and reliability of variability

easures. In fMRI, extended preprocessing pipelines (i.e., beyond
ypical spatial normalization, smoothing, slice time correction, and

otion correction) that include intra-individual ICA denoising,
M/CSF/motion parameter regression, and block normalization

ave been shown to simultaneously reduce average voxel variance
evels, while dramatically increasing statistical prediction (Garrett
t al., 2010). Although much needs to be done (e.g., examina-
ion of whether fMRI signal variability results should be scaled by
esponsivity measures such as ASL or hypercapnia), Garrett et al’s.
2010) results suggest that by progressively honing brain signals
ia principled preprocessing, we can obtain more reliable signal
ariance sources (for within- and between-session reliability of
OLD signal variability, see Garrett et al., 2013; Zuo et al., 2010).
ncouragingly, systematic sources of artefact-related variance in
OLD signals often account for a relatively small proportion of the
ariance that exists in BOLD time series data anyway; the majority
f signal variance likely represents the variability of actual neural
esponses (Bianciardi et al., 2009; Kruger and Glover, 2001), thus
upporting the continued exploration of variability as an important
easure of brain function.

.3. Statistical methods of choice need not change, but what
bout calculating signal variability?

The choice to examine brain signal variability is essentially
rthogonal to which models can be used to analyze it. Because sta-
istical models/packages are blind to the various sources/types of
ata, all that is required is for signal variability data to be in the cor-
ect format for it to be analyzable in a standard manner (e.g., general
inear model; multivariate frameworks such as PLS or MVPA). For
xample, our SDBOLD models (Garrett et al., 2010, 2013; Garrett
t al., 2011b)  were run wholly within the PLS software package
or MATLAB, requiring only that the input data matrix represent
oxel SDs rather than voxel means. Similarly, after proper format-
ing (e.g., using 3dcalc in AFNI), standard AFNI regression models
3dregana; Cox, 1996) were used to examine Samanez-Larkin et
l’s. (2010) MSSDBOLD data. Although required data formatting will
ary by analysis package, the time taken to format thus far has been
easonable in our own studies.

Unfortunately, the primary barrier to any widespread adoption
f signal variability measures is that no major imaging software
ackage (e.g., SPM, FSL, AFNI, EEGLAB) currently has comprehen-
ive signal variability estimation tools built-in. To our knowledge,
utside of the readily available estimation of power/fluctuation
mplitudes (e.g., ALFF measures available via the REST toolbox
Song et al., 2011); wavelet and Fourier-domain analyses in

EGLAB (Delorme and Makeig, 2004); MATLAB’s (Mathworks, Inc.)
ignal Processing or Wavelet Toolboxes; FSL’s fslspec tool; AFNI’s
dPeriodogram or 3dWavelets tools), little else is easily accessible.
n our work, we have adapted (e.g., Costa et al.’s MSE  scripts;
havioral Reviews 37 (2013) 610–624

http://www.physionet.org/physiotools/mse/tutorial/)  and have
created various scripts within MATLAB or Unix shell environments
(e.g., for MSSDBOLD or block detrended SDBOLD measures), although
other programming languages/environments (e.g., Python) would
also be workable. We  plan to make various tools/scripts we  use
freely available (hosted at douglasdgarrett.com, and eventually at
nitrc.org), with a longer-term goal of developing comprehensive
toolboxes for the major open-source image analysis packages. In
the meantime, primary references for description/implementation
of commonly applied brain signal variability measures are: (1)
SDBOLD (Garrett et al., 2010, 2013; Garrett et al., 2011b); (2)
MSSDBOLD (Leo et al., 2012; Samanez-Larkin et al., 2010); (3)
ALFF/fALFF for BOLD signals (Zou et al., 2008; Zuo et al., 2010);
(4) MSE  (Costa et al., 2002, 2005; McIntosh et al., 2008), which is
a multi-scale version of sample entropy (Richman and Moorman,
2000). As always, interested readers can seek out any number of
excellent signal processing references that cover various aspects
of fluctuation amplitudes, stochastic processes, and general signal
dynamics (e.g., Mitra and Bokil, 2008; Schomer and Lopes da Silva,
2011).

3.4. Linking variability and complexity/entropy metrics?

Despite their continued use, it remains unclear how different
measures of brain signal variability such as signal variance (e.g.,
SDBOLD) and MSE  relate. As noted above, MSE  captures the com-
plexity of point-to-point transitions in time series, rather than
the overall variance in a time series. Because MSE  is calculated
across multiple time scales, substantial data are required to calcu-
late stable estimates. Although MSE  measures may  be highly useful
when applied to imaging techniques with high temporal resolu-
tion (EEG, MEG, fNIRS), many task-based fMRI studies are simply
not amenable to their full implementation (although, the spatial
resolution of fMRI is superior). In typical block design studies in
cognitive neuroscience, condition blocks are too short (e.g., often
30 s, repetition time (TR) often = 2 s) to allow the estimation of mul-
tiple frequencies and temporal scales. Even if block concatenation
was employed, the original time series would still be altered. The
brevity of task blocks is often by design, however. To maximize
subject attention and performance, and to avoid fatigue and neural
adaptation effects, relatively short task blocks are typically offset
with fixation/rest blocks. Studies designed to compute variabil-
ity/complexity over very long continuous task blocks should work
to ensure that variability is not compressing systematically over
time, simply due to fatigue or neural adaptation. This is likely par-
ticularly important for work with populations who  may be more or
less susceptible to cognitive and or/neural adaptation and fatigue
(e.g., older adults, diseased participants).

Even in the presence of study designs allowing for robust calcu-
lation of variance and entropy measures (e.g., resting-state data),
these two measure types are not yet statistically comparable in
their present forms. For example, most entropy measures (Richman
and Moorman, 2000) directly scale away signal variance by setting
the “similarity criterion” parameter (i.e., how one quantifies if two
points in a time series are “the same” or not) as a percentage of
signal variance. It remains a topic for future research what the solu-
tion to this problem could be. Even if not immediately comparable,
entropy and signal variance continue to provide complementary
and independently powerful information about brain function, and
should be pursued further.

Finally, given the similarity/complementarity of findings
between MSE  and the spectral power distribution (Catarino

et al., 2011; Heisz et al., 2012; Lippe et al., 2009; McIntosh et al.,
2008; Mišić et al., 2010), it would be fruitful to continue the
examination of the frequency domain in concert with variance
and MSE  measures (e.g., to see which measures best covary with

http://www.physionet.org/physiotools/mse/tutorial/
http://www.douglasdgarrett.com/
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ge, performance, disease). In particular, various groups continue
o examine measures of fluctuation amplitude in the frequency
omain across multiple frequency bands (Zuo et al., 2010), and
uch metrics could easily be integrated into a comprehensive
tudy of neuroimaging-based signal variability should enough
ontinuous time data be available in experimental designs of
nterest. As amplitude fluctuations are one form of signal variance,
his would provide another possibility for comparing the relative
redictive utility of entropy and variability measures.

.5. Implications of signal variability for the study of functional
onnectivity

The examination of links between signal variability and func-
ional connectivity between regions is inherently interesting. The
ynamics in any signal are a function of inputs and outputs, logically
ushing signal variability work in this direction (Mišić et al., 2011b;
akorin et al., 2011). However, many common functional connec-

ivity metrics (e.g., Pearson r, mutual information/joint entropy)
cale away variance in their calculation. Although variance nor-
alization allows the relation between a pair of brain regions to

e directly compared to another pair, it remains unclear how sig-
al variance and functional connectivity estimation interact. As
erhaps the most commonly applied measure of functional con-
ectivity in neuroimaging today, consider the Pearson r formula
see Zalesky et al., 2012):

r =
∑

(x − x̄)(y − ȳ)
SDxSDy

The covariance (i.e., the numerator) between two brain regions
s scaled outright by the within-region signal variability (i.e.,
he denominator). Because of strong group and performance-
elated differences in voxel variability (Garrett et al., 2010, 2013;
arrett et al., 2011b),  the examination of links between signal
ariability and connectivity would benefit if future work verified
hether covariances scale with voxel variance levels as expected,

r whether either the numerator or denominator may  instead be
riving the correlation effect. This is likely even more important
hen group differences in connectivity levels are also sought, to

he extent that group differences in voxel variability levels are
lready known to exist (Garrett et al., 2010, 2013; Garrett et al.,
011b).

.6. Interpreting spatial patterns in fMRI

One key finding from the SDBOLD findings is that resulting spa-
ial patterns are effectively orthogonal to those defined by the

ean signal (Garrett et al., 2010; Garrett et al., 2011b). Although
his is a clear vote for the complementary nature of variabil-
ty measures in fMRI, this orthogonality simultaneously renders
hallenging the interpretation of those same spatial patterns. The
reponderance of fMRI literature in cognitive neuroscience is based
n meanBOLD (whether univariate or multivariate methods are
mployed). As a result, variability-based spatial patterns should
ot be interpreted according to this same literature and logic.
ow do we proceed? We  must first establish a baseline sense of
here in the brain variance-based effects most often emerge (and
nder what conditions), which requires remapping cortical func-
ion at rest and on various tasks. Existing studies (e.g., Garrett
t al., 2010, 2013; Garrett et al., 2011b; Samanez-Larkin et al.,
010) provide first attempts to establish the spatial form and func-

ion of BOLD variability under various experimental constraints.
sing MEG, Mišić et al. (2010) also highlighted important regions

hat comprise signal variability effects; future work in this area
ould closely compare MSE  spatial patterns to those determined
havioral Reviews 37 (2013) 610–624 621

using mean-based methods (e.g., average signals; evoked poten-
tials).

This ultimate goal of mapping function according to variability-
based metrics (and comparisons to mean signal-based patterns)
requires much future work, but could be expedited through exam-
ining signal variability within widely available archival data (e.g.,
Human Connectome Project; Alzheimer’s Disease Neuroimaging
Initiative (ADNI); 1000 Functional Connectomes Project; Inter-
national Neuroimaging Data-Sharing Initiative (INDI)). Further,
no-cost, systems-level simulations of signal variability effects using
fMRI, EEG, and MEG  signal sources are now possible and available to
the public via The Virtual Brain project (www.thevirtualbrain.org).
For example, within The Virtual Brain, one could simulate how
fMRI-based orthogonality between signal means and variances
changes as a function of local and systems level parameters, by
region/network, and across time. Beyond the obvious cost effi-
ciency involved, the robustness of variability effects noted in the
present review suggest that utilizing freely available data and simu-
lation tools could be incredibly fruitful, and would propel the study
of signal variability across samples and task domains.

3.7. Linking within-person signal variability to other individual
differences

Regrettably, links between signal variability and key individual
difference variables such as affect and personality have rarely been
made in the literature. Sparsely available studies have examined
fMRI-based fractional ALFF measures in relation to cognitive and
affective empathy (Cox et al., 2012), and multiple aspects of mood
(e.g., depression, anger, vigor) pre- and post-tryptophan depletion
(Kunisato et al., 2011a,b) with mixed results. Regarding personality,
one key point of interest may  be the study of neuroticism. Neuroti-
cism is typically argued to represent psychological “instability”, is
often associated with anxiety, and is correlated with more variable
reaction time performance, highlighting various potential levels of
processing inefficiency (e.g., Hagger-Johnson et al., 2012; Robinson
and Tamir, 2005). Interestingly, in light of consistent negative
relations between brain signal variability and reaction time vari-
ability across various samples and paradigms (Garrett et al., 2011b;
McIntosh et al., 2008; Mišić et al., 2010; Raja Beharelle et al., 2012),
it might be expected that neuroticism may  covary with less, not
more, signal variability. Young-adult evidence for this direction of
effect now exists (Kunisato et al., 2011a,b), and could be examined
further in studies linking also to cognitive performance variability.
More generally, how broad-scale “psychological entropy” (Hirsh
et al., 2012) is associated with neural entropy/variability would be
an excellent topic for future research.

Studies of neurochemical modulation and neurogenetics are
also logical individual differences targets to pursue in relation to
brain signal variability. Although many different transmitter sys-
tems could be targeted, one particular area of broad-scale interest
may  be the dopamine system. In human aging research for example,
various studies have focused on dopamine, and dopamine-related
genetic influences such as catechol-O-methly transferase (COMT)
over the past two  decades (e.g., Bäckman et al., 2006, 2010; Li
et al., 2001; Macdonald et al., 2009, 2006). Notably, D1 and D2
receptors degrade ∼5–10% per decade across adulthood across the
midbrain, striatum, frontal lobe, hippocampus, amygdala, anterior
cingulate, and other cortical regions (see Bäckman et al., 2006; Li
et al., 2001). Neurocomputational models of dopamine degrada-
tion with age (Li et al., 2006, 2001) demonstrate that age-related
dopamine loss can yield more inefficient stimulus discrimination,

a lower average neuronal firing pattern, and a striking dediffer-
entiation of neural responses in the face of varying stimuli. Given
that slower/less consistent cognitive performance and greater ded-
ifferentiation characterize generalized aging-related reductions in

http://www.thevirtualbrain.org/
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ignal variability (Garrett et al., 2013; e.g., Garrett et al., 2011b),
t would be interesting to test whether DA-related neural inef-
ciency (measured through multimodal PET/fMRI, neurogenetics
e.g., COMT met  vs. val allele carriers; (Mattay et al., 2003)), and/or
hrough pharmacological imaging studies) manifests in differences
n signal variability in vivo. We  are currently acquiring and exam-
ning multiple data sets to these ends.

Overall, to the extent DA is considered a key agent subserving
signal fidelity” (Bäckman et al., 2010, 2006; Li et al., 2001) that pro-
ides a neurochemical basis for signal dynamics to emerge, the use
f signal variability measures in any DA-relevant area of research is
arranted (e.g., decision making/reward/learning/response vigor

Dayan and Walton, 2012; Doya, 2008; Montague et al., 2004; Niv
t al., 2007; Niv and Schoenbaum, 2008); impulsivity/addiction
Bogdan et al., 2012; Hariri, 2009); working memory/cognitive
ontrol (Bäckman et al., 2010, 2006; Cools and D’Esposito, 2011);
ognitive training (Bäckman et al., 2011; Bäckman et al., 2010)). The
elevance of signal variability measures in schizophrenia research
see above, Fernandez et al., 2012), and the purported role of
bnormal DA dynamics in this patient group, further motivates the
xamination of DA-signal variability links in clinical conditions.

Generalizing beyond the brief examples mentioned here, sig-
al variability provides a powerful, theoretically motivated, and
iologically plausible measure for understanding any number of

ndividual difference variables already studied in neuroscience.

. Conclusions

Incorporating work from all levels of neuroscience, our intention
n this review was to elucidate why researchers should con-
ider employing brain signal variability measures in neuroimaging
esearch, and to discuss some practical issues going forward. It has
een known for decades that the brain is inherently variable (Faisal
t al., 2008; Pinneo, 1966; Stein et al., 2005; Traynelis and Jaramillo,
998), and is a dynamic system fluctuating naturally from moment-
o-moment based on spontaneous reconfiguration or in response
o external stimuli (Deco et al., 2011, 2009; Ghosh et al., 2008;
aichle, 2010; Raichle et al., 2007, 2001). The studies reviewed here
rovide evidence for the importance and sensitivity of brain vari-
bility measures in electrophysiology and neuroimaging research
hat spans human development and aging, brain injury, disease, and
ognitive performance across a host of experimental paradigms. As
rogress continues in brain signal variability research across cellu-

ar, systems, computational, and neuroimaging domains, it remains
lear that at the very least, we are moving well beyond the concep-
ualization that signal variability is merely useless noise. If being
ariable is indeed the natural state of the brain, why  not measure
nd understand it as such? Variability is a crucial “signal” in its
wn right, and should be considered a next frontier in human brain
apping.
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