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Abstract

Current dynamic models of decision-making assume that a
unitary system is responsible for forming preferences. How-
ever, extensive research has shown that decision-making and
behavior result from the interaction of two separate systems
of reasoning - one that is fast, automatic, and experiential and
one that is slow, deliberative and rational. This paper devel-
ops the first dynamic dual-process model of decision-making
that can account for choice, response times, and prices. The
model is applied to several phenomena from the risky decision-
making literature including enhancements in preference by
small losses, preference reversals due to response mode, and
the influence of price and affect on preference.
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Introduction
Existing dynamic models of decision-making such as Deci-
sion Field Theory (Busemeyer & Townsend, 1993) assume
there is a single system of thought that produces preferences.
However, there is substantial research supporting the idea
that preferences are formed from a dual process of reasoning.
This paper introduces a dynamic dual-process model of risky
decision-making. The model generalizes a previous static two
systems model developed by Mukherjee (2010) to account for
choice, response times, and prices.

Dual-process theory postulates that there are two funda-
mentally different systems that can process information. One
system is described as automatic, intuitive, fast, and experi-
ential. The other is labeled as deliberative, analytical, slow,
and rational. The former system is typically referred to as
System 1 and the latter System 2 (Stanovich & West, 2000).
(In this paper, System 1 is labeled the affective system and
System 2 the deliberative system following the terminology
of Mukherjee (2010).) Research has shown that dual-process
accounts are often more successful at explaining behavioral
phenomena than unitary approaches (Hogarth, 2001; Kah-
neman, 2003; Sanfey, Loewenstein, McClure, Cohen, et al.,
2006). There is also evidence from the neuroscience commu-
nity for two separable systems in the brain that contribute to
decision-making (Damasio, 1994; Sanfey et al., 2006).

The paper begins by describing the Dynamic Dual-Process
(DDP) model for choice and response times which is later
extended to also account for pricing elicitation methods. The
model is used to make new predictions about the relation-
ship between response time and the involvement of the af-
fective system. It is shown that in some situations greater
involvement of the affective system leads to faster decisions
as expected. However, the model also predicts that in other
situations the two systems can compete with one another re-
sulting in longer response times. DDP is also applied to three

phenomena from the risky decision-making literature: the en-
hancement effect which occurs when a small loss is added to
a positive gamble, preference reversals due to response mode,
and the influence of price and affect on preference.

A Static Two Systems Model
The DDP model generalizes the Dual System Model (DSM)
by Mukherjee (2010). DSM is a utility model of risky
decision-making where the overall utility for a gamble is
composed of two components: the utility of the gamble with
respect to the deliberative system and the utility of the gam-
ble with respect to the affective system. Mathematically, the
overall utility can be written as V (G) =VA(G)⊕VD(G) where
VA(G) is the evaluation due to the affective system and VD(G)
is the evaluation due to the deliberative system.

Based on experimental results by Hsee and Rottenstreich
(2004), Mukherjee made two assumptions about the evalua-
tion of outcomes. The first assumption was that the deliber-
ative system evaluates outcomes linearly so that VD(x) = kx
where x is an outcome and k is a free parameter. The second
assumption was that the affective system evaluates outcomes
with respect to a concave value function in the gain domain
and a convex value function in the loss domain similar to
the value function in prospect theory (Kahneman & Tversky,
1979). Mukherjee postulates that for positive outcomes this
value function can be approximated by VA(x) = xm for m < 1.

Mukherjee made two additional assumptions about the
perception of probabilities based on experimental work by
Rottenstreich and Hsee (2001). He assumed that the delib-
erative system perceives probabilities directly without distor-
tion so that the probability weighting function is w(p) = p
as in Expected Utility theory. He also assumed that the af-
fective system is insensitive to probabilities and only recog-
nizes whether or not an outcome is possible. Thus, each pos-
sible outcome receives equal weight so that for n outcomes
the probability of any single outcome is 1/n.

Let (p1,x1; ...; pn,xn) be the gamble G with n positive out-
comes xi. Using the four assumptions above, Mukherjee
defined the utility for the deliberative system as VD(G) =

∑
n
i pi(kxi) and the utility for the affective system as VA(G) =

1/n∑
n
i xm

i . The overall utility V (G) is simply the convex com-
bination of the two utilities for the two different systems:

V (G) = γVA(G)+(1− γ)VD(G)

= γ
1
n

n

∑
i

xm
i +(1− γ)k

n

∑
i

pi(xi)
(1)

where γ is the weight given to the affective system. DSM
can account for a wide range of choice phenomena including
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violations of nontransparent stochastic dominance, ambiguity
aversion, common consequence effect, and the common ratio
effect (to name a few).

The Dynamic Dual-Process Model
While DSM has been very successful in accounting for a va-
riety of phenomena, it does not describe the dynamic pro-
cess underlying decisions. Like most models of judgment and
decision-making, DSM is a descriptive model concerned with
theorizing at the highest level. Because DSM is a static utility
model, it cannot make predictions about response times. On
the other hand, DDP is a processing model aimed at explain-
ing the mechanisms that produce behavior. In this way, it
is similar to other dynamic models of decision-making such
as Decision Field Theory (Busemeyer & Townsend, 1993).
DDP is the first two systems model that can account for both
choice and response times.

Another drawback to DSM is that it has not been applied to
experiments using pricing elicitation methods such as asking
how much money one is willing to pay (WTP) for an option
or how much money one is willing to accept (WTA) to sell
an option. Many of the experiments in affective decision-
making use these pricing procedures including the majority of
the experiments by Rottenstreich and Hsee (2001) and Hsee
and Rottenstreich (2004) that served as motivation for DSM.
The DDP model can easily be extended to account for pricing
elicitation methods as described in a later section.

The DDP model is formulated with respect to the typical
risky decision task of choosing between two gambles. Let
G1 = (p1,x1; ...; pn,xn) and G2 = (q1,y1; ...;qm,ym) be gam-
bles with outcomes xi and yi and probabilities pi and qi re-
spectively. As a decision-maker considers the two gambles,
his or her preference evolves across time. Let P(t) be the indi-
vidual’s preference at time t where positive preference states
represent momentary preference for gamble G1 and negative
preference states represent momentary preference for gamble
G2. A new preference state P(t + 1) is formed at each mo-
ment in time from the previous preference state according the
linear stochastic difference equation:

P(t +1) = P(t)+d + ε(t) (2)

where ε(t) is the stochastic error term and d is the difference
in the evaluations of the gambles. The evaluation of each
gamble is determined by evaluations from the affective and
deliberative systems as in DSM. The difference d is given by

d =V (G1)−V (G2) (3)

where V (G1) and V (G2) are calculated as in equation 1.
The preference state starts at an initial state P(0) = z re-

flecting an initial bias for one gamble over the other. Specif-
ically, if z > 0, then there is an initial bias for G1 and if
z < 0, then there is an initial bias for G2. The preference state
evolves until it reaches a threshold. There are two thresh-
olds for the model, a positive threshold θ associated with G1
and a negative threshold −θ associated with G2. When the

preference state reaches the positive threshold, G1 is selected.
When it reaches the negative threshold, G2 is selected.

In total, DDP has six parameters. Three parameters, k, m,
and γ, are used in the evaluation of the gambles given in equa-
tion 1. Parameters θ and z define the threshold and initial bias
respectively. There is an additional variance parameter s used
to define the amount of noise in the accumulation process.

DDP is a Wiener diffusion process (the continuous-time,
continuous-state version of the random walk). Link and
Heath (1975) derived equations for choice probabilities and
the conditional mean response time for the Wiener process.
Thus, DDP is computationally tractable and easy to apply.

Response Time and Affect
The affective system is typically characterized as automatic
and fast as compared to the deliberative system which is an-
alytic and slow. As such, when the affective system plays a
larger role in the decision-making process, decisions should
be quick. In terms of the DDP model, this implies that as γ

increases, response times should decrease.
To test the relationship between response time and the in-

volvement of the affective system, two gambles of equal ex-
pected value were analyzed: G1 = (4/10,$9;6/10,$0) and
G2 = (9/10,$4;1/10,$0). Choice and response times from
DDP were examined for all possible values of γ. The m pa-
rameter used to specify the curvature of the affective valua-
tion function was also allowed to vary from 0.1 ≤ m ≤ 0.9.
The scaling parameter k in the deliberative value function was
fixed to k = 1 so that VD(x) = x without distortion. The initial
bias was fixed to z = 0 reflecting no bias towards one gamble
over the other. The threshold parameter was fixed to θ = 10,
and the variance parameter was fixed to s = 1 as is common
in response time modeling.

The top left panel of Figure 1 shows the choice probability
for gamble G1 over G2 for different values of γ and m. As γ

increases, the probability of selecting G1 increases. This re-
flects the assumption that the affective system ignores prob-
abilities when evaluating gambles. As the affective system
becomes more involved, the gamble with the highest payoff
is viewed more favorably. As m decreases and the value func-
tion for the affective system becomes more concave, the two
gambles are viewed as indifferent. Thus, favorability for G1
by the affective system is moderated by increasing risk aver-
sion (i.e., decreasing m). The top right panel of Figure 1
shows the mean response time conditional on selecting G1.
As predicted, increases in γ lead to faster response times. In
general, for gambles of equal expected value, as the affective
system becomes more involved, decisions become quick and
high payoff options are preferred.

When gambles have unequal expected value, it is not nec-
essarily the case that response times decrease with increased
involvement of the affective system. The bottom panels of
Figure 1 show choice probabilities and response times for the
gamble G∗1 = (3/10,$9;7/10,$0) as compared to G2. In this
situation, G2 has a greater expected value than G∗1. When the
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Figure 1: Top panel: choice probability (left) and conditional mean response time (right) for gambles with equal expected value
for various values of γ and m. Bottom panels: choice probability (left) and conditional mean response time (right) for gambles
with unequal expected value. Red values indicate larger choice probabilities and longer response times.

deliberative system is more involved as indicated by small
values of γ, G2 is preferred. However, as γ increases and the
affective value function becomes less concave (correspond-
ing to an increase in m), G∗1 is preferred. Response times are
fast for small values of γ paired with small values m and for
large values of γ paired with large values of m. In other words,
quick decisions can be made for G2 by the deliberative sys-
tem and for G∗1 by the affective system, but response times
increase when there is conflict between the two systems. The
influence of system conflict on response time is a new predic-
tion by DDP which could be tested in future experiments.

Enhancement by Small Loss
Slovic, Finucane, Peters, and MacGregor (2002) found that
adding a small loss to a positive gamble can increase its at-
tractiveness rating and choice probability. When asked to
rate the attractiveness of gamble G1 = (7/36,$9;29/36,$0)
and G2 = (7/36,$9;29/36,−$0.05), participants rated gam-
ble G1 with no loss lower (mean = 9.4 on a 0-20 scale) than
gamble G2 (mean = 14.9). The gambles were then each paired

with a sure gain of $2 (denoted by S). Half of the partici-
pants were asked to choose between G1 and S and the other
half were asked to choose between G2 and S. Only 33.3%
chose G1 over the gain whereas 60.8% chose G2 over the
gain. Slovic et al. (2002) explained these findings by the af-
fect heuristic. The inclusion of a small loss enhances the per-
ceived benefit of $9 producing a positive affective feeling for
G1 leading to higher attractiveness ratings and choice proba-
bilities.

The enhancement in choice probability by the inclusion of
a small loss can also be explained by DDP. Based on the idea
that G2 produces a more affective response than G1, it is as-
sumed that the affective system is more activated by G2 than
G1. Mathematically, this implies that γ2 > γ1 where γ1 is asso-
ciated with the choice between G1 and S and γ2 is associated
with the choice between G2 and S.

To test the enhancement effect, the difference in probabili-
ties Pr(G2|{G2,S})−Pr(G1|{G1,S}) was examined for dif-
ferent values of γ1, γ2 and m. For this analysis, γ1 was allowed
to vary from 0.1 to 0.5 and γ2 was defined in terms of γ1 by
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the equation γ2 = γ1 +α where α varied from 0.1 to 0.3 in
increments of 0.05. As in the previous demonstration, k = 1,
θ = 10, z = 0, and s = 1. Because the affective value func-
tion postulated by Mukherjee (2010) only applies to positive
outcomes, the function was generalized to VA(x) =−|x|m for
negative outcomes. Figure 2 plots the difference in proba-
bilities for different values of γ1 given along the x-axis. The
different curves in the figure are associated with different val-
ues of γ2 The m parameter was fixed to 0.3 in the top panel
and 0.5 in the bottom panel.

Figure 2: Enhancement effect shown as the difference in
choice probabilities for G2 and G1 for different values of γ1.
The top panel shows the effect when m = 0.3 and the bottom
panel shows the effect when m = 0.5. An enhancement effect
occurs when the difference is greater than zero.

In the figure, the enhancement effect occurs when the dif-
ference in probabilities is greater than zero. When m = 0.5,
this happens for all values of γ2. When m = 0.3 implying
greater risk aversion, the enhancement effect only occurs for

large values of γ2 (when α> 0.25) suggesting greater involve-
ment in the affective system is needed in order to produce
the effect. In sum, the figure shows that the DDP model can
easily account for the enhancement in choice probability by
small losses. Further, the model makes new predictions about
the magnitude of enhancement with respect to risk aversion
and affect.

Extending DDP for Pricing Elicitation Methods
In many decision tasks, participants are asked to report a
value such as a price that they are willing to assign to a par-
ticular option. For example, participants might be asked how
much they are willing to pay (WTP) to play a certain gam-
ble. DDP can be extended to account for such elicitation
methods. The approach taken is similar to the one developed
by Busemeyer and Goldstein (1992) and Johnson and Buse-
meyer (2005). The basic idea is that when an individual is
determining price equivalence, they search through a range
of possible prices. When a particular price is being consid-
ered, the individual can decide that it is too low, too high, or
equivalent to the gamble. In the case when the price is too
low, the individual increases the price. When the price is too
high, the individual decreases the prices. If the price is equiv-
alent, then it is reported.

Mathematically, this search process can be formulated as a
discrete Markov chain as illustrated in Figure 3. The states in
the chain correspond to possible prices increasing from left
to right. The range of possible states is determined by the
problem. For example, if an individual is asked how much
they would pay to play the gamble (7/36,$9;29/36,$0), the
the range of possible prices would be $0 to $9. The search
process is assumed to begin near the middle of the candidate
prices. A step to the right in the chain corresponds to increas-
ing the price. The probability p of stepping to the right is the
choice probability from DDP of choosing the gamble over a
sure gain of $x where $x is the candidate price. A step to
the left in the chain corresponds to decreasing the price. The
probability q of stepping to the left is the choice probability
from DDP of choosing a sure gain of $x over the gamble.
The probability of exiting the search process and reporting a
price occurs with probability r whenever DDP enters a neutral
state. The neutral state is the point of indifference between
the gamble and a sure gain and corresponds to P(t) = 0 in
DDP. Details about implementing Markov chain models can
be found in a Diederich and Busemeyer (2003) and Johnson
and Busemeyer (2005).

Response Mode Preference Reversals
A puzzling phenomenon in decision-making is the occur-
rence of preference reversals with changes in response mode
(Lichtenstein & Slovic, 1971, 1973). For example, Slovic et
al. (2002) asked subjects to rate the attractiveness of gambles
G1 = (29/36,$2;7/36,$0) and G2 = (7/36,$9;29/36,$0)
on a 0=20 scale. On average, participants rated G1 (mean
13.2) as more attractive than G2 (mean 7.5). Yet, when asked
how much they would be willing to pay to play the gambles,
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Figure 3: Markov chain model for pricing elicitation meth-
ods. Transition probabilities p and q are determined by the
DDP model.

participants were willing to pay more to play G2 (mean $2.11)
than G1 (mean $1.25).

The DDP model explains this preference reversal by as-
suming that a high attractiveness rating is associated with a
strong affective response. Because G1 had a higher attractive-
ness rating than G2, it is hypothesized that the affective sys-
tem is more involved with decisions about G1 than G2. Math-
ematically, this implies that the γ parameter for G1 should be
greater than the γ parameter for G2. To test this hypothesis,
a grid search was performed over the γ and m parameters to
find the ranges of these parameters that produce price equiv-
alences similar to those in the experiment. Specifically, pa-
rameter pairs that produced prices within $0.20 of the mean
prices from the experiment were examined. For this anal-
ysis, k = 1, z = 0, and s = 1 as before. Matrix methods
(Diederich & Busemeyer, 2003) were used to determine the
transition probabilities from DDP rather than using analytical
solutions. This was done to accommodate the inclusion of the
exit probability r. Because the matrix methods only provide
an approximation to the choice probabilities, the threshold
was fixed to θ = 50 to improve the estimates. For gamble G1,
the states of the Markov chain ranged from $0 to $2 in incre-
ments of $0.10. Similarly, for gamble G2, the states of the
Markov chain ranged from $0 to $9 in increments of $0.10.
The exit probability was set to r = 0.01.

Figure 4 plots the γ and m parameter pairs that produce
prices in the given ranges. The blue region shows the param-
eters that yield prices between $1.05 and $1.45 for G1 and
the red region shows the parameters that yield prices between
$1.91 and $2.31 for G2. From the figure, it is clear that the
γ parameter for G1 must be greater than the γ parameter for
G2 to produce prices in these ranges. Thus, the DDP model
can explain preference reversals by greater involvement of the
affective system for more attractive gambles.

Influence of Probability and Affect on Price
Rottenstreich and Hsee (2001) found that the amount of
money participants were willing to pay to play a gamble de-
pends on both the probability of winning and whether the out-
come is affect-rich or affect-poor. In their experiment, partic-
ipants were asked how much they were willing to pay to play
a gamble offering a $500 coupon for a European vacation or
a $500 coupon for tuition at their university. The European
vacation coupon was designed to be affect-rich whereas tu-
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Figure 4: Results of a grid search over γ and m for WTP
prices. The blue region shows the parameters that produce
prices for G1 within $0.20 of the mean price of $1.25. The
red region shows the parameters that produce prices for G2
within $0.20 of the mean price of $2.11. As predicted, γ for
G1 is greater than γ for G2.

ition coupon was designed to affect-poor. Rottenstreich and
Hsee (2001) also manipulated the probability of winning the
coupons. Some participants were told they had a 1% chance
of winning and others were told that they had a 99% chance
of winning. They found that even though the coupons were
worth the same redemption value, the median price for the
European coupon was $20 as compared to $5 for the tuition
coupon when there was only a 1% chance of winning. How-
ever, when there was a 99% chance or winning, participants
were willing to pay more for the tuition coupon (median price
$478) than for the European coupon (median price $450).

Rottenstreich and Hsee (2001) explained this preference
reversal by greater involvement of the affective system in the
European coupon gamble than the tuition coupon gamble.
For the low probability gamble, the affective system over-
weights the probability of winning and thus the affect-rich
European coupon is valued more than then affect-poor tuition
coupon. However, for the high probability gamble, the affec-
tive system underweights the probability of winning and the
European coupon is valued less than the tuition coupon.

Following the intuition of Rottenstreich and Hsee (2001),
the DDP model explains this preference reversal by using
a larger γ parameter for the affect-rich European coupon as
compared to the affect-poor tuition coupon. For this analysis,
the γ parameter for the European coupon gamble was set to
γ = 1 implying complete involvement of the affective system
and no involvement of the deliberative system. For the tuition
coupon gamble, γ = 0 implying complete involvement of the
deliberative system and no involvement of the affective sys-
tem. These parameter settings reflect the extreme case when
only one system is involved in the decision-making process.
In reality, it is more likely that both systems are involved in
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both gambles with 0 < γT < γE < 1 where γT is associated
with the tuition coupon and γE is associated with the Euro-
pean coupon. For ease of demonstration, the extreme γ val-
ues were used, but the results also hold for more intermediate
values of γ.

As before, k = 1, z = 0, s = 1, θ = 50, and r = 0.01. For
the European coupon, the m parameter was allowed to range
from 0.1 to 0.9. For the tuition coupon, m has no impact be-
cause γ = 0. Table 1 shows the WTP prices from DDP for
the two different coupons and two different chances of win-
ning. In the table, a range of prices is given for the Euro-
pean coupon showing the maximum and minimum prices as
m is varied. Because m does not play a role in the tuition
coupon, a single price is shown. From the table, the DDP
model produces the same pattern of results as Rottenstreich
and Hsee’s experiment. Namely, the price for the European
coupon is greater than the price for the tuition coupon when
there is a low probability of winning and the price for the tu-
ition coupon is greater than the price for the European coupon
when there is a high probability of winning.

Table 1: WTP prices from the DDP model for the European
and tuition coupons for two different probabilities of winning.

Coupon 1% chance 99% chance
European (γ = 1) $32.59-$39.38 $303.48-$491.94
Tuition (γ = 0) $5.14 $492.97

Discussion
The DDP model synthesizes ideas from several lines of re-
search in decision-making and cognitive modeling. DDP
draws upon the static DSM model developed by Mukherjee
(2010) to explain how dual systems of reasoning evaluate op-
tions. DDP formalizes the the formation of preferences as an
accumulation of information over time similar to other dy-
namic models such as Decision Field Theory (Busemeyer &
Townsend, 1993). DDP also employs a Markov chain model
to account for pricing elicitation methods as in Busemeyer
and Goldstein (1992) and Johnson and Busemeyer (2005). In
sum, DDP provides a unified theory of how dual systems in-
teract to produce choices, response times, and prices that is
grounded in decades of research.

Future work will develop new experiments to rigorously
test DDP and to investigate novel predictions from the model.
In particular, DDP makes new predictions about the interac-
tion between systems and response times. The affective sys-
tem is typically conceived as being fast and automatic. Thus,
when it is engaged in a task, responses should be quick. DDP
suggests that the relationship between response time and the
affective system is not this simple. It predicts that response
times are influenced by many factors including conflict be-
tween the two systems, risk attitudes, and the options them-
selves.
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