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Abstract

Throughout our lives, we are constantly faced with a variety of causal reasoning problems.

A challenge for cognitive modelers is developing a comprehensive framework for modeling

causal reasoning across different types of tasks and levels of causal complexity. Causal

graphical models (CGMs), based on Bayes’ calculus, have perhaps been the most

successful at explaining and predicting judgments of causal attribution. However, some

recent empirical studies have reported violations of the predictions of these models, such

as the local Markov condition. In this chapter, we suggest an alternative approach to

modeling human causal reasoning using quantum Bayes nets. We show that our approach

can account for a variety of behavioral phenomena including order effects, violations of the

local Markov condition, anti-discounting behavior, and reciprocity.

Keywords: Causal reasoning, causal graphical models, quantum Bayes nets, Markov

condition, order effects
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Quantum Models of Human Causal Reasoning

How do people reason about causes and effects? If you wake up in the morning with

a stomach ache, how do you infer that it was the seafood you had for dinner rather than

stress that caused your stomach to hurt? Human causal reasoning has intrigued scholars

as far back as Hume and Kant and currently involves researchers from a variety of fields

including cognitive science, developmental psychology, and philosophy. Many researchers

approach this topic by developing models that can explain the processes by which people

reason about causes and effects. In this chapter, we review these modeling approaches and

comment on their strengths and weaknesses. We then introduce a new approach based on

quantum probability theory.

Classical probability models of causal reasoning

Some of the first models of causal reasoning were centered around the idea that

people use the covariation between causes and effects as a basis for causal judgments

(Jenkins & Ward, 1965; Kelley, 1973). These approaches trace their roots back to Hume

(1987) and are based on the idea that causation is inferred from the constant conjunction

of events as perceived by our sensory system. While models based on covariation can

account for many situations, they all face the same ultimate problem - covariation does

not necessarily imply causation. As such, these models cannot account for situations

where covariational relations are not perceived as causal. For example, we would never

think that ice cream consumption causes shark attacks even though shark attacks increase

at the same time as ice cream sales (because both increase during summer). To overcome

this issue, Cheng (1997) and Novick and Cheng (2004) combined covariational information

with domain specific prior knowledge to create the power PC theory. According to this

theory, reasoners infer causal relations in order to understand observable regularities
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between events. The model can explain why covariation sometimes reveals causation but

other times does not. While power PC theory has been able to account for many

behavioral findings, some studies have shown that people’s causal judgments deviate

significantly from the predictions made by the model (Lober & Shanks, 2000; White,

2005).

Another approach to modeling causal reasoning uses causal graphical models

(CGMs), which represent causal relationships using Bayes’ calculus (Kim & Pearl, 1983;

Pearl, 1988). CGMs are quite successful at explaining and predicting causal judgments,

and their predictions are generally accepted as normative. CGMs can account for causal

inferences driven by intervention-based, observational, and counterfactual processes

(Hagmayer, Sloman, Lagnado, & Waldmann, 2007), which are often difficult to

discriminate in traditional probabilistic models. They have also been used to explain

causal learning, where people learn the relationship between variables through observation

or intervention (Griffiths & Tenenbaum, 2005, 2009). Some researchers have even

combined different probabilistic approaches by integrating power PC theory with CGMs

(Griffiths & Tenenbaum, 2005; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008). Beyond

causal reasoning and learning, CGMs have been applied to decision making (Hagmayer &

Sloman, 2009), classification (Rehder & Kim, 2009, 2010) and structured knowledge

(Kemp & Tenenbaum, 2009).

While CGMs have been quite successful in accounting for human causal reasoning,

several recent empirical studies have reported violations of the predictions of these models.

All CGMs must obey a condition called the local Markov property, which states that if we

know about all the possible causes of some event Z, then the descendants (i.e., effects) of

Z may give us information about Z, but the non-descendants (i.e., noneffects) cannot give

us any more information about Z. Recently, several studies have provided evidence that

people’s causal inferences often violate the local Markov condition (Rottman & Hastie,
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2014; Park & Sloman, 2013; Rehder, 2014; Fernbach & Sloman, 2009; Waldmann, Cheng,

Hagmayer, & Blaisdell, 2008; Hagmayer & Waldmann, 2002). Relatedly, other studies

have shown people often ignore relevant variables. For example, Fernbach, Darlow, and

Sloman (2010) found that people ignore alternative causes in predictive causal reasoning

(i.e., reasoning about an effect given information about causes), but not in diagnostic

causal reasoning (i.e., reasoning about causes given information about the effect).

To overcome the issues mentioned above, CGMs are often elaborated through the

inclusion of hidden variables (i.e., latent variables that are not explicitly part of the causal

system being studied, but are added to the mental reconstruction of the causal system by

individuals as part of their reasoning process). While these elaborated CGMs often provide

good accounts of data (Rehder, 2014), they are difficult to conclusively test. Further the

inclusion of hidden variables is typically post hoc, added when a basic CGM fails to

capture data. As an alternative approach, we suggest expanding the set of probabilistic

rules of basic CGMs by using quantum probability theory (Trueblood & Pothos, 2014).

Our approach can be considered a generalization of Bayesian causal networks. The

essential idea is that any CGM can be generalized to a quantum Bayes net by replacing

the probabilities in the classic model with probability amplitudes in the quantum model

(Tucci, 1995; Busemeyer & Bruza, 2012). In the next sections, we review CGMs in more

detail and introduce quantum Bayes nets as generalizations of these models.

Causal graphical models

CGMs describe causal relationships as directed acyclic graphs (DAGs) representing

a set of random variables and their conditional dependencies. For example, suppose that

either an unusual dinner or the presence of stress can cause your stomach to hurt. In this

example, the three variables - stomach ache, dinner, and stress - are represented as nodes

in the DAG (Figure 1). Edges between the nodes represent conditional dependencies. In
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Figure 1, edges connect dinner and stomach ache as well as stress and stomach ache.

Nodes that are not connected by an edge are conditionally independent. In our example,

dinner and stress are conditionally independent and thus there is no edge connecting them.

The probability of a node taking a particular value is determined by a probability

function that takes as input the values of any parent nodes. These probabilities are

specified in conditional probability tables. Consider the stomach scenario where all three

variables have two possible values: A = stomach ache is present (true/false), D = dinner

is unusual (true/false), S = stress is present (true/false). The CGM can answer questions

such as “What is the probability that dinner was unusual, given that your stomach

aches?” by using the formula for conditional probability:

p(D = t|A = t) =
p(A = t,D = t)

p(A = t)
=

∑
j∈{t,f} p(A = t,D = t, S = j)∑
i,j∈{t,f} p(A = t,D = i, S = j)

(1)

where the joint probability function

p(A = t,D = i, S = j) = p(A = t|D = i, S = j)p(D = i)p(S = j) because D and S are

conditionally independent. We can now calculate the desired probability p(D = t|A = t)

using the conditional probability tables in Figure 1:

p(D = t|A = t) =
(.8× .1× .6) + (.7× .1× .4)

(.8× .1× .6) + (.7× .1× .4) + (.2× .9× .6) + (.1× .9× .4)
≈ .346 (2)

The probabilities of other combinations of variables (e.g., p(D = f |A = f)) follow similar

calculations.

All CGMs obey the local Markov property, which states that any node in a Bayesian

network is conditionally independent of its non-descendants (i.e., noneffects) given its

parents (i.e., direct causes). Consider a situation where a variable X causes Y and Z

(represented by the DAG: Y ← X → Z). The local Markov property implies that if you
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know X, then Y provides no additional information about the value of Z.

Mathematically, we have p(Z|X) = p(Z|X,Y ). There is empirical evidence that people’s

causal judgments do not always obey the local Markov property. For example, Rehder

(2014) presented participants with causal scenarios involving three variables (e.g., an

economic scenario with variables describing interest rates, trade deficits, and retirement

savings) and asked them to infer the value of an unknown target variable given

information about one or two of the remaining variables. Rehder found that information

about non-descendants influenced judgments even when the values of the parent nodes

(i.e., direct causes) was known, showing a direct violation of the local Markov property.

(We discuss this experiment in more detail in a later section.)

In order to account for the observed violations of the local Markov property, Rehder

(2014) augmented CGMs by including an additional variable that severed as either a

shared disabler, shared mediator, or shared cause. For example, in a common cause

structure where X causes Y and Z (i.e., Y ← X → Z), the structure can be elaborated in

several different ways by the inclusion of a fourth variable W as shown in Figure 2. While

such an approach can provide a good account of data, it is difficult to conclusively test

because participants are never questioned about the hidden variable W . As an alternative

approach, we propose generalizing CGMs to quantum Bayes nets.

Quantum Bayes nets

In our quantum Bayes nets, we replace the classical probabilities in the conditional

probability tables of a CGM with quantum probability amplitudes as proposed by Tucci

(2012, 1995) and Moreira and Wichert (2014). Consider the situation where there are two

causally related variables X and Y such that X → Y . Further assume that these two

variables are binary (true/false). In quantum probability theory, the observables X and Y
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are represented by Hermitian operators:

X = xtPxt + xfPxf (3a)

Y = ytQyt + xfQyf (3b)

where xi and yi are eigenvalues and Pxi and Qyi are projectors onto corresponding

eigen-subspaces. The probability of a concrete value, such as xt (we use the notation xt as

shorthand for X = t), is given by Born’s rule:

pρ(xt) = 〈Pxtψ|ψ〉 = ||Pxtψ||2 (4)

where ψ is a pure state and ρ = |ψ〉〈ψ| is the corresponding density operator. Suppose we

want to answer the question “What is the probability Y is false, given that X is true?”. In

this situation, we first calculate the output state ρxt as defined by the projection postulate

(see the chapter A Brief Introduction to Quantum Formalism) and then apply Born’s rule:

pρ(Y = f |X = t) = pρxt (yf ) = 〈Qyfψxt |ψxt〉 = ||Qyfψxt ||
2. (5)

We then use these conditional probabilities for our network rather than the classical ones

used in a CGM.

Consider the stomach ache scenario again. In the classical model, in order to answer

the question “What is the probability that dinner was unusual, given that your stomach

aches?”, we needed to calculate joint probabilities such as p(A = t,D = i, S = j). We can

determine these probabilities from the conditional probability tables of the CGM by

writing p(A = t,D = i, S = j) = p(A = t|D = i, S = j)p(D = i)p(S = j). We take a

similar approach in our quantum Bayes net. First, let the three observables, stomach

ache, dinner, and stress, be represented by Hermitian operators A, D, and S with the
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respective projectors P , Q, and R. Now, we define joint probabilities by Born’s rule:

pρ(A = t,D = i, S = j) = pρdi,sj (at)pρ(di)pρ(sj) = ||Patψdi,sj ||
2||Qdiψ||

2||Rsjψ||2 (6)

where the output state is given by

ψdi,sj =
RsjQdiψ

||RsjQdiψ||
. (7)

If the observables D and S do not commute, then the output state will depend on the

order in which these two variables are considered so that ψdi,sj 6= ψsj ,di . As a consequence,

p(A = t|D = i, S = j) 6= p(A = t|S = j,D = i).

Figure 3 shows a quantum Bayes net generalization of the stomach ache CGM

shown in Figure 1. For this example, the probabilities in the CGM have been replaced by

probability amplitudes in the quantum Bayes net. These amplitudes are related to

classical probabilities by taking the squared magnitude of the amplitudes. For example,

the probability that dinner was unusual is given by

p(D = t) = ||.3162eiθdt||2 = (.3162eiθdt)(.3162eiθdt) = (.3162eiθdt)(.3162e−iθdt)

= (.3162)2ei(θdt−θdt) = .1

(8)

which is the same as the classical probability in the CGM. Note that the term eiθdt is

simply the phase of the amplitude.

When determining the conditional probabilities of the stomach ache given

information about dinner and stress, the order in which dinner and stress are considered

matters. In the quantum Bayes net in Figure 3, we assume that information about dinner

is always processed before information about stress. Psychologically, we would say that an

individual thinks about dinner and stress separately, always starting with dinner. In the
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figure, we used a thick border on the dinner node to indicate that this variable is

processed first. If we wish to switch the order and have stress processed before dinner,

then we would need to define a different set of conditional probabilities. In other words,

we have two different conditional probability tables describing the probability of the

stomach ache given information about dinner and stress - one table describing the

situation where dinner is considered before stress (as shown in Figure 3) and another table

describing the situation where stress is considered before dinner (not shown in the figure).

Even though there are two different conditional probability tables for the quantum version

of the stomach ache scenario, these tables are related to one another. In quantum

probability theory, noncommutative observables (such as dinner and stress) are related by

a unitary transformation, which preserves lengths (the state vector must have length equal

to one) and inner products.

For the stomach ache scenario, we started with a CGM and generalized this to a

quantum Bayes net by designating a processing order (dinner before stress) and changing

the classical probabilities into probability amplitudes. Note that our decision that dinner

should be processed before stress was arbitrary. We could have easily specified the reverse

order (stress processed before dinner). Thus, there are at least two different ways to

generalize the CGM in this example. In general, there will often be multiple ways to

generalize a CGM to a quantum Bayes net. As a consequence, if we start with a quantum

Bayes net, it is not necessarily the case that we can derive a well-defined CGM. The

conditional probability tables of a quantum Bayes net will always have classical

probability analogs, which are derived by squaring the probability amplitudes in the

quantum tables. However, when a quantum Bayes net involves noncommutative

observables, the corresponding CGM is ill-defined. This is because noncommutative

observables result in different conditional probabilities tables for the same causal

situation. This is not allowed in a traditional CGM. Thus, the behavior of a quantum
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Bayes net will often be fundamentally different than the behavior of a CGM.

Implications

Noncommutative quantum Bayes nets make several interesting predictions about

human behavior. In the next sections, we discuss these predictions and supporting

empirical evidence.

Order effects

Quantum Bayes nets with noncommutating observables naturally predict order

effects. Consider a causal scenario where X and Y cause Z (represented by the DAG:

X → Z ← Y ). In an experiment, participants might be asked to judge p(Z|X,Y ) where

information about X precedes information about Y . An order effect occurs when final

judgments depend on the sequence of information so that p(Z|X,Y ) 6= p(Z|Y,X).

Classical probability models such as CGMs have difficulty accounting for order effects due

to the commutative property because p(X,Y |Z) = p(Y,X|Z) implies

p(Z|X,Y ) = p(Z|Y,X) by Bayes’ rule. To account for order effects, classical probability

models need to introduce extra events such as O1 that X is presented before Y and O2

that Y is presented before Z. Then, it is possible that p(Z|X,Y,O1) 6= p(Z|X,Y,O2).

However, without a theory about O1 and O2, this approach simply redescribes the

empirical result. Further, in many empirical studies of order effects, the order of

presentation is randomly determined so that order information such as O1 and O2 is

irrelevant.

A large number of empirical studies have shown that order of information plays a

crucial role in human judgments (Hogarth & Einhorn, 1992). Order effects arise in a

number of different situations ranging from judging the guilt of a defendant in a mock

trial (Furnham, 1986; Walker, Thibaut, & Andreoli, 1972) to judging the likelihood of

selecting balls from urns (Shanteau, 1970). Recently, Trueblood and Busemeyer (2011)
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found evidence for order effects in causal reasoning. In this experiment, participants made

causal judgments about ten different scenarios where there was a single effect and two

binary (present/absent) causes. For example, in one scenario, participants were asked

about the likelihood of a fictitious person, Mary, losing weight over the next month (the

effect) given that she did not make any changes to her diet (absent cause) and began an

exercise program (present cause).

The participants (N = 113) provided likelihood judgments of the effect (e.g., Mary

losing weight) on a 0 to 100 scale at three different times: (1) before reading either cause,

(2) after reading one of the causes, and (3) after reading the remaining cause. Participants

judged the present cause before the absent cause for a random half of the scenarios. The

order of the causes was reversed (i.e., absent followed by present) for the other half of the

scenarios. The results of the experiment showed a large, significant order effect

(p < 0.001) across the ten scenarios. The presence of order effects in causal judgments

provides support for quantum Bayes nets with noncommutating observables.

Violations of the local Markov condition

The local Markov condition of CGMs stipulates that any node in a DAG is

conditionally independent of its nondescendants when its direct causes are known. For

example, in the common effect structure X → Z ← Y , this property implies that the two

causes X and Y are conditionally independent. In other words, if X and Y are binary,

then p(Y = i|X = t) = p(Y = i|X = f) for i ∈ {t, f} and similarly when X and Y are

swapped. In a quantum Bayes net where X and Y do not commute, there is a natural

dependency between these two variables. That is, knowing the value of X influences our

beliefs about Y . This dependency can result in violations of the local Markov condition so

that p(Y = i|X = t) 6= p(Y = i|X = f). By the definition of conditional probability,

p(Y = i|X = j) = p(Y = i,X = j)/p(X = j). In a CGM, X and Y are independent so
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that the joint probability p(Y = i,X = j) = p(Y = i)p(X = j). Thus,

p(Y = i|X = j) = p(Y = i) for all i, j. In a quantum Bayes net,

p(Y = i,X = j) = ||QyiPxjψ||2. If X and Y do not commute, then it is clearly the case

that ||QyiPxjψ||2 6= ||Qyiψ||2||Pxjψ||2, leading to violations of the local Markov condition.

Rehder (2014) empirically demonstrated that people often violate the local Markov

condition in their causal judgments. In his task, participants were given two causal

situations with an unknown target variable and were asked to select the situation where

the target variable was more probable. For example, in the common effect structure

X → Z ← Y , participants had to decide whether the target variable Y was more likely be

true in a situation where X = t or in a situation where X = f . According to CGMs, we

expect participants’ choice proportions to be equal on average because

p(Y = t|X = t) = p(Y = t|X = f). However, Rehder (2014) found that on average people

selected the causal situation where X = t more often than the one where X = f ,

suggesting people judged p(Y = t|X = t) > p(Y = t|X = f). He also showed similar

violations with other causal structures such as chain structures (X → Y → Z) and

common cause structures (Y ← X → Z).

Anti-discounting behavior

Noncommutating observables can also account for anti-discounting behavior in

causal reasoning. The term discounting refers to the situation where one cause casts

doubts on another cause. In the common effect structure X → Z ← Y , knowing the value

of X could cast doubt on the value of Y such that p(Y |Z,X) < p(Y |Z). In many causal

scenarios, discounting in considered normatively correct (Morris & Larrick, 1995). For

example, it is normatively correct to judge p(Y = t|Z = t) > p(Y = t|Z = t,X = t)

because knowing X = t sufficiently explains the value of the effect Z = t and consequently

renders the other cause Y redundant. When X is unknown, as in p(Y = t|Z = t), there is
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a greater chance the effect was brought about by Y .

Rehder (2014) found that many people display anti-discounting behavior. That is,

people judge an unknown target cause Y as highly likely based on the presence of the

alternative cause X = t, resulting in judgments where

p(Y = t|Z = t) < p(Y = t|Z = t,X = t). Similar to violations of the local Markov

property, quantum Bayes nets can explain anti-discounting behavior by the

noncommutativity of X and Y , which produces a causal dependency between these

variables.

Reciprocity

The term reciprocity describes the situation where a person judges the probability

of one variable given another to be the same as the probability when the variables are

swapped, p(X|Y ) = p(Y |X). This phenomenon is similar to the inverse fallacy (Koehler,

1996; Villejoubert & Mandel, 2002) where people equate posterior and likelihood

probabilities. If H represents a hypothesis and D represents data, the inverse fallacy

occurs when p(H|D) = p(D|H), where the first term is the posterior and the second term

is the likelihood. The inverse fallacy has been observed in a number of different medical

judgment problems, where clinicians are asked to judge the likelihood of a disease based

on a set of symptoms (Meehl & Rosen, 1955; Hammerton, 1973; Liu, 1975; Eddy, 1982).

The fallacy has also been demonstrated in the famous taxicab problem (Kahneman &

Tversky, 1972), where individuals are asked to judge the likelihood that a cab was in a

wreck given its color (blue or green). Results of this experiment showed that most people

judged p(H|D) as p(D|H).

The law of reciprocity (Peres, 1998) in quantum probability theory stimulates that if

two events X and Y are represented by single dimensional subspaces, then p(X|Y ) is

equivalent to p(Y |X). We illustrate this result in Figure 4 for the probabilities p(xt|yt)
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and p(yt|xt). In the left panel, we calculate p(xt|yt) by first projecting the state ψ onto the

yt subspace and then normalizing to produce the output state ψyt . This new state is then

projected onto the xt subspace and the conditional probability is the length of this

projection squared as defined by Born’s rule (represented by the thick black bar in the

figure). In the right panel, we calculate p(yt|xt) following a similar procedure. First, we

project the state onto the xt subspace and then normalize to produce the output state

ψxt . This revised state is then projected onto the yt subspace and the conditional

probability is the length of the projection squared. As shown in the figure, the two

conditional probabilities are the same (i.e., the thick black bars are the same length).

Note that not all quantum models can account for reciprocity and the inverse fallacy.

Only quantum models that make the specific assumption that different outcomes are

represented by single dimensional subspaces can explain these findings.

Conclusions

One could argue that CGMs have been one of the most successful approaches in

modeling human causal reasoning. These models can account for casual deductive and

inductive reasoning in a large number of situations. Besides causal reasoning, CGMs have

been applied to a variety of other domains including classification (Rehder, 2003; Rehder

& Kim, 2009, 2010) and decision-making (Hagmayer & Sloman, 2009).

However, there has been recent evidence that people’s judgments often deviate from

the rules of CGM’s. There are at least two possible ways to modify CGMs in order to

account for these findings. One method involves elaborating CGMs through the inclusion

of additional nodes and edges in the network. These hidden variables provide flexibility to

the models and help them accommodate a wider range of human behavior. However, the

addition of hidden variables to a CGM is often ad hoc and these additional variables are

difficult to conclusively test.
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In this chapter, we suggest an alternative approach using quantum probability

theory. Instead of elaborating a CGM with extra nodes and edges, we suggest changing

the probabilistic rules used to perform inference. In our approach, we replace the classical

probabilities of a CGM with quantum ones to yield quantum Bayes nets. By using

quantum probabilities, we allow for variables to be noncommutative. We show that

quantum Bayes nets with noncommutative observables can account for a variety of

different behavioral phenomena including order effects, violations of the local Markov

condition, anti-discounting behavior, and reciprocity.

Quantum probability theory has successfully explained numerous findings in

cognition and decision-making including violations of the sure thing principle (Pothos &

Busemeyer, 2009), interference effects in perception (Conte, Khrennikov, Todarello,

Federici, & Zbilut, 2009), conjunction and disjunction fallacies (Busemeyer, Pothos,

Franco, & Trueblood, 2011), violations of dynamic consistency (Busemeyer, Wang, &

Trueblood, 2012), interference of categorization on decision-making (Busemeyer, Wang, &

Lambert-Mogiliansky, 2009), and order effects in survey questions (Wang & Busemeyer,

2013). We feel that quantum probability theory also has great potential to explain human

causal reasoning. The results we considered here make us optimistic about this approach

in the future.
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Figure Captions

Figure 1. A CGM of the stomach ache scenario. There are two possible causes of a

stomach ache - an unusual dinner or stress. The three variables are represented as a DAG

with conditional probability tables.

Figure 2. Three different ways to elaborate a common cause structure with an additional

variable W .

Figure 3. A quantum Bayes net generalization of the stomach ache scenario. The dinner

node in the DAG has a thick border to indict that it is considered before stress. The

tables contain probability amplitudes rather than probabilities. These amplitudes were

determined from the CGM shown in Figure 1.

Figure 4. The law of reciprocity in quantum probability theory. In the left panel, p(xt|yt)

is calculated by a series of two projections. First, ψ is projected onto the yt subspace

(labelled projection 1) and then normalized to yield the output state ψyt . Next, the

output state is projected onto the xt subspace (labelled projection 2), and the probability

is calculated by squaring the length of the projection (represented by the thick black line).

In the right panel, the series of projections is reversed to calculate p(yt|xt).
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