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Abstract

The work presented here uses a simple stochastic model as a
cognitive psychometric tool for analyzing response time data
in the Go/No-Go Discrimination task with motivationally dis-
tinct conditions. The parameters of the model inform us of
underlying cognitive mechanisms because they have an estab-
lished psychological meaning and allow us to quantify a sub-
jects ability and response caution. Using these model parame-
ters, we focus on the differences between subjects with varying
degrees of substance abuse and antisocial behavioral disorders
and show that there are reliable differences between the de-
cision mechanisms of these subjects. Using data from execu-
tive working memory tasks, we postulate that these differences
in cognitive processes might be due to differences in working
memory capacity. Ultimately, we show that formal cognitive
modeling has the potential to provide valuable insights into
clinical phenomena that cannot be captured by traditional data
analysis techniques.
Keywords: Go/No-Go task, decision-making, working mem-
ory capacity, diffusion model, Bayesian parameter estimation

Introduction
Formal cognitive models can capture information about cog-
nitive processes that is often not accessible with traditional
statistical methods. Differences in cognitive functioning be-
tween normal and clinical patients can provide insights into
abnormal behavior. Following Batchelder and Riefer (1999)
we argue that parameter estimates from formal cognitive
models provide a methodology for examining differences in
cognitive functioning. Batchelder and Riefer refer to this
methodology as cognitive psychometrics and have shown that
it has advantages over traditional approaches. The present re-
search uses a simple stochastic process as a cognitive psycho-
metric tool for analyzing response time data in clinical stud-
ies. Specifically, we show how a cognitive model of response
times can capture underlying cognitive processes in situations
of approach-avoidance motivational conflict.

Response time modeling approaches have been applied
to various cognitive phenomena including memory retrieval
(Ratcliff, 1978) and lexical decision tasks (Ratcliff, Gomez,
& McKoon, 2004; Gomez, Ratcliff, & Perea, 2007). How-
ever, there is a dearth of studies using response time mod-
eling approaches to examine approach-avoidance motivation.
Cognitive modeling of choice and accuracy data in approach-
avoidance situations has provided insights into underlying
cognitive processes (Endres, Rickert, Bogg, Lucas, & Finn,
2011; Yechiam et al., 2006). Through an application to the
Go/No-Go Discrimination task (Newman, Widom, & Nathan,

1985), we show that cognitive models of response time can
also provide insights into cognitive functioning.

The Go/No-Go Discrimination Task
The Go/No-Go Discrimination (GNGD) task is a reliable
measure of passive avoidance (Newman et al., 1985); it is
considered an analog for real world approach-avoidance mo-
tivational conflict (Newman & Lorenz, 2003), because both
appetitive (e.g., monetary reward) and aversive (e.g., mone-
tary loss or electric shock) stimuli are used as reinforcement
in the task. The standard GNGD task involves the trial-and-
error learning of two sets of operant stimuli: one signaling
’Go’ or reward-approach responses; the other signaling ’No-
Go’ or punishment-avoidance responses. The stimuli are usu-
ally two-digit numbers, which are counter balanced above
and below fifty such that the Go and No-Go sets are com-
pletely indiscriminable or overlapping at the beginning of the
task. There are two key manipulations in the standard GNGD
task. The first is that only correct reward-approach behav-
ior (i.e., hit or Go response given a Go signal) and incorrect
punishment-avoidance behavior (i.e., false alarm or Go re-
sponse given a No-Go signal) are reinforced. The second is
that of speed discrimination or the need to decide whether to
activate (i.e., Go response) or inhibit (i.e., No-Go response)
reward-approach behavior within a brief time window (e.g.
750 ms).

The most popular measures of GNGD task performance
are commission errors (i.e., passive-avoidance errors or false
alarms) and omission errors (i.e., misses). It is important to
point out that persons with real world problems with sub-
stance use and antisocial behavior typically commit a greater
number of passive avoidance errors (i.e., errors of commis-
sion or false alarms) on the GNGD task (Endres et al., 2011;
Finn, Mazas, Justus, & Steinmetz, 2002; Finn, 2002). Recent
studies have used stochastic (e.g., Cue-Dependency Learn-
ing) and deterministic (e.g., Signal Detection Theory) models
of decision making to investigate the cognitive-motivational
processes that contribute to GNGD task commission and
omission errors (Endres et al., 2011; Smillie & Jackson,
2006; Yechiam et al., 2006). Consistent among these studies
is the implication that cognitive processes, such as attention
and working memory, aid in the self-regulatory control over
both Go/No-Go response biases and Go/No-Go signal learn-
ing. The present research adds to these findings by estab-
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lishing links between decision mechanisms, working mem-
ory capacity, and response times. While this paper focuses
entirely on modeling response times, we plan to model re-
sponse times, choice and learning in the future.

Experiment

Participants

The present study was a part of a much larger investigation
into the cognitive, motivational, and personality correlates
of substance use and antisocial behavior problems. Poten-
tial participants were recruited from the local university and
surrounding area using advertisements and fliers designed to
elicit responses from persons with a variety of disinhibited
personality traits and history of substance use and antiso-
cial behavior problems (Finn et al., 2009). A total sample
(N= 484) were recruited into the larger study, but not all par-
ticipants chose to complete the entire battery of laboratory
measures used in the present research. The present sample
(N=147) was gender balanced (53% women) and consisted
primarily of young adults (mean age 22.4 + 3.1) with 13.8 +
2.1 years of education.

Semi-Structured Diagnostic Interview

History of alcohol and other drug use, childhood conduct
disorder and adult antisocial personality disorder was ascer-
tained with the Semi-structured Diagnostic Interview for the
Genetics of Alcoholism (Bucholz et al., 1994) using the Di-
agnostic Statistical Manual of Mental Disorders Fourth Edi-
tion criteria (APA, 1994). Subjects were classified into one
of three groups based on their diagnostic history: (1) No his-
tory (N=31), (2) history of 1 or 2 diagnoses (N=52), and (3)
history of 3 or more diagnoses (N=64). Group 3 subjects had
more severe diagnostic histories, such that the majority pre-
sented clinical problems with other drug use (100%) and anti-
social personality (82%) disorder, as opposed to group 2 who
presented little or no history with these clinical problems (0%
and 18%, respectively).

Double-Factorial Go/No-Go Discrimination task

Six motivationally distinct versions of the standard GNGD
tasks were administered, representing a 2 x 3 repeated mea-
sures experimental design. This design was used to examine
the interactive effects of (1) punishment reinforcement type:
monetary loss versus electric shock and (2) reward versus
punishment reinforcement schedule: equal salience (33% vs.
33%), reward salient (100% vs. 33%), and punishment salient
(33% vs. 100%). Each of the 6 GNGD task versions used 8
different two-digit stimuli that were divided into 2 counter-
balanced sets, consisting of 4 stimuli each. Different two-
digit stimuli were used in each of the 6 GNGD task versions.
The order in which the 6 versions were administered also was
counterbalanced. Each task consisted of 56 total trials divided
into 7 blocks of 8 trials.

Working Memory Capacity
Working memory capacity was assessed with 5 separate
tasks: 3 simple span and 2 complex span tasks (Conway et
al., 2005). Simple span tasks involve immediate recall of
to-be-remembered list items, and thus, are thought to assess
the short-term activation aspects of working memory. Sim-
ple span memory was assessed with the digits forward and
backward span subtests of the Wechsler Adult Intelligence
Scale-Revised (Wechsler, 1981) and the letter-number subtest
of the WAIS-III (Wechsler, 1997). The digits forward, digits
backward, and letter-number tasks operationalize short-term
activation capacity in working memory as the total number of
to-be-remembered items of varying list sizes that can be held
in mind and manipulated in some way. Complex span tasks
involve both a primary memory task, such as recalling word
or letter strings of various sizes in order of presentation, and
the performance of a secondary cognitive task, such as solv-
ing a mathematical operation or counting backwards by three
for a predetermined length of time. Complex memory span
was assessed with the operation-word span test (Conway &
Engle, 1994) and a modified auditory consonant delay test
(Brown, 1958; Finn et al., 2009). The operation-word span
and auditory consonant delay tasks operationalize executive
attention and short-term activation capacity in working mem-
ory as the total number of to-be-remembered list items that
can be held in mind while performing a secondary cognitive
task. Data from the 5 measures of working memory capac-
ity were reduced into a single latent factor using maximum
likelihood factor extraction. This unidimensional latent fac-
tor showed above average reliability (Cronbach’s a = .81) and
accounted for 56.59% of the variance in the working memory
capacity measures.

Procedure
Participants read and signed an informed consent to partic-
ipate, were free to refuse any assessment, and were paid
$10.00 per hour for their time in the laboratory. Participants
completed 3 testing sessions, lasting approximately 3 hours a
session, and were compensated for both child care costs and
millage to and from the laboratory. Participants were first
administered the diagnostic interview, followed by an inter-
spersed ordering of computer and experimenter administered
laboratory tasks.

Data Analyses and Results
General trends in response times across all subjects for the
six different experimental conditions for correct responses
(hits) and errors (false alarms) were examined. A three-way
ANOVA showed a significant main effect of condition on re-
sponse times (F(5,1644) = 13.55, p < .001), a significant
main effect of diagnostic group on response times (F(2,1644)
= 5.73, p < 0.003), and no significant main effect of response
type (hit or false alarm) on response times (F(1,1644) = 0.13,
p = 0.720). There were no significant interactions. Seven
of the 147 subjects were excluded from this analysis because
they either produced zero hits or zero false alarms in one of
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the six conditions. Typically, these subjects withheld all re-
sponses and treated all trials as No-Go trials. Table 1 gives
the mean and standard deviation of response times collapsed
across hits and false alarms for each condition for the three
different diagnostic groups.

To determine which experimental conditions produced sig-
nificantly different response times, a pairwise comparison
was conducted. A Dunn test which applies the Bonferroni ad-
justment to the critical values from the t distribution showed
that the mean response time for the shock condition with
equal reinforcement was significantly longer (p < 0.05) than
the mean response times for the other five conditions. These
were the only significant pairwise comparisons. It is not sur-
prising that we find longer response times in the shock con-
dition with equal reinforcement because the equal reinforce-
ment conditions provided the least amount of feedback in the
form of rewards and punishments, and subjects were typically
adverse to shocks. A Dunn test was also used to determine
which diagnostic groups produced significantly different re-
sponse times. This test showed that the mean response time
for group 3 subjects (those subjects with more than two dis-
orders) was significantly longer (p < 0.05) than the mean re-
sponse times for the other two diagnostic groups. This was
the only significant pairwise comparison.

Table 1: Mean Response Times for Different Diagnostic
Groups

Condition Diagnostic Group
(Pun., Reinf.) Group 1 Group 2 Group 3

Money, Equal .493 (.058) .494 (.061) .500 (.048)
Money, Reward .487 (.052) .488 (.055) .491 (.059)
Money, Pun. .479 (.060) .490 (.055) .498 (.055)
Shock, Equal .508 (.043) .523 (.052) .533 (.049)
Shock, Reward .487 (.063) .476 (.057) .498 (.066)
Shock, Pun. .488 (.064) .492 (.052) .491 (.068)

The relationship between diagnostic group and working
memory capacity was also analyzed (see Figure 1). A one-
way ANOVA showed a significant main effect of diagnostic
group on working memory capacity (F(2,137) = 4.97, p <
.008). A Dunn test showed that the working memory capacity
of group 3 was significantly lower (p < 0.05) than the work-
ing memory capacity of groups 1 and 2. There was no signif-
icant difference in the working memory capacity of groups 1
and 2.

Modeling Response Times
We modeled the decision processes in the GNGD using a se-
quential sampling model. These models offer a way to under-
stand both speed and accuracy in tasks involving decisions
between a set of alternatives. For the purposes of this paper,
we focus entirely on modeling response times and leave the
discussion of choice probability for a future report. Sequen-
tial sampling models assume that performance is based on the
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Figure 1: Working memory capacity factor by diagnostic
group.

quality of stimulus information and the quantity of informa-
tion necessary to make a response. Specifically, these mod-
els make the assumption that evidence favoring each alterna-
tive is integrated over time, the accumulation of evidence is
subject to random fluctuations, and a decision is made when
enough evidence has been accumulated to reach a specified
criterion.

Model Parameters

We modeled response times using a simple diffusion process
called a Wiener process that had a single absorbing boundary
associated with Go responses. There was not a corresponding
boundary for No-Go responses because response time data
was not collected in these situations. Future work will model
both response times and choice probabilities by using a two
boundary model with an implicit lower boundary associated
with No-Go responses. A one-boundary Wiener process has
three parameters: a parameter ν reflecting the drift rate of the
process, a parameter a associated with the separation between
the starting point of the diffusion process and the absorbing
boundary, and a parameter Ter used to shift the starting point
of the process forward in time.

The parameters of the one-boundary Wiener process have
an established psychological meaning (Matzke & Wagen-
makers, 2009). Specifically, the drift rate parameter is as-
sociated with the amount of evidence a subject receives from
a stimulus at each moment in time. Thus, the drift rate quanti-
fies the subject’s ability and task difficulty. The boundary sep-
aration parameter reflects the amount of evidence required to
make a response (i.e., response caution). The shift parameter
corresponds to non-decision time and quantifies the amount
of time involved in stimulus encoding and physical execution.

The first passage time distribution of the one-boundary
Wiener process is used to model the experimental response
time distribution. For the one-boundary Wiener process, this
distribution is represented by the shifted Wald distribution.
The probability density function for the shifted Wald distri-
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bution is given by

f (t|ν,a,Ter) =
a√

2π(t−Ter)3
exp{− [a−ν(t−Ter)]2

2(t−Ter)
}

We assumed that different conditions provided varying lev-
els of difficulty resulting in subjects demonstrating differing
ability across conditions. To allow for these differences, a
different drift rate was fit for each condition. Further, we as-
sumed that the two types of stimuli (Go and No-Go) presented
different types of information to the subject. To account for
the different types of stimuli information, different drift rates
for hits (corresponding to Go stimuli) and false alarms (corre-
sponding to No-Go stimuli) were fit. Thus, a total of 12 drift
rates with two for each condition were fit. We also believed
that subjects displayed different levels of response caution for
different conditions. So, six different boundary separation pa-
rameters were fit. We assumed that non-decision time was not
influenced by condition so only one non-decision parameter
was fit. In total, the model used 19 parameters to account for
individual behavior in all six experimental conditions.

Parameter Estimation
The model parameters were fit using hierarchical Bayesian
parameter estimation. Because each condition only contained
56 trials, we felt that Bayesian parameter estimation was
preferable to maximum likelihood methods. Furthermore,
Bayesian parameter estimation produces a posterior distri-
bution for each parameter value. The WinBUGS program
(Lunn, Thomas, Best, & Spiegelhalter, 2000) was used to
implement the necessary MCMC algorithms. We used the
shifted Wald density function written in the WinBUGS De-
velopment Interface (Lunn, 2003) by Lee and Wagenmakers
(2009).

The 19-parameter model was fit to data for each subject
giving us a set of parameter estimates for every individual. In
other words, 19 parameters were used to model the 336 data
points collected for each subject across the six conditions.
For a single condition, three unique parameters were used to
model the data from that condition: two drift rates for hits
and false alarms and one boundary separation parameter. The
non-decision time parameter was fit to all conditions and was
thus not uniquely specified by any one condition.

We used hierarchical parameters associated with the three
diagnostic groups to capture structured individual differences.
The parameters for each individual were drawn from distri-
butions defined by these hierarchical parameters. For each
diagnostic group, there were a set of hierarchical parameters
associated with drift rates and boundaries separations for each
condition. Specifically, for a single condition, there were
three unique hierarchical parameters associated with each
group: two drift rates for hits and false alarms and one bound-
ary separation parameter. There was also a non-decision time
hierarchical parameter associated with each diagnostic group
which was fit to all conditions.

Three MCMC chains were used to estimate the posterior
distributions for the parameters. The first 1,000 samples of

each chain were discarded as ”burn-in”. Another 10,000 sam-
ples were drawn from each chain to estimate the posteriors.
Chain convergence was assessed by using the R̂ statistic. All
parameters had an R̂ of 1.0.

A Qualitative Evaluation of the Model
Model performance was examined by looking at a qualita-
tive comparison between the model predictions and the data.
We calculated the Kendall rank correlation coefficient (or
Kendall’s τ ) for every subject to measure the association be-
tween the mean response times and the model predictions for
all six conditions. For calculating the model predictions, the
mean of the posterior distributions of the parameters was used
as a point estimate of these distributions. These means were
then used to calculate the expected value of the model’s re-
sponse time distribution. Table 2 shows several descriptive
statistics for the τ values. A τ value of 1 implies perfect agree-
ment between the rankings and a τ value of −1 implies per-
fect disagreement between the rankings. From the table, we
see that the hierarchical model captured the qualitative results
very well.

Table 2: Rank Correlation Between Subjects and Model

mean median std min max
0.86 0.87 0.17 -0.20 1.0

The hierarchical model allowed for the expression of struc-
tured individual differences across all conditions. This gave
us the ability to explore differences in the decision mecha-
nisms between these various conditions. Further, it allowed
us to establish relationships between model parameters and
the working memory capacity factor. Models with fewer
parameters might also provide good predictions of the data
and might even be preferred by traditional model comparison
techniques. However, when models with fewer parameters
were tested, it was found that they did not account for indi-
vidual differences to the same extent as the current model.
The models with fewer parameters tended to make trade offs
between parameter values in order to fit the data. These trade
offs prevented the models from capturing many of the results
described below.

Modeling Results
We began our analysis of the model by examining the correla-
tion between model parameters and the working memory ca-
pacity factor. Across all conditions, we found that the work-
ing memory capacity factor was positively associated with
boundary separation parameters. This implies that subjects
with high working memory capacity demonstrated more re-
sponse caution than subjects with low working memory ca-
pacity. In conditions of monetary punishment with reward
and punishment reinforcement, the working memory capacity
factor was highly correlated with drift rate parameters. Be-
cause drift rate parameters quantify subjects’ ability to per-
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form the task, the strong correlation between working mem-
ory capacity and drift rates in these two conditions implies
that subjects with high working memory capacity accumu-
lated stimulus information more quickly than subjects with
low working memory capacity. Table 3 summarizes these re-
sults.

Table 3: Correlation between Working Memory and Model
Parameters

Condition Parameter
(Pun., Reinf.) Drift Rate Boundary Separation

ρ (p-value) ρ (p-value)
Money, Equal 0.17 (0.046) 0.25 (0.003)
Money, Reward 0.31 (0.000) 0.31 (0.001)
Money, Pun. 0.23 (0.005) 0.28 (0.001)
Shock, Equal 0.11 (0.182) 0.26 (0.002)
Shock, Reward 0.11 (0.179) 0.16 (0.055)
Shock, Pun. 0.21 (0.012) 0.17 (0.038)

Next, we examined the hierarchical parameters for the
three diagnostic groups. Figure 2 and Figure 3 show the
mean and standard deviation of the posterior distributions of
these hierarchical parameters. From the figures we see that
the hierarchical drift rates and boundary separation parame-
ters were larger for group 1 subjects than for group 3 sub-
jects. This implies that normal subjects tended to accumu-
late stimulus information more quickly and showed more re-
sponse caution than subjects with many clinical disorders. In
the monetary punishment conditions with reward and punish-
ment reinforcement, the hierarchical drift rates and boundary
separation parameters were larger for group 2 subjects than
for group 3 subjects. However, in most of the remaining con-
ditions, the hierarchical parameters associated with group 2
subjects were similar to the hierarchical parameters associ-
ated with group 3 subjects. In other words, subjects with one
or two clinical disorders tended to accumulate stimulus infor-
mation more quickly and showed more response caution than
subjects with three or more clinical disorders only when the
aversive stimulus was monetary loss and the reinforcement
schedule was reward or punishment salient.

Discussion
From the results discussed above, we see that stochastic mod-
eling provided more insight into the cognitive mechanisms
involved in decision making processes than traditional analy-
ses of the data. While the statistical analyses of the response
time data indicated that diagnostic group 3 subjects had sig-
nificantly longer mean response times than group 1 and 2 sub-
jects, it did not provide any insights into why this occurred.
The cognitive model showed us that in general subjects with
few to no clinical disorders (i.e. group 1 and group 2 subjects)
tended to have higher drift rates and larger boundary separa-
tion parameters as compared to subjects with many clinical
disorders (i.e. group 3 subjects). The lower drift rate pa-

rameters of group 3 subjects indicate that these subjects ac-
cumulated stimulus information slowly and could explain the
longer response times of these subjects.

The cognitive model also showed differences in the deci-
sion mechanisms of group 2 and group 3 subjects in condi-
tions of monetary punishment with reward and punishment
salient reinforcement. We postulate that the differences be-
tween group 2 and group 3 subjects in these two conditions
might be due to differences in working memory capacity.
First, we know that group 2 subjects have higher working
memory capacity than group 3 subjects. Second, the rela-
tionships between model parameters and the working mem-
ory capacity factor as seen in the correlation analysis (Table
3) indicate that working memory is strongly associated with
drift rates and boundary separation parameters in conditions
of monetary punishment with reward and punishment salient
reinforcement. Of course, future research will be needed in
order to fully understand the connections between working
memory capacity and the cognitive mechanisms of clinical
patients.

This research illustrated that simple stochastic models can
be used as cognitive psychometric tools for analyzing re-
sponse time data in clinical studies. Future work will use a
two boundary diffusion model to account for both response
times and choice probabilities. We hope to make connections
between the parameters of the two boundary diffusion model
and the parameters of a learning model. These two models
will then be used to conduct a full examination of the de-
cision mechanisms involved in the GNGD task. In particu-
lar, we will focus on discovering the extent to which working
memory capacity and other factors such as externalizing psy-
chopathology are involved in decision processes. We believe
that cognitive modeling has the potential to provide valuable
insights into clinical phenomena that cannot be captured by
traditional data analysis techniques.
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