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Abstract

Throughout our lives, we are faced with a variety of causal
reasoning problems. Arguably, the most successful models of
causal reasoning, Causal Graphical Models (CGMs), perform
well in some situations, but there is considerable variation in
how well they are able to account for data, both across scenar-
ios and between individuals. We propose a model of causal
reasoning based on quantum probability (QP) theory that ac-
counts for behavior in situations where CGMs fail. Whether
QP or classical models are appropriate depends on the repre-
sentation of events constructed by the reasoner. We describe
an experiment that suggests the representation of events can
change with experience to become more classical, and that the
representation constructed can vary between individuals, in a
way that correlates with a simple measure of cognitive ability,
The Cognitive Reflection Task.
Keywords: Causal reasoning, quantum probability theory,
Bayes networks, order effects, Bayesian parameter estimation

Introduction
Reasoning about the causal relationships between events is
an important component of everyday cognition that allows us
to make sense of the world. For example, I know that when
I plug in and turn on an electric kettle, water boils. Causal
reasoning is also an essential component of problem solving,
for example if I plug in and turn on the same kettle and water
doesn’t boil, I might infer that the fuse has blown.

Human reasoners are often very competent at performing
causal reasoning tasks, in the sense of providing judgments
aligning well with normative prescription. Probably the most
successful class of models of causal reasoning are Causal
Graphical Models (CGMs) based on Bayes nets. These mod-
els are normative, since they represent causal relationships
using Bayes’ calculus (Pearl, 1988) and have been success-
fully applied to a variety of human causal reasoning problems
(Tenenbaum, Griffiths & Kemp, 2006; Griffiths & Tenen-
maum, 2009). In spite of the apparent success of CGMs, there
have been several recent studies that report violations of some
of the predictions of these models including asymmetries be-
tween predictive and diagnostic reasoning, order effects, and
violations of the casual Markov condition (Sloman & Fern-
bach, 2011; Trueblood & Busemeyer, 2012; Rehder, 2014).
Equally, there seems to be considerable variation between in-
dividuals in how closely performance matches prescription
(Rehder, 2014).

The challenge of modeling behavior that violates the nor-
mative prescriptions of classical (Bayesian) probability the-
ory is not unique to causal reasoning. Recently, some re-
searchers have been pursuing quantum probability theory

(QP) as a way of modeling such behavior (Busemeyer &
Bruza, 2011). QP is essentially the mathematical theory of
probability associated with quantum theory, abstracted from
the physics. QP contains features, such as contextuality, order
effects and constructive judgments that appear to match well
the way human decision makers often reason. One aim of this
paper is to demonstrate that it is possible to build models of
causal reasoning based on QP which provide a good descrip-
tion of behavior in situations where classical models fail.

However the introduction of QP models presents us with a
new question, in what situations do people adopt a quantum
representation of information as opposed to a classical one?
We argue that classical and QP models can be seen as differ-
ent cases in a hierarchy of models which differ in terms of the
way events are represented. The QP model we introduce is in
some sense the simplest possible, as it involves representing
events in the smallest possible sample space (2D). Experience
with a scenario may allow reasoners to construct a more com-
plex representation, with a larger dimensional sample space,
ultimately resulting in a fully classical model of causal rela-
tions. Equally, it is possible that simpler representations may
be used to make heuristic judgments, while more complex
representations are only formed when reasoning in a more
deliberative way. If this is correct, the type of representation
used by a decision maker may be linked to other individual
differences such as the score on a Cognitive Reflection Test
(CRT) (Frederick, 2005), or may be influenced by experimen-
tal instructions, such as speed vs accuracy prompts. Thus a
second aim of this paper is to show that differences in perfor-
mance in causal reasoning tasks can be explained in terms of
the properties of the mental representation the individual con-
structs, and that this can be related both to experience with the
task and to individual differences in cognitive ability.

We test our ideas in an experiment where participants were
asked to make judgments involving conditional probabilities
about various novel categories. We constructed a classical
model and a QP model and used Bayesian analysis to com-
pare them. Three main findings emerge, 1) Both the classical
and the QP models provide good fits for some sets of partici-
pants, 2) The fits of the classical/QP models get better/worse
as participants gain experience in the task, 3) Participants who
scored highest/lowest on the CRT task tended to be better fit
by the classical/QP model.

These findings suggest that the type of representation an in-
dividual constructs to reason about causal relations can vary
both across individuals and with experience. We argue that
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this may shed light on why classical Bayesian models of
causal reasoning seem to match behavior in some situations,
but not in others.

Experiment 1
Our experiment uses a paradigm developed by Rehder (2003)
to study causal reasoning with novel categories. Our aim is to
assess two phenomena from the judgment literature, order ef-
fects and the “inverse fallacy” (Villejoubert & Mandel, 2002),
in causal reasoning and how these phenomena are related to
individual differences in cognitive ability. Order effects oc-
cur when the order of information influences judgments (e.g.,
p(E|X ,Y ) is not judged equal to p(E|Y,X)). It has also been
shown that people commit what is known as the “inverse fal-
lacy”, that is, judging p(X |Y ) = p(Y |X). Both of these em-
pirical findings are difficult to reconcile with an approach to
causal reasoning based on Bayesian probability theory.

Methods
60 undergraduate students from Vanderbilt University partic-
ipated in the experiment online at a time of their choosing for
course credit. Participants were randomly assigned to one of
two novel animal categories (either Lake Victoria Shrimp or
Kehoe Ants). Each animal had three binary features (X ,Y ,
and E) where two of the features (X ,Y ) causally influenced
the third (E) to form a common effect network. For example,
in the Lake Victoria Shrimp category, X = ACh neurotrans-
mitter (high or low amount), Y = sleep cycle (accelerated or
normal), and E = body weight (high or low). Participants
were given information about the typicality of feature values.
For example, they were told that “Most Lake Victoria Shrimp
(90%) have a high amount of ACh whereas a few (10%) a
low amount of ACh”. In both categories, 90% of animals had
feature X1, 10% had feature Y1, and 50% had feature E1. Af-
ter studying this information, they took a multiple-choice test
with six questions that tested them on this knowledge. Partic-
ipants were required to answer each question correctly before
moving on to the next one.

Participants were then told the causal relationships be-
tween features. These relationships were described as one
feature causing another. In both categories, X1 and Y1 cause
E1. Participants were also told there were no known relation-
ships between X and Y . After reading this information partic-
ipants took another multiple-choice test with eight questions
testing them on this new knowledge. As before, participants
were required to answer each question correctly before mov-
ing on to the next one. Finally, participants were asked to take
a few minutes to review the features and relationships one
more time. After they finished reviewing this information,
they completed a third multiple-choice test with 10 questions.
In this final test, participants were only given one opportunity
to answer each question. Their score on this test was used to
gauge how well they learned the features and causal relations.

After this test, participants completed six blocks of trials
where they were asked to make judgments about the value
of different features. There were two block types (BX and

BY) that were repeated three times in an alternating fashion
(e.g., BX, BY, BX, BY, BX, BY). Participants were randomly
assigned to start with either the BX or BY block.

Each block contained nine judgment questions where par-
ticipants were asked to select the value of a particular feature
(see Table 1). At the start of each question, participants were
told that a biologist caught a new animal (either shrimp or
ant) and were queried about one of the features of that ani-
mal. For example, in the Lake Victoria Shrimp category, they
might be asked ”What type of body weight do you think this
shrimp has?” Participants were given three response options:
feature value 1, feature value 2, or equally likely to be feature
value 1 or 2. For example, in the question about body weight,
the response options were 1) a low body weight, 2) a high
body weight, and 3) equally likely to be low or high.

Some questions asked participants to make a sequence of
judgments about a feature value (e.g., E) as they learned new
information about the other features (e.g., X ,Y ). For exam-
ple, they might be asked about the body weight of a shrimp
given lab tests that showed the shrimp had a high amount of
ACh neurotransmitter (i.e., E|X1). Participants might then be
asked to reevaluate body weight based on additional lab tests
that showed the shrimp also had a normal sleep cycle (e.g.,
E|X1,Y2). Note that information about the value of the first
feature (e.g., X1) remained on the computer screen when new
information about the second feature (e.g., Y2) was presented.
This was to reduce the chance of memory failures. In the BX
(BY) block, information about feature X (Y ) was always pre-
sented before information about feature Y (X) in sequences
involving both features. This helped reduce the influence of
memory on future judgments about reverse orderings.

After finishing the six judgment blocks, participants com-
pleted the CRT (Frederick, 2005). This test assesses individ-
ual’s ability to suppress a spontaneous and intuitive (“Sys-
tem 1”) wrong answer in favor of a deliberative and reflec-
tive (“System 2”) correct answer. The test consists of three
items using a free-response format and is scored by counting
the number of correct responses across the items. The CRT
has been correlated with many behavioral measures including
temporal discounting, mental heuristics, and risk preferences
(Frederick, 2005; Toplak, West, & Stanovich, 2011).

Results
The average score on the 10 question multiple choice test was
9.6 indicating most participants correctly learned the feature
values and causal relationships during the first part of the ex-
periment. For analyses of the judgment data, we scored re-
sponses in a similar way to Rehder (2014) by assigning the
following values to the three response options: feature value
1 = 1, feature value 2 = 0, and equally likely = 0.5. Note
that there were no differences between judgments in the two
different animal categories and so responses were collapsed
for the following analyses. We also grouped individuals into
three groups based on CRT scores: high = CRT score of 3,
medium = CRT score of 1,2, and low = CRT score of 0. We
combined individuals with CRT scores of 1 and 2 into a sin-
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Table 1: Judgments in Experiment 1
Block Judgments
BX E X Y E|X1 E|X1,Y2 E|X2 E|X2,Y1 X |Y2 Y |X1
BY E X Y E|Y1 E|Y1,X2 E|Y2 E|Y2,X1 Y |X2 X |Y1

gle group so we had roughly an equal number of individuals
per group. There were 21 participants in the CRT high group,
19 in the CRT medium group, and 20 in the CRT low group.

Order effects were assessed by comparing the judg-
ments E|X1,Y2 and E|Y2,X1 and the judgments E|X2,Y1 and
E|Y1,X2. For each individual, we calculated an “order ef-
fect score” defined as |(E|X1,Y2)−(E|Y2,X1)|+ |(E|X2,Y1)−
(E|Y1,X2)|. Higher scores indicate larger order effects and
consequently a more “quantum” representation of informa-
tion. By grouping the blocks into pairs (i.e., blocks 1 and 2,
blocks 3 and 4, blocks 5 and 6), we can calculate three differ-
ent order effect scores for each individual. These can be used
to examine changes in order effects due to experience gained
through repetition. The top panel of Figure 1 shows the order
effect scores for the three CRT groups across the block pairs.
A repeated measures ANOVA showed a main effect of order
effect score (F(2,118) = 9.86, p < .001) and CRT group (F(2,
57) = 3.45, p = 0.04). A Bayesian analysis revealed a similar
conclusion with a Bayes Factor of 405.34 for a model includ-
ing order effect score and CRT group over a null model.

The inverse fallacy was assessed by comparing the judg-
ments X |Y1 and Y |X1 and the judgments X |Y2 and Y |X2. Sim-
ilar to the order effect score, we can also calculate an “in-
verse fallacy score” defined as |(X |Y1)− (Y |X1)|+ |(X |Y2)−
(Y |X2)|. Lower scores (closer to zero) indicate larger de-
grees of the fallacy and consequently a more “quantum” rep-
resentation of information. Like the order effect score, we
grouped blocks into pairs and calculated three different or-
der effect scores for each individual. The bottom panel of
Figure 1 shows the inverse fallacy scores for the three CRT
groups across the block pairs. A repeated measures ANOVA
showed a significant interaction between inverse fallacy score
and CRT group (F(4, 118) = 3.22, p = 0.015). A Bayesian
analysis revealed a similar conclusion with a Bayes Factor of
3.13 for a model including the interaction of inverse fallacy
score and CRT group over a null model.

Conclusions
The results show a clear separation between the order effect
scores for the high CRT group versus the other two, suggest-
ing the high CRT group is more likely to be using a classi-
cal representation. Figure 1 also shows that as participants
gain experience with the scenarios the degree to which they
display the (non-classical) order effect decreases. This sug-
gests that participants’ representation of the events changes
with experience; becoming gradually more classical and less
quantum. The data also show an interaction between inverse
fallacy score and CRT group. This provides evidence that the
low CRT group is more likely using a QP representation. Be-
low we directly compare the performance of a classical and
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Figure 1: Top panel: Order effect scores for three CRT groups
across block pairs. Bottom panel: Inverse fallacy scores for
three CRT groups across block pairs. Error bars show the
standard error.

QP model for this data.

Quantum Models
Before we introduce the details of the models, we provide a
short introduction to QP theory. Recently a number of re-
searchers have been investigating models of cognition based
on the mathematics of QP theory (Busemeyer & Bruza,
2011). These models share the property that they are prob-
abilistic, but the rules for assigning probabilities to events are
those abstracted from quantum theory, rather than the usual
Kolmogorov axioms. These models have features, such as
contextuality, order effects and interference effects that seem
to align well with human reasoning, at least in some cases.

One important topic in the study of quantum models of
cognition is understanding the conditions under which they
do and do not apply. Clearly much human decision mak-
ing can be adequately described using Bayesian probability
theory and in these situations, although quantum models can
perfectly account for behavior also, they are clearly superflu-
ous. The difference between classical and quantum models
is often phrased in terms of the way different events are rep-
resented by a reasoner, either as compatible or incompatible
(we will explain these terms shortly), and so attempts to de-
limit the realm of application of quantum models have often
focussed on the question of whether different events may be

2449



represented in a compatible way. There are few concrete re-
sults in this area, but it is generally believed that experience
with a particular situation, either from previous familiarity
or acquired through learning, may allow events to be repre-
sented in a compatible way, whereas relatively novel situa-
tions are more likely to be represented in a incompatible way.
In addition, quantum models are invoked to explain a simi-
lar set of phenomena as heuristics (Busemeyer et al. 2011),
and so it seems plausible that incompatible representations
of events, associated with quantum models, should be prefer-
entially used for decisions executed more quickly with little
conscious deliberation.

Compatible events are ones that may be assigned a simul-
taneous truth value. Thus, if event X and event Y are compat-
ible, the conjunction X ∧Y is well defined. Probabilities for
compatible events obey the Kolmogorov axioms. Two imme-
diate consequences are that for compatible events X and Y ,

p(X ∧Y ) = p(Y ∧X),

p(X |Y ) = p(Y |X)
p(X)

p(Y )
(1)

(Note the connection to order effects and the inverse fallacy.)
Almost all events that we counter in everyday life can in

principle be represented in a compatible way. However doing
so requires that decision makers have access to the joint prob-
abilities of all of these events. This may be unfeasible from
the point of view of memory capacity, since the number of
probabilities grows exponentially with the number of events
being considered. Equally, these probabilities might be dif-
ficult to learn, since joint probabilities correspond to subsets
of the sample space, and if it takes a finite number of pre-
vious experiences to learn the approximate measure of each
subset, then the amount of experience required again grows
exponentially with the number of events considered.

In contrast with compatible events, incompatible ones are
those for which X ∧Y is undefined. Thus although the proba-
bilities pQ(X) and pQ(Y ) exist, the joint pQ(X ∧Y ) may not.
Typically one can define a modified version of conjunction
with an explicit ordering, eg X ∧Y is taken to mean X and
then Y for incompatible variables. This implies that,

pQ(X ∧Y ) 6= pQ(Y ∧X),

pQ(X |Y ) 6= pQ(Y |X)
pQ(X)

pQ(Y )
.

(2)

In quantum models, one can choose to model two events
as either compatible or incompatible, depending on the rep-
resentation one chooses. If all events are chosen to be com-
patible one recovers a classical model, while if no two events
are compatible (except for the trivial case of an event and its
negation) then one has a maximally quantum model. If there
are more than two possible events then there can be interme-
diate representations where some subset of events are com-
patible. Thus quantum models encompass classical ones, and
we should more accurately speak of a hierarchy of different
representations, from fully quantum to fully classical.

In quantum theory events are represented by subspaces of
a Hilbert space (essentially a vector space), with associated
projection operators Pi, and the initial knowledge state by an
operator on this space known as the density operator ρ. In a
particular basis these are both simply matrices, and the com-
putations involved in computing probabilities just linear al-
gebra. The probability a participant assigns to event X given
that her initial knowledge state is ρ is simply,

p(X) = Tr(PX ρ) (3)

where Tr denotes the trace of a matrix. The probability a
participant assigns to E given X is,

p(E|X) =
Tr(PEPX ρPX )

Tr(PX ρ)
(4)

The number of parameters it takes to specify ρ and the Pi’s
depends on the dimension of the Hilbert space, which in turn
depends on whether the representation of different events is
chosen to be compatible or incompatible. We will see in the
next section how this works for the specific cases we are in-
terested in, but generally there are some parameters that fix
the initial state, and then some that determine the relationship
between the projection operators representing different events
(i.e., exactly how incompatible two events are).

The Classical and QP Causal Reasoning Models
In this section we briefly outline the QP and classical models
of causal reasoning we propose to test. As mentioned above,
the distinction between quantum and classical here is rather
artificial - for our purposes a classical model is simply a QP
one where all the events in question are compatible. Our mod-
els incorporate three possible events, two causes X and Y , and
an effect E together with their negations. We are interested
in probabilities for single events such as p(X) and also con-
ditional probabilities for the effect given one or more event,
p(E|X), p(E|X ,Y ) and for one cause given another, p(X |Y ).

The first choice we need to make is which events are com-
patible, and which incompatible. Because there are three
events there are several possible options, for the present study
we examine two choices; either all events are compatible,
leading to a classical model, or all events are incompatible,
leading to a maximally quantum model. Intermediate models
exist, and may be desirable since the different models display
different combinations of non-classical behaviors.

Let us consider the classical model first. Since all events
are compatible it must be possible to assign truth values to
propositions such as X ∧Y ∧ E, and so the space needs to
contain vectors which represent these states. Therefore our
space needs to be 8D to encompass the set of possible states.
We may use the following basis of states1,

|XY E〉=
(
1 0 0 0 0 0 0 0

)T
,

|XY Ē〉=
(
0 1 0 0 0 0 0 0

)T
,...

|X̄Ȳ Ē〉=
(
0 0 0 0 0 0 0 1

)T

(5)

1We use standard Bra-Ket notation (Busemeyer & Bruza, 2011).
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and projection operators,

PX = |XY E〉〈XY E|+ |XY Ē〉〈XY Ē|
+ |XȲ E〉〈XȲ E|+ |XȲ Ē〉〈XȲ Ē|

=diag(1,1,1,1,0,0,0,0) etc.
(6)

The initial state may be a general density matrix, however it
turns out that the probabilities we compute are sensitive only
to the diagonal elements of ρ. Therefore we may take,

ρ = diag(ρ11,ρ22, . . . ,1−ρ11−ρ22− . . .ρ77) (7)

It is easy to compute the various probabilities of interest in
terms of the ρii. There are therefore seven parameters in the
classical model, {ρ11,ρ22, . . . ,ρ77}. Since all events in the
classical model are compatible, there are no predicted order
effects, e.g. we expect,

p(E|X ,Y ) = p(E|Y,X) (8)

Now let us turn to the maximally quantum model. Since all
events are incompatible we can span the space with any single
pair {X , X̄}. For this reason the space we need is 2D. Any two
events such as X and Y are related to each other via a unitary
transformation in this space. Any unitary transformation may
be parameterised in the following way,

Ra =

(
cos(θa) −sin(θa)eiφa

sin(θa)e−iφa cos(θa)

)
(9)

and we have

PX = RX

(
1 0
0 0

)
R†

X (10)

We will take the initial state to be diagonal2, ρ = diag(ρ,1−
ρ) and it turns out we can set one of the φ parameters to be
0 without loss of generality. Thus we have six parameters in
total for the quantum model, {ρ,θE ,θX ,φX ,θY ,φY}.

One interesting feature of the 2D model is that because all
the events are represented by projection operators onto one
dimensional subspaces, various expressions for the probabil-
ities simplify. One example is,

p(X |Y ) =Tr(PX PY ρPY )

Tr(PY ρ)
=
〈X |Y 〉〈Y |ρ |Y 〉〈Y |X〉

〈Y |ρ |Y 〉

=| 〈X |Y 〉 |2 = 〈Y |X〉〈X |ρ |X〉〈X |Y 〉
〈X |ρ |X〉

= p(Y |X)

(11)

which means that the 2D model exhibits the “inverse fallacy”.
The causal reasoning models we have developed output

probabilities for various combinations of events. However
the experimental set up we used involves a choice rather than
a judgment similar to experiments by Rehder (2014). For
this reason we run each predicted probability through a soft-
max function to simulate the fact that participants are forced
to choose between the possible alternatives rather than out-
putting the exact probability. The softmax function has a stan-
dard form (eg Rehder, 2014) and involves two extra parame-
ters, λ,τ that are the same in the classical and QP models.

2This is a useful trick. It is difficult to check whether a general
matrix is an allowable density matrix, but writing the matrix in a
basis where it is diagonal the test becomes trivial.

Model Fitting
Parameters for the classical and quantum model were esti-
mated using a Bayesian analysis for each of the nine con-
ditions (CRT={High, Medium, Low} × Block={1+2, 3+4,
5+6}.) For the classical model the priors for the ρii were all
taken to be uniform in the interval [0,1], and then normal-
ized to ensure ∑i ρii = 1. For the quantum model the prior
for the ρ parameter was taken to be uniform in the interval
[0,1] and the priors for all angle parameters were taken to
be (π/2)× β(2,2). Three MCMC chains were used to es-
timate the posterior distributions using JAGS. Chain conver-
gence was assessed using the R̂ statistic and all chains had
good convergence behavior.

For each condition we also used JAGS to compute the DIC
associated with the classical and QP models. The DIC is a
generalization of the BIC, wth smaller values indicating a bet-
ter model fit. A difference of three in the DIC between two
models is usually taken to be indicate a significant difference
in fit. The results are shown in Figure 2.
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Figure 2: Top panel: DIC values for the QP model as a func-
tion of block number for each of the CRT groups. Bottom
panel: DIC values for the CP model as a function of block
number for each of the CRT groups.

For the QP model the DIC values show the following pat-
terns; first the model performs better in participant groups
where the CRT score is lower. Second, while the model
performance for the medium and high CRT groups does not
vary much across blocks, performance clearly decreases with
block number for the low CRT group. For the classical model
the opposite behavior is observed; first the model performs
better in participant groups with a higher CRT score. Second,
while performance for the high and medium CRT groups does
not vary much across blocks, performance clearly increases

2451



P
ro

b
a

b
il
it

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classical Model, High CRT Group, Blocks 5 and 6

p
(Y
)

p
(E
|X
2
)

p
(E
|Y
2
)

p
(Y
|X
2
)

p
(Y
|X
1
)

p
(E
|X
1
Y
2
)

p
(E
|Y
1
X
2
)

p
(E
)

p
(E
|Y
2
X
1
)

p
(E
|X
2
Y
1
)

p
(X
|Y
2
)

p
(X
|Y
1
)

p
(E
|X
1
)

p
(E
|Y
1
)

p
(X
)

Judgment

P
ro

b
a

b
il
it

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QP Model, Low CRT Group, Blocks 1 and 2

p
(E
|X
2
)

p
(E
|Y
2
)

p
(Y
)

p
(E
|Y
1
X
2
)

p
(Y
|X
2
)

p
(E
|X
1
Y
2
)

p
(X
|Y
2
)

p
(E
)

p
(Y
|X
1
)

p
(X
|Y
1
)

p
(E
|X
2
Y
1
)

p
(E
|Y
2
X
1
)

p
(X
)

p
(E
|X
1
)

p
(E
|Y
1
)

Judgments

Figure 3: Top panel: Posterior probabilities (black squares)
compared with empirical data (red dots) for the CP model,
high CRT group and blocks 5+6. Bottom panel: Posterior
probabilities compared with empirical data for the quantum
model, low CRT group and blocks 1+2.

with block number for the low CRT group. Two examples of
the model fits are shown in Figure 3.

Conclusion
The conclusions from the Bayesian model fitting corroborate
the evidence of the diagnostic “order effect” and “inverse fal-
lacy” scores. Overall, the representation of events that partic-
ipants use to reason about causal relations appears to change
as participants gain familiarity with the scenario, from an ini-
tially quantum or incompatible one to a final classical or com-
patible one. In addition, we found evidence that there are
individual differences between participants in terms of their
tendency to use classical or QP representations, which is as-
sociated with the CRT score.

Overall, our work sheds light on why causal graphical
models (CGMs) have been successful in many situations, but
can sometimes fail to agree with behavior. Equally it helps
us understand why QP models can sometimes be successful

but are superfluous in many cases. Reasoning about causal
relations is neither inherently classical or quantum but rather
is tied to the representation of events constructed by the rea-
soner. For novel scenarios or when reasoning quickly, rep-
resentations of events may be incompatible and QP models
are appropriate, however experience or more deliberative rea-
soning can lead to the formation of more complex compatible
representations, which support classical causal reasoning.
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