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Abstract

When people make inferences about causal situations with
vague and imperfect information, their judgments often devi-
ate from the normative prescription of classical probability. As
a result, it is difficult to apply popular models of causal reason-
ing such as ∆P and causal power, which provide good accounts
of behavior in casual learning tasks and tasks where statistical
information is provided directly. We propose a unified expla-
nation of human causal reasoning using quantum probability
theory that can account for causal reasoning across many dif-
ferent domains. In our approach, we postulate a hierarchy of
mental representations, from fully quantum to fully classical,
that could be adopted for different situations. We illustrate our
approach with new experiments and model comparisons.
Keywords: Causal reasoning, quantum probability

Introduction
Everyday we face situations where we must reason about
causes and effects. Often, causal relationships are well es-
tablished through practice - when I plug in and turn on an
electric kettle, water boils. In other situations, we must rea-
son about novel situations where there is vague and imperfect
information - if I vote for the new mayoral candidate, will
property taxes be lowered next year?

In general, causal judgment tasks can be divided into three
types: experienced, statistical descriptions, and linguistic de-
scriptions (Shanks, 1991). In experienced situations, partici-
pants witness firsthand the relationships between causes and
effects. In situations with statistical descriptions, participants
are given summary information about the frequency that spe-
cific causes or groups of causes produce effects. In situations
with linguistic descriptions, participants are asked to make
causal inferences from narratives, stories, texts, etc. These
tasks often involve vague and imperfect information about
causes and effects. It is this last class of problems that is
our focus.

Models based on classical probability theory such as ∆P
(Jenkins & Ward, 1965) and power PC theory1 (Cheng, 1997)
have provided good accounts of causal reasoning in both ex-
perienced situations and those described by statistical infor-
mation. However, there is evidence that people’s judgments
about causal systems with linguistic descriptions often devi-
ate from the normative prescription of classical probability
(Sloman & Fernbach, 2011; Trueblood & Busemeyer, 2012).
As a result, it is difficult to use models such as ∆P and causal

1We will refer to power PC theory as causal power throughout
the remainder of the paper.

power in this domain, thereby producing a disparate account
of casual reasoning across tasks.

We propose a unified explanation of human causal reason-
ing using quantum probability theory.2 In our approach, we
postulate a hierarchy of mental representations that could be
adopted for different situations. Classical probability mod-
els such as causal power represent one class of models in our
hierarchy.

Experiment 1
We begin by introducing the experimental paradigm that we
use to illustrate our modeling approach. This paradigm is
based on one developed by Rehder (2003) to study causal
reasoning with novel categories. In our task, participants are
given a linguistic description of a novel category, Lake Vic-
toria Shrimp, and asked to judge the likelihood that certain
features cause others. Specifically, participants are given in-
formation about two independent features that can influence
a third feature. The language used to describe the features
and their relationships is purposely vague as many real life
situations do not involve precise information.

We were interested to see whether the order in which in-
formation is presented in our task affected final judgments.
Order effects are well established in inference tasks (Hogarth
& Einhorn, 1992) and are difficult to explain using simple
classical probability models such as ∆P and causal power.
However, quantum probability theory has been successful in
accounting for these effects (Trueblood & Busemeyer, 2011).

Methods
Participants learned about a novel biological category, Lake
Victoria Shrimp, that had three binary features: ACh neuro-
transmitter (high or low amount), sleep cycle (accelerated or
decelerated), and body weight (normal or high). Participants
were given information about the typicality of feature values.
For example, they were told that “Most Lake Victoria Shrimp
have a high amount of ACh whereas some have a low amount
of ACh”. Participants were also given the causal relationships
between features. These relationships were described as one
feature causing another. Specifically, the ACh neurotransmit-
ter and sleep cycle were described as affecting body weight.
The strengths of causal relationships were described using the
terms “often” and “sometimes”. For example, participants

2We use the mathematical formalism of quantum theory without
the associated physical meaning.



were told that “An accelerated sleep cycle often causes a high
body weight”.

Participants first studied the three features and the typi-
cality of their values. After studying this information, par-
ticipants took a multiple-choice test with six questions that
tested them on this knowledge. Participants were required
to answer each question correctly before moving on to the
next one. Next, participants studied the two causal relation-
ships and took another multiple-choice test with eight ques-
tions testing them on this new knowledge. As before, par-
ticipants were required to answer each question correctly be-
fore moving on to the next one. Finally, participants were
asked to take a few minutes to review the features and rela-
tionships one more time. After they finished reviewing this
information, they completed a third multiple-choice test with
10 questions. In this final test, participants were only given
one opportunity to answer each question. Their score on this
test was used to gauge how well they learned the features and
causal relationships.

After completing the learning stage, participants were
asked to make sequences of two or three judgments about
a particular shrimp as they learned new information about it.
For example, they might first learn “A Lake Victoria shrimp
is caught” and asked “How likely is it for the shrimp to have
a high body weight?”. Then, they learned information about
different causes revealed during a series of lab tests. For ex-
ample, participants might read “After lab testing, you learn
that the shrimp has a high quantity of ACh neurotransmitter.
Given this new information, how likely is it that this shrimp
has a high body weight?”. For the final judgment in the se-
quence, participants might read, “After further observation in
the lab, you also learn that the shrimp has a decelerated sleep
cycle. Given this new information, how likely is it that this
shrimp has a high body weight?”.

Participants were randomly assigned to one of two order
conditions. In one condition, participants were always asked
to make judgments about the ACh neurotransmitter before
making judgments about the sleep cycle. In the other condi-
tion, this ordering was reversed. The between subjects design
ensured subjects did not make judgments for reverse order-
ings as these judgments could be influenced by memory. In
both conditions, participants were asked to make two types of
judgments - predictive and diagnostic. Predictive judgments
involved judging the likelihood of an effect given a cause
(e.g., the likelihood of a shrimp having a high body weight
given a low amount of ACh). Diagnostic judgments involved
judging the likelihood of a cause given an effect (e.g., the like-
lihood of a low amount of ACh given a high body weight).
The order in which the sequences were presented was ran-
domized across participants. As shown in table 1, each par-
ticipant completed four predictive (top) and four diagnostic
(bottom) sequences. In the table, the predictive effect (i.e.,
body weight) is denoted by e, and the two causes, ACh neu-
rotransmitter and sleep cycle, are denoted by x and y respec-
tively. A feature value of 1 denotes a high amount of ACh,

an accelerated sleep cycle, and high body weight for the re-
spective features. Likewise, a feature value of 0 denotes a low
amount of ACh, a decelerated sleep cycle, and a normal body
weight.

Table 1: Sequences of judgments in Experiment 1.
Condition 1 Condition 2

p(e1) p(e1|x1) p(e1|x1,y1) p(e1) p(e1|y1) p(e1|y1,x1)
p(e1) p(e1|x1) p(e1|x1,y0) p(e1) p(e1|y0) p(e1|y0,x1)
p(e1) p(e1|x0) p(e1|x0,y1) p(e1) p(e1|y1) p(e1|y1,x0)
p(e1) p(e1|x0) p(e1|x0,y0) p(e1) p(e1|y0) p(e1|y0,x0)

p(x1|e1) p(x1,y1|e1) p(y1|e1) p(y1,x1|e1)
p(x1|e1) p(x1,y0|e1) p(y0|e1) p(y0,x1|e1)
p(x0|e1) p(x0,y1|e1) p(y1|e1) p(y1,x0|e1)
p(x0|e1) p(x0,y0|e1) p(y0|e1) p(y0,x0|e1)

Participants were asked to enter their likelihood judgments
about specific features as numbers between 0 and 100 in a
text box after reading each question. They were told that a
judgment of 0 implied that they were certain the shrimp did
not have the feature, a response of 50 implied that the shrimp
was equally likely to have the feature or not, and a response
of 100 implied that they were certain the shrimp did have the
feature. On each trial, there was a picture of a scale from
0-100 reminding participants of this information.

122 University of California, Irvine undergraduates partic-
ipated in the experiment online at a time of their choosing for
course credit. There were 60 participants in condition 1 (i.e.,
ACh neurotransmitter first) and 62 participants in condition 2
(i.e., sleep cycle first).

Results
The average score on the 10 question multiple choice test
was 7.8 indicating most participants correctly learned the fea-
ture values and causal relationships during the learning stage.
Each multiple choice question had three possible responses.
If participants guessed for all of the questions, their expected
score would be 3.3. We excluded participants with a score
less than 7 out of 10 because it is crucial that participants
understand the causal structure. This criterion excludes 38
participants leaving 41 in condition 1 and 43 in condition 2.

We examined order effects in the predictive judgment se-
quences by comparing final probability judgments in the se-
quences across conditions. Figure 1 compares the mean judg-
ments from both conditions. In each plot, the left-most judg-
ment is the prior probability of the effect, the next judgment
is the probability of the effect given one of the causes (either
x or y), and the right-most judgment is the probability of the
effect given both causes. If order effects exists, then the final,
right-most judgments will be different. Two of the four com-
parisons produced order effects. The judgment p(e1|x1,y0)
was significantly different (t(82) = -3.04, p = 0.003) from the
judgment p(e1|y0,x1). Similarly, the judgment p(e1|x0,y1)
was significantly different (t(82) = 5.51, p < 0.001) from the
judgment p(e1|y1,x0). The type of order effect in these two
comparisons is a recency effect which results from dispropor-
tionate importance of recent information. Judgments where



Prior After First Cause After Both Causes
0

20

40

60

80

100
p(e = 1| x = 1, y = 1) vs p(e=1| y = 1, x = 1)

P
ro

b
a

b
ili

ty
 o

f 
E

ff
e
c
t

 

 

x = 1, y = 1

y = 1, x = 1

Prior After First Cause After Both Causes
0

20

40

60

80

100
p(e=1| x = 1, y = 0) vs p(e=1| y = 0, x = 1)

P
ro

b
a

b
ili

ty
 o

f 
E

ff
e
c
t

 

 

x = 1, y = 0

y = 0, x = 1

Prior After First Cause After Both Causes
0

20

40

60

80

100
p(e=1| x = 0, y = 1) vs p(e=1| y = 1, x = 0)

P
ro

b
a

b
ili

ty
 o

f 
E

ff
e

c
t

 

 

x = 0, y = 1

y = 1, x = 0

Prior After First Cause After Both Causes
0

20

40

60

80

100
p(e=1| x = 0, y = 0) vs p(e=1| y = 0, x = 0)

P
ro

b
a

b
ili

ty
 o

f 
E

ff
e

c
t

 

 

x = 0, y = 0

y = 0, x = 0

Figure 1: Mean judgments for the predictive sequences in Experiment 1. Condition 1 is shown in red and condition 2 in blue.

both feature values matched (i.e., both x and y equal 1 or both
equal 0), did not produce significant order effects (p > 0.05).

Similar to the predictive sequences, we examined order ef-
fects in the diagnostic sequences by comparing final proba-
bility judgments in the sequences across conditions. Only the
comparison of p(x0,y0|e1) to p(y0,x0|e1) produced a signif-
icant result (t(82) = -2.68, p = 0.009). The remaining three
comparisons did not produce significant order effects (p >
0.05). This is consistent with findings showing violations of
classical probability in predictive judgments, but not diagnos-
tic judgments (Fernbach, Darlow, & Sloman, 2011).

It is possible that participants misinterpreted the sec-
ond question so that they were judging p(e1|y) instead of
p(e1|x,y) and similarly for the reverse ordering of x and y. To
control for this possible confound we ran a version of the ex-
periment where all relevant feature information was included
before each sequential judgment. For example, the second
question in the predictive case might be “After further ob-
servation in the lab, you learn that the shrimp with a high
quantity of ACh neurotransmitter also has a decelerated sleep
cycle. Given this new information, how likely is it that this
shrimp has a high body weight?”. In experiment 1, partici-
pants were not reminded about the high quantity of ACh neu-
rotransmitter before making the final judgment of the effect.
As in experiment 1, predictive judgments where feature val-
ues mismatched produced significant recency effects. Thus, it
is unlikely participants were misinterpreting the second ques-
tion in experiment 1.

A Hierarchy of Models

In classical probability theory, it is assumed there is a sin-
gle space that provides a complete and exhaustive descrip-
tion of all events, which follows from the closure property
of Boolean logic because if x and y are events in the sam-
ple space, so is the joint event x∩ y. Repeated application
of this principle yields the elementary events of the sample
space - those events that cannot be broken down any further.
For example, consider a situation where there are three binary
(1 or 0) events, e, x, and y as in experiment 1. The elemen-
tary events of the sample space arise from the intersection of
these three events and include events such as e1∩x1∩y0. This
sample space has 23 = 8 elementary events. As the number
of events increases, the size of the sample space rapidly in-
creases. For only six binary events, the dimension of the sam-
ple space is 64. Plausibly, at some point, a person’s capacity
to combine events into a unified sample space and assign joint
probabilities will be exceeded.

Quantum probability theory is a geometric approach to
probability where events are represented as subspaces of a
vector space. Unlike classical probability theory, quantum
probability allows for multiple sample spaces, which are each
associated with different bases for the same vector space. Dif-
ferent sample spaces (i.e., bases) are related geometrically by
rotations. When two events are described by two different
sample spaces, they are called incompatible and their joint
event does not exist. Psychologically, this implies that indi-
viduals do not have a mental representation of the joint event.
That is, they cannot think about these two events simultane-



ously. Rather, the events are processed in a sequence by first
thinking of one event and then “rotating” to think about the
other.

We hypothesize that individuals use multiple sample
spaces when reasoning about unfamiliar causal problems with
vague and imperfect information. Our hypothesis is moti-
vated by the idea that causal learning is structurally local
(Fernbach & Sloman, 2009). That is, when people are faced
with a complex learning problem, they break the problem up
by focusing on individual causal relationships rather than the
full causal structure. Inferences about the full structure are
constructed by combining local inferences piece by piece.

In experiment 1, participants learned about three binary
features labeled e, x, and y in table 1. There are at least three
possible geometric approaches to modeling the features and
their relationships using either two, four, or eight dimensions.
These different approaches form a hierarchy of models asso-
ciated with different types of mental representations.

In the 2-dimensional approach, we assume that individu-
als consider one feature at a time and do not have mental
representations of joint events. Mathematically, each feature
is represented as a different basis for a 2-dimensional vector
space where the two dimensions correspond to the two possi-
ble feature values. This is equivalent to defining three sepa-
rate samples spaces that each have two elementary events.

In the 4-dimensional approach, it is assumed that individ-
uals form mental representations for single cause and effect
relationships, but do not think about multiple causal relation-
ships simultaneously. In this case, the two causal relation-
ships are represented as different bases for a 4-dimensional
vector space where the four dimensions are associated with
the four joint events, e1 ∩ x1, e1 ∩ x0, e0 ∩ x1, e0 ∩ x0 for the
causal relationship between e and x and similarly for e and y.
This is equivalent to defining two separate sample spaces that
each have four elementary events.

In the 8-dimensional approach, it is assumed individuals
have mental representations of all joint events. In this case,
the eight dimensions are associated with the eight joint events
such as e1∩x1∩y0. This is equivalent to a classical probabil-
ity model with a single sample space describing all events.

2-dimensional model

The 2-dimensional model assumes that the three binary fea-
tures, e, x, and y, are each represented by different bases of a
2-dimensional vector space. Judgments of joint events such
as p(x∩ y) are formed by thinking of one feature first, say x,
and then the other. That is, individuals do not think about the
two features simultaneously.

Mathematically, the three bases associated with the three
features are related to one another by rotation matrices. Be-
cause only the angle between bases matters, we can fix one
of the bases and define the others in relationship to it. We
set the basis vectors for e to the standard basis for R2. Using
Dirac notation, according to which |v〉 just denotes a column
vector and 〈v| is the conjugate transpose of this vector (i.e.,

the corresponding row vector), we have

|e1〉=
[

1
0

]
, |e0〉=

[
0
1

]
.

Then, we define the two rotation matrices

Rx =

[
cos(θx) −sin(θx)
sin(θx) cos(θx)

]
,Ry =

[
cos(θy) −sin(θy)
sin(θy) cos(θy)

]
where the basis associated with feature x is {Rx|e1〉,Rx|e0〉}
and the basis associated with feature y is {Ry|e1〉,Ry|e0〉}.

Quantum probability theory postulates the existence of a
state represented by a unit length vector |ψ〉 in the vec-
tor space. Psychologically, we assume this 2-dimensional
state vector is a knowledge state that represents an individ-
ual’s beliefs about the different features. Specifically, the
two components of the state vector (i.e., probability ampli-
tudes) correspond to the individual’s beliefs about the two
possible feature values, 1 and 0. Using probability ampli-
tudes α1 and α0, we write the state vector as |ψ〉 = [α1,α0]

′

where α0 =
√

1−α2
1 in order to ensure the state vector is unit

length. In total, the 2-dimensional model has three parame-
ters: θx, θy, and α1.

Probabilities are calculated by projecting the state vector
onto different subspaces. For example, the prior probability
of the effect, e1, is given by p(e1) = ||Pe1 |ψ〉||2 where Pe1

is the 2 x 2 projection matrix with a 1 on the upper diag-
onal and zeros elsewhere. To calculate the predictive prob-
ability of the effect given a single cause such as p(e1|x1),
the state vector is first updated to a conditional state |ψx1〉 =
Px1 |ψ〉/||Px1 |ψ〉|| where the projector Px1 is defined by the
outer product |x1〉〈x1|where |x1〉= Rx|e1〉. The probability of
the effect is then calculated by projecting the conditional state
onto the e1 subspace: ||Pe1 |ψx1〉||2. Calculations for other
probabilities proceed in a similar manner.

4-dimensional model
The 4-dimensional model assumes that individuals have men-
tal representations of single cause-effect relations so that joint
events such as e∩ x exist (i.e., the features can be thought
about simultaneously). However, individuals do not have
mental representations of joint events involving all three fea-
tures such as e1∩ x1∩ y0 .

In this model, two different 4-dimensional bases are used
rather than three 2-dimensional bases. The two bases associ-
ated with the two causal relationships are related to one an-
other by a rotation matrix. Because only the angle between
bases matters, we can fix one of the bases and define the
other in relationship to it. We set the basis vectors for the
x-e causal relationship to the standard basis for R4 and de-
fine the basis for the y-e causal relationship with the rotation
matrix R = R1R2R3 where

R1 =


cos(θ1) −sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 cos(θ1) −sin(θ1)
0 0 sin(θ1) cos(θ1)





R2 =


cos(θ2) 0 −sin(θ2) 0

0 cos(θ2) 0 −sin(θ2)
sin(θ2) 0 cos(θ2) 0

0 sin(θ2) 0 cos(θ2)



R3 =


cos(θ3) 0 0 −sin(θ3)

0 cos(θ3) −sin(θ3) 0
0 sin(θ3) cos(θ3) 0

sin(θ3) 0 0 cos(θ3)

 .
The matrix R1 rotates the 2-dimensional subspaces associated
with the different feature values of the effect. That is, the
subspace associated with e1 (i.e., events e1 ∩ x1 and e1 ∩ x0)
and the subspace associated with e0 (i.e., events e0 ∩ x1 and
e0 ∩ x0). The matrix R2 rotates the 2-dimensional subspaces
associated with the two values of the cause. That is, the
subspace associated with x1 (i.e., events e1 ∩ x1 and e0 ∩ x1)
and the subspace associated with x0 (i.e., events e1 ∩ x0 and
e0 ∩ x0). The matrix R3 rotates the 2-dimensional subspaces
defined by whether or not the feature values of the cause and
effect match. That is, the subspace associate with matching
feature values (i.e., events e1 ∩ x1 and e0 ∩ x0) and the sub-
space associated with mismatching feature values (i.e., events
e1∩ x0 and e0∩ x1).

As before, we assume there is a unit length vector |ψ〉 in
the vector space representing an individual’s beliefs about the
different feature combinations with coordinates α11, α10, α01,

and α00 where α00 =
√

1− (α2
11 +α2

10 +α2
01) in order to en-

sure the state vector is unit length. In total, the 4-dimensional
model has six parameters: θ1, θ2, θ3, α11, α10, and α01. As
in the 2-dimensional model, probabilities are calculated by
projecting the state vector onto different subspaces.

8-dimensional model
The 8-dimensional model assumes that individuals form men-
tal representations of all joint events. Each of the eight dimen-
sions is associated with one of the possible eight joint events
such as (e1 ∩ x1 ∩ y0) and (e0 ∩ x0 ∩ y1). This is equivalent
to a classical probability model with a single sample space
describing all of the events. That is, joint probabilities as
calculated using classical probability theory are equal to the
probabilities that are calculated geometrically by projecting
the state vector onto subspaces. Because all joint events ex-
ist, there are no rotation matrices. The model simply assumes
there exists an 8-dimensional state vector where probabilities
are calculated by projecting it onto different subspaces.

The state vector is composed of eight probability ampli-
tudes α111, α110, α101, α100, α011, α010, α001, and α000 where
the indices represent the feature values of e, x, and y respec-
tively. There are seven degrees of freedom in the model since
the state vector must be unit length. The degrees of freedom
can be reduced by adopting specific parameterizations. For
example, we can parameterize the model in accordance with
causal power.

In causal power, each cause i is associated with a power
parameter wi capturing the power of the cause to produce the

effect. For experiment 1, there are two power parameters,
wx and wy, for the two causes of e. Cheng (1997) also as-
sumed there could be alternative causes for the effect which
might be known or unknown. These alternative causes are
also associated with a power parameter labeled wa. By the
axioms of classical probability theory and independence of x
and y we can write the joint probabilities for the three fea-
tures as p(ei,x j,yk) = p(ei|x j,yk)p(x j)p(yk) where i, j, and
k ∈ {0,1}. Causal power theory assumes the conditional
probability of the effect given the causes is computed us-
ing a “noisy-or” equation: p(e1|x j,yk) = 1− (1−wx)

j(1−
wy)

k(1−wa). Thus, five parameters are needed to define all
eight joint probabilities in experiment 1: the three power pa-
rameters, wx, wy, and wa, and the prior probabilities of the
causes, p(x1) and p(y1). The eight joint probabilities can then
be mapped directly to squared probability amplitudes. For ex-
ample, α2

111 = [1− (1−wx)(1−wy)(1−wa)]p(x1)p(y1). As
in the 2 and 4-dimensional models, probabilities are calcu-
lated by projecting the state vector onto different subspaces.

Model Fits to Experiment 1
We fit the three models to the mean judgments for the 40
inference questions listed in table 1 by minimizing the sum
of squared error (SSE) between each model and data. We
then compared the models by using BIC values, which can be
converted into Bayes factors by eBICi−BIC j (Kass & Raftery,
1995). Using this approximation of the Bayes factor, the 2-
dimensional model is strongly preferred to the 4-dimensional
model and very strongly preferred to the 8-dimensional model
(Kass & Raftery, 1995). Figure 2 compares model predic-
tions to the observed data using the best fit parameters.

Predictions from the 2-D Model
In fitting the data from experiment 1, the 2-dimensional
model outperformed the 4 and 8 dimensional models with re-
spect to BIC. However, a good model should not only fit ob-
served data, but also generate new testable predictions. The
2-dimensional model makes two parameter free predictions
about invariances. The first is called reciprocity (also known
as the inverse fallacy (Villejoubert & Mandel, 2002)) and oc-
curs when the probability of the effect given a cause is the
same as the probability of the cause given the effect, e.g.
p(e1|x1) = p(x1|e1). The second prediction is a memoryless
effect where the probability of a feature only depends on the
most recent information given. For example, the memoryless
property implies p(x1|y1) = p(x1|e1,y1) since y1 is the most
recent given information. We developed a new experiment to
test both predictions.

Methods
58 University of California, Irvine undergraduates partici-
pated in the experiment online for course credit. It was iden-
tical to experiment 1 except we used a within subjects design
and asked participants to judge the probabilities listed in table
2. Participants judged each probability twice in two different
randomized blocks.
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Figure 2: Predicted values compared to observed data from experiment 1 for three models. The 2-D model has the lowest BIC.

Table 2: Judgments in Experiment 2.
Probabilities Bayes Factor

reciprocity p(x1|e1) p(e1|x1) 5.45
p(y1|e1) p(e1|y1) 6.59

memoryless p(x1|y1) p(x1|e1,y1) 2.40
p(x1|y0) p(x1|e1,y0) 1.68
p(y1|x1) p(y1|e1,x1) 1.65
p(y1|x0) p(y1|e1,x0) 6.93

Results
The average score on the 10 question multiple choice test was
7.8. We excluded 17 participants with scores less than 7 out
of ten. For our analyses, we averaged each individual’s judg-
ments from the two blocks. Because invariances correspond
to null hypotheses and it is not possible to state evidence for
the null hypothesis in standard significance testing, we cal-
culated the Bayes factor for each comparison in table 2 fol-
lowing Rouder, Speckman, Sun, Morey, and Iverson (2009).
Bayes factors greater than 1 tend to favor the null hypothesis
and values greater than 3 are considered positive evidence for
the null hypothesis (Kass & Raftery, 1995). In general, the
predictions from the 2-dimensional model are supported.

Discussion
The 2-dimensional model predicts that individuals break up
complex reasoning problems into several simpler pieces.
Judgments are made by sequentially processing these indi-
vidual pieces. In causal situations with vague and imperfect
information, such as the experiments discussed in this pa-
per, a mental representation without joint events might be a
simpler and more efficient way to evaluate events. Perhaps
in situations where individuals have the opportunity to learn
about casual relationships or are given statistical descriptions
of these relationships, they can build more complete mental
representations which include more joint events.
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