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Abstract

Order of information plays a crucial role in the process of updating beliefs across time. In fact, the

presence of order effects makes a classical or Bayesian approach to inference difficult. As a result,

the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc

explanation for these effects. We postulate a quantum inference model for order effects based on the

axiomatic principles of quantum probability theory. The quantum inference model explains order

effects by transforming a state vector with different sequences of operators for different orderings of

information. We demonstrate this process by fitting the quantum model to data collected in a medical

diagnostic task and a jury decision-making task. To further test the quantum inference model, a new

jury decision-making experiment is developed. Using the results of this experiment, we compare the

quantum inference model with two versions of the belief-adjustment model, the adding model and

the averaging model. We show that both the quantum model and the adding model provide good fits

to the data. To distinguish the quantum model from the adding model, we develop a new experiment

involving extreme evidence. The results from this new experiment suggest that the adding model

faces limitations when accounting for tasks involving extreme evidence, whereas the quantum infer-

ence model does not. Ultimately, we argue that the quantum model provides a more coherent account

for order effects that was not possible before.

Keywords: Inference; Jury decision-making; Recency effects; Belief-adjustment model; Quantum

probability theory

1. Introduction

One of the oldest and most reliable findings regarding human inference is that the order

of evidence affects the final judgment (Hogarth & Einhorn, 1992). Order effects arise in a

number of different inference tasks ranging from judging the likelihood of selecting balls
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from urns (Shanteau, 1970) to judging the guilt or innocence of a defendant in a mock trial

(Furnham, 1986; Walker, Thibaut, & Andreoli, 1972). Specifically, we define an order effect

to occur when judgments about the probability of a hypothesis given a sequence of informa-

tion, say A followed by B, does not equal the probability of the same hypothesis when the

given information is reversed, B followed by A. Classical probability theory requires

Pr(X \ Y | H) ¼ Pr(Y \ X | H) for events X and Y, which according to Bayes rule, implies

Pr(H | A \ B) ¼ Pr(H | B \ A), and so a simple Bayesian model has difficulty accounting

for order effects. We will discuss these difficulties in more detail in a later section. As sim-

ple probabilistic accounts of order effects are problematic, alternative models of inference

have been proposed, such as the averaging model (Shanteau, 1970) and the belief-adjust-

ment model (Hogarth & Einhorn, 1992). These heuristic models lack an axiomatic founda-

tion and only provide an ad hoc explanation for order effects. This article presents a more

coherent account of order effects derived from the axiomatic principles of quantum proba-

bility theory.

At first, it might seem odd to apply quantum theory to cognitive phenomena. Before we

address this general issue, we point out that we are not claiming the brain to be a quantum

computer; rather we only use quantum principles to derive cognitive models and leave the

neural basis for later research. That is, we use the mathematical formalism of quantum

theory without attaching the physical meaning associated with quantum physics. This

approach is similar to the application of complexity theory or stochastic processes to

domains outside of physics.1

There are four reasons for considering a quantum approach to human judgments: (a)

judgment is not a simple readout from a preexisting or recorded state, but instead it is con-

structed from the current context and question; from this first point it then follows that (b)

making a judgment changes the context which disturbs the cognitive system; and the second

point implies that (c) changes in context produced by the first judgment affects the next

judgment producing order effects, so that (d) human judgments do not obey the commuta-

tive rule of classic probability theory. If we replace ‘‘human judgment’’ with ‘‘physical

measurement’’ and replace ‘‘cognitive system’’ with ‘‘physical system,’’ then these are the

same points faced by physicists in the 1920s that forced them to develop quantum theory.

In other words, quantum theory was initially invented to explain findings in physics that

seemed paradoxical from a classical point of view. Similarly, paradoxical findings in cogni-

tive psychology, such as order effects in human judgments, suggest that classical probability

theory might be too limited to fully explain various aspects of human cognition. Other para-

doxical observations in human judgment and decision making include violations of the sure

thing axiom of decision making (Tversky & Shafir, 1992) and violations of the conjunctive

and disjunctive rules of classic probability theory (Gilovich, Griffin, & Kahneman, 2002). A

growing number of researchers are exploring the use of quantum probability theory to

account for these phenomena. For example, a quantum model was developed to account for

violations of the sure thing principle (Pothos & Busemeyer, 2009) as well as conjunction

and disjunction errors (Franco, 2009; Busemeyer, Pothos, Franco, & Trueblood, 2011).

Quantum probability has also been used to model incompatibility and interference effects

that arise in other areas of human judgments (Aerts & Aerts, 1994; Khrennikov, 2004).
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1.1. Classifying inference tasks

Order effects vary with different inference tasks. Two of the most commonly studied

order effects are recency effects, resulting from disproportionate importance of recent evi-

dence, and primacy effects, resulting from disproportionate importance of initial evidence.

Fig. 1 illustrates these two effects when two pieces of information are processed. Hogarth

and Einhorn (1992) examined order effects, specifically primacy and recency, by classifying

the results of 60 experiments according to complexity, length of series, and response mode.

The complexity of a task, either complex or simple, was judged by the amount of informa-

tion subjects were required to process. For example, if evidence items contained more than

600 words, they were classified as complex. The length of the series referred to the number

of pieces of evidence that needed to be processed. Hogarth and Einhorn classified tasks as

either short, with 2–12 items being processed, or long, with more than 12 items being pro-

cessed. The response mode was either Step-by-Step, where subjects provided a probability

judgment after each piece of evidence, or End-of-Sequence, where subjects only provided a

probability judgment after all evidence had been processed.

In this article, we examine simple, Step-by-Step tasks with short series of evidence.

As Hogarth and Einhorn discovered that recency effects are prevalent in these types of tasks,

we begin by giving a quantum probability account of recency effects in a medical decision-

making task. Later, we show that the quantum inference model can also account for data
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Fig. 1. Primacy (right) and recency (left) order effects. Recency effects have a notable crossover in the two

curves associated with the two orderings. Primacy effects do not demonstrate such a crossover.
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collected in tasks involving both manipulations of order and evidence strength. Specifically,

we examine a jury decision-making task by McKenzie, Lee, and Chen (2002) in which indi-

viduals judge the probability of a defendant’s guilt given a prosecution and defense of dif-

ferent strengths. Then, we discuss several new experiments examining the effects of order

and evidence strength on probability judgments. To aid in the presentation of the quantum

inference model, we first provide a description of the medical decision-making task and give

a tutorial on the fundamentals of quantum probability through illustrative examples.

1.2. A medical inference task

Bergus, Chapman, Levy, Ely, and Oppliger (1998) examined how the order of clinical data

can influence decisions in diagnostic tasks. In this study, 315 active members of the Iowa

Academy of Family Practice were asked to estimate the probability that a specific patient had

a urinary tract infection (UTI) given the patient’s history and physical examination along

with laboratory data. The physicians were divided into two groups with one group receiving

the history and physical examination information first (H&P-first) and the other receiving the

laboratory data first (H&P-last). The history and physical examination were designed to

suggest a UTI, whereas the laboratory data were inclusive about the existence of a UTI.

Before either group received any specific information, they were informed that the patient

was a 28-year-old woman complaining about ‘‘discomfort on urination.’’ After reading this

chief complaint, all of the physicians estimated the probability of a UTI. For this initial prob-

ability judgment, the H&P-first and the H&P-last groups had almost identical mean estimates

of a UTI (67.4% vs. 67.8% , p ¼ .85). After the physicians read the first piece of information,

the H&P-first group increased their probability estimate of a UTI and the H&P-last group

decreased their probability estimate of a UTI (77.8% vs. 44.0% , p < .001). This should

not come as a surprise because the history and physical examination provided evidence of a

UTI and the laboratory data did not. In the final probability estimate, the H&P-first group

judged the probability of a UTI to be significantly less than the H&P-last group (50.9% vs.

59.1% , p ¼ .03). The data suggest that physicians placed greater salience on the final piece

of information resulting in a recency effect. The results are summarized in Table 1.

One might argue that the order effects observed in this study are simply caused by forget-

ting or memory failures. This seems unlikely because, for the medical decision-making task,

participants read short summaries of information without any time delays between each pre-

sentation of the information. Furthermore, there is evidence that sequential judgments such

as these are made on-line by a sequential updating procedure and are not memory-based

Table 1

Mean probability estimates from diagnostic task

H&P-first H&P-last

Initial Pr(UTI) ¼ .674 Pr(UTI) ¼ .678

Second Pr(UTI | H&P) ¼ .778 Pr(UTI | Lab) ¼ .440

Final Pr(UTI | H&P, Lab) ¼ .509 Pr(UTI | Lab, H&P) ¼ .591
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(Hastie & Park, 1986). In fact, the correlation between judgments and recall of information

is found to be negligible (Anderson & Hubert, 1963). In sum, the order effects are the result

of the sequential updating procedure used to revise beliefs rather than memory failures.

1.3. Problems for a simple Bayesian model

A Bayesian inference model has difficulty accounting for order effects. To account for

order effects, a naive Bayesian model must introduce presentation order as another piece of

information. Suppose we are interested in evaluating the probability of a hypothesis, H,

given two pieces of information, A and B. As classical probability obeys the commutative

property, we have

pðH jA \ BÞ ¼ pðH jAÞ � pðB jH \ AÞ
pðB jAÞ ¼ pðH jBÞ � pðA jH \ BÞ

pðA jBÞ ¼ pðH jB \ AÞ:

Thus, to model order effects, the Bayesian model needs two more events: the event O1

that A is presented before B and event O2 that B is presented before A. In this case, we

obtain p(H | A \ B \ O1) „ p(H | A \ B \ O2). However, without specifying p(H) ·
p(Oi | H) · p(A | H \ Oi) · p(B | H \ Oi \ A), this approach simply redescribes empirical

results, and such a specification is not known at present. In many empirical studies of order

effects, the presentation order is randomly determined. Thus, the major difficulty for the

Bayesian model is that order information is often irrelevant.

2. Quantum inference model

2.1. State vector

This section develops a quantum model using the medical inference as an example. Later,

we extend the model for the jury inference task. For both applications, our model assumes

there are two complementary hypotheses, h1 and h2. We also postulate the existence of posi-

tive evidence, e1, for h1 and negative evidence, e2, for h1. Because h1 and h2 are comple-

mentary, e2 can also be interpreted as positive evidence for h2. We assume the positive and

negative evidence comes from two different sources of information, A and B. For the medi-

cal decision-making task, we let h1 ¼ UTI present and h2 ¼ UTI absent. Information source

A corresponds to the history and physical examination, and information source B corre-

sponds to the laboratory data. Note that the history and physical examination, A, provides

positive evidence, e1, for the presence of a UTI, h1. In contrast, the laboratory data, B,

provides evidence, e2, for the absence of a UTI, h2.

Our quantum model represents an individual’s initial state of belief by a state vector

denoted |wæ. 2 The belief state |wæ can be expressed as a linear combination or superposition

of four basis states {|N11æ, |N12æ, |N21æ, |N22æ}, where each basis state |Nijæ is a vector with

all zeros except a one located in the row corresponding to pattern hi ^ ej: For example, |N12æ
is a belief state in which the probability equals one for h1 ^ e2, in which case the person is
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certain that h1 is true and negative evidence, e2, is present. With respect to these basis vectors,

the general belief state can be expressed as a superposition (i.e., a linear combination)

jwi ¼
X

xij � jNiji:

In this way, we see that the belief state is a vector within a four-dimensional vector space

spanned by the N ¼ {|N11æ, |N12æ, |N21æ, |N22æ} basis. In this formulation, a probability

amplitude xij determines the belief about a pattern of features, hi ^ ej. Specifically, for the

medical decision-making task, the belief state vector can be represented by the four ampli-

tudes:

x ¼

xh1;e1

xh1;e2

xh2;e1

xh2;e2

2
664

3
775 ¼

amplitude for UTI present and positive evidence
amplitude for UTI present and negative evidence
amplitude for UTI absent and positive evidence
amplitude for UTI absent and negative evidence

2
664

3
775: ð1Þ

We define the amplitudes xij such that |wæ is a unit length vector. The quantum probability

of a particular feature pattern is qðhi ^ ejÞ ¼ jjxijjj2. In other words, the probability of infer-

ring the feature pattern hi ^ ej assuming the belief state, |wæ, is ||xij||
2. For example, in the

medical decision-making task, the probability of a UTI infection and positive evidence is

qðh1 ^ e1Þ ¼ jjx11jj2. Note that the probabilities, qðhi ^ ejÞ, sum to one across all four

feature patterns.

2.2. Projectors

In quantum theory, probabilities are computed by first projecting the belief state onto a

subspace that defines an event, and then computing the squared modulus of the projection.

Here, we define projectors that project unit vectors from our vector space onto individual

basis vectors, or feature patterns. For example, the belief state is projected onto the event

h1 ^ e1 by the projector:

P11 ¼ Pðh1; e1Þ ¼

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
664

3
775:

If we are interested in calculating the probability of the joint event the UTI is present and

evidence 1 is present, we project our state vector |wæ onto the basis vector |N11æ:

Pðh1; e1Þjwi ¼

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
664

3
775

x11

x12

x21

x22

2
664

3
775 ¼

x11

0
0
0

2
664

3
775:
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Then, we calculate the quantum probability of the event the UTI is present and evidence 1 is

present by the squared length of the projection, ||P(h1, e1)|wæ||2 ¼ ||x11||2.

Suppose we are interested in the probability of the event h1 ¼ ‘‘UTI is present.’’ This

event contains the two feature patterns fh1 ^ e1; h1 ^ e2g. In quantum theory, events are rep-

resented as subspaces of our vector space, and the event h1 is represented by the span of the

basis vectors {|N11æ, |N12æ} which corresponds to the projector P(h1) ¼ P11 + P12. For

example, the event UTI is present is represented by the projector:

Pðh1Þ ¼

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

2
664

3
775:

To find the probability of this event, we calculate

qðh1Þ ¼ jjPðh1Þjwijj2 ¼ jjx11jj2 þ jjx12jj2:

2.3. State revision

After observing an event, the quantum state undergoes revision. Suppose we start with

state |wæ, and we learn that the UTI is in fact present. Then, we project |wæ onto the subspace

corresponding to this event and normalize this projection (so that the revised state remains

unit length):

wh1

�� �
¼ Pðh1Þjwi
jjPðh1Þjwi k

:

Normalization ensures that the length of this new state vector, |wh1
æ equals one. Psycho-

logically, state revision corresponds to updating the belief state after processing new infor-

mation.

2.4. Compatibility

The concept of compatibility is one of the most important new ideas introduced by quan-

tum theory. The essential idea is that a vector space representation of beliefs allows one to

change the basis vectors used to describe the belief state. In other words, we are not

restricted to describing the belief state in terms of the feature patterns represented by the

basis vectors {|N11æ, |N12æ, |N21æ, |N22æ}. When considering a new source of information, we

can change our perspective by rotating to a new set of basis vectors that can be used to

represent the beliefs from the point of view of the new source.

To see how this works, we will draw upon a two-dimensional example to illustrate the

concept of compatibility because it is impossible to visualize our four-dimensional vector

space. Suppose we are interested in representing two events, truth and goodness. Let us

assume that truth is defined in terms of two basis vectors |x1æ corresponding to the truth
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value ‘‘true’’ and |x2æ corresponding to the truth value ‘‘false.’’ We also assume that good-

ness is represented within the same two-dimensional vector space but is defined in terms of

two different basis vectors, |y1æ corresponding to ‘‘good’’ and |y2æ corresponding to ‘‘bad.’’

The vector S represents the person’s belief state concerning a statement. To determine the

probability that a statement is ‘‘true,’’ the belief state S is projected on the |x1æ basis vector

(and the projection on |x2æ determines the probability of ‘‘false’’). But to determine the

probability that the statement is ‘‘good,’’ the belief state S is projected on the |y1æ basis vec-

tor (and the projection on the |y2æ basis vector determines the probability of ‘‘bad’’). In other

words, our belief state S can be represented by {|x1æ, |x2æ} or {|y1æ, |y2æ} where the |yjæ basis

is achieved by ‘‘rotating’’ the |xjæ basis. So our vector space is represented by more than one

set of basis vectors. In this example, we are assuming that truth and goodness are incompati-
ble events—a statement cannot be exactly true and exactly good at the same time. In other

words, if you are sure something is true, then you are uncertain whether or not it is good,

and vice versa (see Fig. 2 for an illustration of this example). From a cognitive perspective,

different feature patterns are needed to describe different events. If events can be repre-

sented by using the same set of feature patterns, so that there is no need to change the basis,

then we call the events compatible.

0

0 True

False

Bad Good

S

Fig. 2. Truth and goodness are represented as incompatible events. The belief state S is being projected onto the

subspace corresponding to the truth value ‘‘true.’’
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In the case when two events are incompatible, we apply a unitary transformation to

‘‘rotate’’ one basis to the other. A unitary transformation is a matrix U that satisfies U�U ¼ I,
where I is the identity matrix and U� is the conjugate transpose of U. The matrix U must be

unitary to preserve lengths (we wish the state vector and the basis vectors to have length

one) and to preserve inner products (we wish the basis vectors to remain orthogonal). For

example, we might postulate the basis vectors for goodness are {|y1æ, |y2æ} ¼ {UÆ|x1æ,
UÆ|x2æ}, where U is the rotation matrix given by

U ¼ cos p
4 � sin p

4

sin p
4 cos p

4

� �
¼ 0:7071 �0:7071

0:7071 0:7071

� �
:

As U is unitary, we must have the basis vectors for truth be defined as {|x1æ, |x2æ} ¼ {U�

Æ|y1æ, U�Æ|y2æ}. In general, a state vector can be represented with respect to either basis. If |wæ
is the state vector described with respect to the |xjæ basis, then UÆ|wæ is the same state vector

described with respect to the |yjæ basis. Psychologically, a person has a state of beliefs, but

this same state of beliefs can be evaluated from different perspectives or viewpoints.

In summary, quantum probability is a theory that describes how to assign probabilities to

events, but unlike classical probability, quantum probability allows for events to be incom-

patible. This important feature of quantum probability allows us to model phenomena such

as order effects.

2.5. Representation of different sources of information

To provide a point of comparison, we begin by describing a classical probability formula-

tion of the problem. In a classical probability model, we might define our sample space S in

terms of the two hypotheses h1 and h2 and the three observations N, A, and B, where N rep-

resents the initial description of the task. We might further assume that each observation has

two possible outcomes, e1 and e2. These outcomes represent the type of evidence provided

by the observations. We consider the initial description of the problem as providing

evidence because it typically contains some information even if this information is not par-

ticularly strong. For example, in the medical inference task, subjects were initially informed

that the patient was a woman complaining about ‘‘discomfort on urination.’’ Even this brief

description provides subjects with some evidence about the hypotheses.

The sample space S represents all possible combinations of hypotheses and observations.

Because there are two hypotheses and three observations each with two outcomes, the

dimension of the sample space is n ¼ 24 ¼ 16. Elementary elements of S have the form

hi ^ ðN ¼ ejÞ ^ ðA ¼ ekÞ ^ ðB ¼ elÞ, and it is possible to construct a direct correspon-

dence between these elementary events and the basis vectors of a vector space. For simplic-

ity, let us index the elementary events such that z1 ¼ h1 ^ ðN ¼ e1Þ ^ ðA ¼ e1Þ^
ðB ¼ e1Þ and zn ¼ h2 ^ ðN ¼ e2Þ ^ ðA ¼ e2Þ ^ ðB ¼ e2Þ. With the sample space

defined as {z1,…, zn}, we say that the corresponding vector space has basis {|z1æ,…, |znæ}.

When using this basis to represent vectors in the vector space, the n · 1 column vector that

has all zeros except for a one in row k is a coordinate representation of the basis vector |zkæ.
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We associate this basis vector with the elementary event zk. Thus, we can represent the

elementary events of classical probability theory as a basis of a vector space. This vector space

representation provides a useful way to compare the classical and quantum probability models.

As we have mentioned, the classical probability model has difficulty accounting for order

effects because the commutative property holds. Now, we present our idea of how different

sources of information are represented in the quantum model. We assume an individual has

different representations for beliefs depending on three different points of view: a point of

view determined by the initial description of the task denoted by N, a point of view deter-

mined by the presentation of source A, and a point of view determined by the presentation

of source B. The quantum inference model accounts for order effects by assuming the three

points of view N, A, and B are incompatible. By allowing the three observations to be

incompatible, the 16-dimensional vector space needed for the classical model is reduced to

a four-dimensional space in the quantum model. Further, each point of view is associated

with a different basis for this four-dimensional vector space. We assume that the hypotheses

are compatible with the two types of evidence allowing us to define the joint events hi ^ ej.
We assume that an individual adopts the three points of view throughout the course of the

task. When the individual takes the initial point of view, we use the basis vectors |Nijæ, where

i ¼ h1 or h2 and j ¼ e1 or e2. When the individual changes his or her point of view after see-

ing A, the basis vectors |Aijæ are used, and when the individual changes his or her point of

view after seeing B, the basis vectors |Bijæ are used. For example, in the medical decision-

making task, the physicians change their points of view after reading the history and physi-

cal information and again after reading the laboratory data. In other words, the physicians

are viewing information about the presence of the UTI and evidence from different perspec-

tives or interpretations depending on the source of information.

The same quantum belief state of the individual, |wæ can be represented with respect to

any one of these three points of views:

jwi ¼
X

xij jNiji ¼
X

aij jAiji ¼
X

bij jBiji:

Each basis (a set of four orthonormal basis vectors) spans the same four-dimensional vector

space. The unit column vectors x, a, and b represent the probability amplitudes with respect

to the N basis, the A basis, and the B basis, respectively. For example, within the A and B
views, we have

a ¼

ah1;e1
ah1;e2
ah2;e1
ah2;e2

2
664

3
775; b ¼

bh1;e1
bh1;e2
bh2;e1
bh2;e2

2
664

3
775:

The probability amplitude ahi
,ej

corresponds to the amplitude that feature pattern hi is present

and evidence ej is present when considering the A source, and similarly, the probability

amplitude bhi
,ej

corresponds to the amplitude that feature pattern hi is present and evidence

ej is present when considering the B source.
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2.6. Unitary transformations

Unitary transformations relate one point of view to another and correspond to an individ-

ual’s shifts in perspective. For example, if a physician is first presented with the history

and physical information followed by the laboratory data, he or she would start with an

initial perspective, represented by x, shift to the history and physical perspective, repre-

sented by a, and finally shift to the laboratory perspective, represented by b. In this model,

UAN transforms the probability amplitudes from the initial view to the point of view

associated with the A basis, and UBN transforms the amplitudes from the initial basis into

the B basis. So we have

a ¼ UANx; x ¼ U
y
ANa;

b ¼ UBNx; x ¼ U
y
BNb:

The unitary transformation UBA transforms the amplitudes from the A basis into the B
basis, and UAB transforms the amplitudes from the B basis into the A basis. In the medical

example, the first transformation, UBA, corresponds to a change of perspective after seeing

the history and physical followed by the laboratory data. The second transformation, UAB,

corresponds to a shift in perspective after seeing the laboratory data followed by the history

and physical information. These last two transformations are derived from the two previ-

ously described transformation as follows:

UBA ¼ UBNU
y
AN; UAB ¼ UANU

y
BN:

There is nothing significant about having the transformations pass through the initial point

of view. In fact, if we had defined unitary matrices UBC and UAC, where C refers to some

other basis of our vector space, then we could have defined UBA and UAB in terms of these

matrices instead. This is due to the fact that unitary matrices form a group. Because all of

the unitary transformations in this model are defined in terms of UAN and UBN, we will now

focus our attention on constructing these two transformations. Readers uninterested in the

mathematical derivation of the unitary matrices can skip over the next section and proceed

to the section ‘‘Details for the medical example’’ without losing the conceptual ideas.

2.7. Construction of UAN and UBN

Any unitary matrix can be constructed from the matrix exponential function U ¼ e)ihH of

a Hermitian matrix H that satisfies H� ¼ H (Nielsen & Chuang, 2000).3 The complex number

i appearing in the matrix exponential is required to maintain the unitary property. Thus, to

construct UAN and UBN, we must first define a Hermitian matrix H and two parameters hA and

hB. Specifically, we define H ¼ H1 + H2, where H1 and H2 are also Hermitian matrices.

To explain the specific form of our Hermitian matrix H, we begin by examining the

component matrix H1. We proceed by first formulating a Hermitian matrix for a simpler

two-dimensional problem, and then extending this to define H1 for the full four-dimensional
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problem. Suppose our vector space is defined as the span of the two basis vectors jh1 ^ e1i
and jh1 ^ e2i. Notice that this is the subspace of our original four-dimensional vector space

corresponding to hypothesis h1. We continue to postulate that decision makers view the

space from three perspectives: n, a, and b. (We will use lowercase letters when referring to

the two-dimensional problem to distinguish it from the full model.) Thus, we must define

Uan and Ubn to relate the three points of view. These unitary matrices depend upon our con-

struction of a two-dimensional Hermitian matrix W.

To start, any 2 · 2 Hermitian matrix can be expressed as a linear combination of the

Pauli matrices:

rx ¼
0 1
1 0

� �
; ry ¼

0 �i
i 0

� �
; rz ¼

1 0
0 �1

� �
:

Specifically, we write

W ¼ gx � rx þ gy � ry þ gz � rz:

Thus, for j ¼ a and b, the corresponding unitary matrices are

Ujn ¼ e�ihjW ¼ e�ihjðgx�rxþgy�ryþgz�rzÞ:

We also assume that ðg2x þ g2y þ g2zÞ
1
2 ¼ 1. Applying Euler’s identity, we can write the

unitary matrices as

Ujn ¼ cosðhjÞ � I� i sinðhjÞ � ðgx � rx þ gy � ry þ gz � rzÞ;

where I is the identity matrix. This produces a rotation of degree hj around the axis defined

by the unit length vector (gx,gy,gz). (For more details, please see Nielsen & Chuang, 2000,

Chapter 4.)

The probability that h1 ^ e1 is true after the rotation Ujn is periodic in the variable hj. If

we wish to maintain an overall probability greater than .5 for one type of evidence over

the other across time, then we need to set gy ¼ 0. Essentially, this ensures that if evidence

type e1 is associated with source A, then e1 is favored throughout the entire presentation of

A. With gy ¼ 0, the probability for one type of evidence over the other will be maximized

whenever gx ¼ gz > 0. Because the vector (gx,gy,gz) has unit length, we must set

gx ¼ gz ¼ 1ffiffi
2
p . Now, we define the Hermitian matrix W as

W ¼ 1ffiffiffi
2
p 1 1

1 �1

� �
:

Thus, the unitary matrices for the two-dimensional problem are defined as

Ujn ¼ exp �ihj
1ffiffiffi
2
p 1 1

1 �1

� �� �
:
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Returning to the full four-dimensional model, we can now specify the matrix H1 in terms

of the matrix W. We assume that H1 is defined as the tensor product given by

H1 ¼
1 0
0 1

� �
�W ¼ 1 0

0 1

� �
� 1ffiffiffi

2
p 1 1

1 �1

� �
¼ 1ffiffiffi

2
p

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

2
664

3
775:

The unitary matrix with H1 as a generator transforms the amplitudes according to the

strength of the current evidence. For example, suppose we are presented with positive evi-

dence, e1, for h1. In this case, H1 results in rotating the probability amplitudes to favor

events involving e1. In other words, the corresponding unitary matrix strengthens the ampli-

tudes corresponding to e1 and weakens the amplitudes corresponding to e2. A similar rota-

tion occurs when negative evidence, e2, is presented. Further, the unitary matrix

corresponding to H1 strengthens and weakens the evidence amplitudes to the greatest extent

possible. This is due to the fact that W was designed to maximize the probability of one type

of evidence over the other.

Now, we turn to the construction of the second component H2 of the Hermitian matrix H.

As in the case with H1, we proceed by first defining a Hermitian matrix for a two-dimen-

sional space. In this case, we consider the vector space spanned by basis vectors jh1 ^ e1i
and jh2 ^ e1i. Notice that this is the subspace of our full four-dimensional vector space cor-

responding to evidence e1. At this point, we proceed exactly as we did before. We define a

Hermitian matrix V as a linear combination of Pauli matrices. Because we wish to maintain

an overall probability greater than .5 for one hypothesis over the other across time, we set

gy ¼ 0. This ensures that preferences for hypotheses do not reverse during the presentation

of a particular source. As before, we set gx ¼ gz ¼ 1ffiffi
2
p to maximize the probability of one

hypothesis over the other. Thus, we have V ¼ W.

Now, if we rearrange the coordinate vector given in Eq. (1) such that

x ¼

xh1;e1

xh2;e1

xh2;e2

xh1;e2

2
664

3
775;

we can easily write H2 in terms of V. Specifically, we have

H2 ¼
1 0
0 1

� �
� V ¼ 1 0

0 1

� �
� 1ffiffiffi

2
p 1 1

1 �1

� �
¼ 1ffiffiffi

2
p

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

2
664

3
775:

Of course, we want to combine H1 and H2. So, we will need to use the same arrange-

ment of coordinates for both matrices. To define H2 in terms of the coordinates given

in Eq. (1), we need to switch some of the rows and columns. We first switch row 2
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with row 3 and column 2 with column 3. Then we switch row 2 with row 4 and col-

umn 2 with column 4. This gives

H2 ¼
1ffiffiffi
2
p

1 0 1 0
0 �1 0 1
1 0 �1 0
0 1 0 1

2
664

3
775:

The Hermitian matrix H2 results in transforming amplitudes toward h1 when e1 is known to

be present and toward h2 when e2 is known to be present. This matrix evolves an individ-

ual’s beliefs about the hypotheses and their relationship to the evidence. As in the case of

H1, the unitary matrix corresponding to H2 evolves the hypothesis amplitudes to the greatest

extent possible.

Now, we can define our Hermitian matrix H as

H ¼ 1ffiffiffi
2
p ðH001 þH002Þ ¼

1ffiffiffi
2
p

1 1 0 0

1 �1 0 0

0 0 1 1

0 0 1 �1

2
6664

3
7775þ

1 0 1 0

0 �1 0 1

1 0 �1 0

0 1 0 1

2
6664

3
7775

0
BBB@

1
CCCA

¼ 1ffiffiffi
2
p

2 1 1 0

1 �2 0 1

1 0 0 1

0 1 1 0

2
6664

3
7775;

where H001 and H002 are the Hermitian matrices corresponding to the unnormalized vector

(gx,gy,gz) ¼ (1,0,1) . The sum H1 + H2 coordinates h1 with e1 and h2 with e2, thereby align-

ing an individual’s belief about the evidence and the hypotheses.

As we have defined our Hermitian matrices, H1 and H2, we can now compute UAN and

UBN from the matrix exponential functions

UAN ¼ e
�iffiffi
2
p hAðH001þH

00
2
Þ
; UBN ¼ e

�iffiffi
2
p hBðH001þH

00
2
Þ
:

Note that the model assumes changes in an individual’s evaluation of the evidence and

belief in the hypotheses occur simultaneously. The eigen decomposition of the unitary

matrices and other details are provided in the Appendix.

We have two parameters associated with the unitary transformations. For simplicity, we

absorb the normalizing constant 1ffiffi
2
p into the parameter values and define xA ¼ 1ffiffi

2
p hA and

xB ¼ 1ffiffi
2
p hB. Thus, the parameter xA is needed to define UAN and the other parameter xB is

needed to define UBN. These are the parameters that we will be fitting in the examples

below.
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One question often raised about quantum models concerns the seemingly large degree

of flexibility in these models. To examine this issue, we used the unitary matrix

UjN ¼ e�ixjðH
00
1
þH00

2
Þ to evolve beliefs about h1 ^ e1, h1 ^ e2, h2 ^ e1, and h2 ^ e2 for 5,000

different values of xj. We then calculated and plotted the probability of these feature patterns

for each parameter value. Fig. 3 shows the probabilities attainable from the quantum model

in black. Because quantum probability calculations require the specification of an initial

belief state, we assumed that

jwi ¼ 1ffiffiffi
4
p �

1
1
1
1

2
664
3
775:

This is equivalent to assuming a uniform distribution over the four feature patterns. The

gray area shows all possible probabilities constrained by Prðh1 ^ e1Þ þ Prðh1 ^ e2Þþ
Prðh2 ^ e1Þ þ Prðh2 ^ e2Þ ¼ 1. Because of the unitary property of the transformation

UjN, all of the calculations from the quantum model satisfy this sum. Thus, we see that prob-

abilities calculated from the quantum model are constrained to specific regions within the

larger region of all possible values. We take this as evidence that the quantum model is not

overly flexible and cannot account for all possible probability values.
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Fig. 3. Probabilities calculated from the quantum model for 5,000 different parameter values are shown in black.

All possible probability values are shown in gray.
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Further, not any quantum probability model can account for the data. For example, if we

redefine the unitary matrices as

UAN ¼ e�i�xA�H
00
1 � e�i�xA�H002 ;UBN ¼ e�i�xB�H

00
1 � e�i�xB�H002 ;

we are unable to fit this model to the order effects found in the medical decision-making

task. Note that this alternative quantum model performs sequential transformations of

beliefs about evidence and hypotheses during the processing of each source of information.

This differs from the first quantum inference model which used unitary transformations that

coordinate the hypothesis and evidence simultaneously. (The matrices H1, H2 do not com-

mute so that e�i�xA�H
00
1 � e�i�xA�H002 6¼ e�i�xA�ðH

00
1
þH00

2
ÞÞ. Thus, we find it is necessary for changes

in an individual’s evaluation of the evidence and belief in the hypotheses to occur in parallel

rather than serial.

3. Details for the medical example

To illustrate the quantum inference model’s ability to account for recency effects, we fit

our model to data collected in the medical decision-making task by Bergus et al. (1998).

All of the calculations below were performed with the best-fitting unitary transformations

(minimizing sum-of-squared error [SSE]) with parameters xA ¼ 4.4045 and xB ¼ 0.3306.

The first parameter xA coordinates the physician’s belief in the presence of the UTI with the

history and physical information. The second parameter xB coordinates the physician’s

belief in the absence of the infection with the laboratory data. The results from the quantum

model are shown in Table 2.

3.1. Inference calculations

During the medical decision-making task, one group of physicians judged the probability

that a patient has a UTI (a) before any evidence is presented, (b) after reviewing the

patient’s history and physical exam, and (c) after reviewing the laboratory work. A second

group of physicians also judged the probability of a UTI but reviewed the laboratory work

before the history and physical exam. Both groups of physicians initially read a brief

description of the patient (a 28-year-old woman) and the chief complaint (discomfort on uri-

nation). Like the Bayesian inference model, we must specify the quantum model’s priors

before we can proceed with the inference calculations. Both order groups were given some

Table 2

Quantum inference model results for diagnostic task

H &P-first H &P-last

Initial Pr(D) ¼ .676 Pr(D) ¼ .676

Second Pr(D | H &P) ¼ .793 Pr(D | Lab) ¼ .438

Final Pr(D | H &P, Lab) ¼ .504 Pr(D | Lab, H &P) ¼ .590

SSE .00025
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initial complaint information before any evidence was presented. Because both the history

and physical first group and the history and physical last group gave similar initial probabil-

ity judgments for a UTI with a mean of .676, we define the initial unit state vector as

x ¼

xh1;e1

xh1;e2

xh2;e1

xh2;e2

2
664

3
775 ¼

ffiffiffiffiffiffi
:676
2

q
ffiffiffiffiffiffi
:676
2

q
ffiffiffiffiffiffi
:324
2

q
ffiffiffiffiffiffi
:324
2

q

2
66666664

3
77777775
:

From a cognitive processing point of view, this initial state vector can be thought of as a

belief state formed by prior knowledge and the information presented in the initial brief

description. This memory state represents the potential for a specific pattern to be retrieved.

When physicians are questioned about the probability of a UTI, the initial belief state is pro-

jected onto the disease present subspace.

Pðh1Þx ¼

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

2
664

3
775

ffiffiffiffiffiffi
:676
2

q
ffiffiffiffiffiffi
:676
2

q
ffiffiffiffiffiffi
:324
2

q
ffiffiffiffiffiffi
:324
2

q

2
66666664

3
77777775
¼

ffiffiffiffiffiffi
:676
2

q
ffiffiffiffiffiffi
:676
2

q
0
0

2
66664

3
77775:

This projection determines the extent to which the retrieval cue h1 matches the initial belief

state x (viewed from the initial point of view). The probability of the UTI from the initial

perspective equals the squared projection:

qðUTIÞ ¼ jjPðh1Þxjj2 ¼ jjxh1;e1 jj
2 þ jjxh1;e2 jj

2 ¼ :676:

Now, we will focus on the group of physicians presented with the history and physical

first. (The calculations for the history and physical last group are similar.) We assume that

the initial event and the history and physical event cannot be described by a common set of

basis vectors. In other words, the two events are incompatible. So we must perform a change

of basis by applying the UAN unitary transformation to the initial state:

a ¼ UANx:

The unit vector a represents the belief state following presentation of the history and

physical information. The corresponding vector of squared amplitudes is

a)
jja11jj2
jja12jj2
jja21jj2
jja22jj2

2
664

3
775 ¼

:6621
:0752
:1729
:0898

2
664

3
775:
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In the following calculations, we will only show the vectors of squared amplitudes because

these quantities are the most interpretable. The history and physical information provides

evidence favoring the presence of the UTI, so we project a onto the ‘‘positive evidence’’ or

e1 subspace

Pðh&pÞa ¼

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

2
664

3
775a)

:6621
0

:1729
0

2
664

3
775:

At this point, the revised quantum state of the physician after reviewing the history and

physical information is

ah&p ¼
Pðh&pÞa
jjPðh&pÞajj )

:7929
0

:2071
0

2
664

3
775:

Now, when physicians are questioned about the probability of a UTI, the revised state ah&p

is projected onto the disease present subspace. Similar to the initial case, this projection

determines how well the revised beliefs ah&p match the hypothesis that the disease is pres-

ent. The probability of the infection after the physician reviews evidence for a UTI is

qðUTI jH&PÞ ¼ jjPðh1Þah&pjj2 ¼ :7929:

The revised state ah&p represents the physician’s beliefs from the history and physical

perspective. As we can see from above, the probabilities associated with states h1 ^ e2 and

h2 ^ e2 are zero from this perspective. However, the physician believes that the evidence

will look different when he or she changes perspective. Quantum probability theory allows

for an amplitude to change from zero to a non-zero value. This cannot happen in a Bayesian

model because once a state is certain, it remains certain. According to the Bayesian model,

if we condition the probability of the infection on the presence of e1, the physician will

believe with certainty that e1 is true. However, in the quantum model, the uncertainty princi-

ple states that certainty from one perspective implies uncertainty from another perspective.

Thus, the physician wants to view the evidence from both perspectives.

When the physician reviews the laboratory data, he or she finds evidence for the absence

of the UTI. As we assume that the history and physical event and the laboratory work event

are incompatible, we must perform a change of basis by applying the UBNU
y
AN unitary trans-

formation to the state ah&p:

bh&p ¼ UBNU
y
ANah&p )

:6054
:1159
:1645
:1141

2
664

3
775:
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The laboratory data provide no evidence of the UTI, so we project the state bh&p onto the

negative evidence for the disease or e2 subspace:

Pðe2Þbh&p ¼

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

2
664

3
775 bh&p )

0
:1159
0

:1141

2
664

3
775:

The state after the presentation of the laboratory work is

bh&p;lab ¼
Pðe2Þbh&p

jjPðe2Þbh&pjj
)

0
:5039
0

:4961

2
664

3
775:

The probability of infection from this final point of view is

qðUTI jH&P, LabÞ ¼ jjPðh1Þbh&p;labjj2 ¼ :5039:

In general, the quantum model accounts for order effects by using different sequences of

unitary transformations for different orderings of information. To calculate q(h1 | A, B), we

first ‘‘rotate’’ the initial basis to the A basis by UAN. Then, we ‘‘rotate’’ the A basis to the B
basis by UBA. However, if we were to calculate q(h1 | B, A), we would transform the initial

basis to the B basis by UBN. Next, we would transform the B basis to the A basis by UAB.

(See Fig. 4.) Even though we start with the initial basis for both cases, the quantum model

ends in the B basis for one calculation and the A basis for the other. The state vectors, be1
,e2

and ae2
,e1

, are used in the final calculations, q(h1 | A,B) and q(h1 | B,A), respectively. Order

Fig. 4. Sequence of unitary transformations for q(h1 | B,A) (top) and q(h1 | A,B) (bottom).
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effects arise from the quantum model because the projectors do not commute with the

unitary matrices.

4. Jury decision making

Now, we turn to a set of experiments involving both manipulations of order and evidence

strength in jury decision-making tasks. McKenzie et al. (2002) examined changes in confi-

dence of guilt on hearing two sides of a criminal case. Specifically, participants were asked

to imagine that they were jurors involved in a criminal trial and to rate their confidence in

guilt (G) after reading the prosecution’s case and the defense’s case. The order and strength

of the cases were manipulated between groups. A separate group rated the strength of the

prosecution and defense on a 21-point scale with +10 indicating strong evidence of guilt and

)10 indicating strong evidence of innocence.

In the first experiment, the participants were told that a warehouse was burglarized in the

middle of the night. The next day, the defendant was arrested after the police received an

anonymous tip. One group of subjects was presented with a strong prosecution (SP)

followed by a weak defense (WD) and another group was presented with a weak defense

followed by a strong prosecution. The summary of the prosecution’s case was as follows:

• A witness identified the defendant in a police lineup.

• The type of burglary (commercial) is the same as that of the defendant’s past convic-

tions.

• The method of entry into the warehouse was unusual and is identical to that of the

defendant’s past convictions.

The summary of the defense’s case read:

• A friend of the defendant’s testified that he was with the defendant at his house at the

time of the burglary.

For this experiment, the independent ratings of the cases showed that the prosecution was

viewed as fairly strong (M ¼ 5.8) and the defense was viewed as very weak (M ¼ )0.06).

The subjects rated their confidence in guilt on a 21-point scale with 0 ¼ ‘‘certain of inno-

cence,’’ 10 ¼ ‘‘guilt as likely as innocence,’’ and 20 ¼ ‘‘certain of guilt.’’

In a second experiment, McKenzie et al. varied the strength of the prosecution between

two groups. One group rated their confidence in guilt after reading the strong prosecution

followed by the weak defense, whereas another group rated their confidence in guilt after

reading a weak prosecution (WP) followed by the same weak defense. The weak prosecu-

tion read:

• The method of entry into the warehouse was unusual and is identical to that of the

defendant’s past convictions.

In this experiment, the weak defense increased confidence in guilt when preceded by a

strong prosecution but decreased confidence in guilt when preceded by a weak prosecution.
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Specifically, Pr(G | SP) < Pr(G | SP, WD) and Pr(G | WP) > Pr(G | WP, WD). These

results imply that the same weak defense provides positive evidence for guilt in one group

and negative evidence for guilt in the other. By averaging the data from the prosecution-

then-defense group from Experiment 1 with the strong-prosecution group from Experiment

2 and converting the confidence ratings to probabilities, we have the results shown in

Table 3. In both experiments, the mean probability judgment of guilt before the presentation

of either case was approximately .5.

4.1. Fitting the quantum model

We now demonstrate the quantum inference model’s ability to account for order effects

related to changes in information strength. To start, we let h1 ¼ guilty and h2 ¼ not guilty.

Information A corresponds to the prosecutor’s cases and information B corresponds to the

defense’s case. Note that in some conditions, information A corresponds to the strong prose-

cution (SP). However, in other conditions, information A corresponds to the weak prosecu-

tion (WP). Regardless, A provides positive evidence e1 for guilt h1. On the other hand, the

defense B provides evidence e2 for innocence h2.

Like the medical example before, we must specify the quantum model’s priors before we

can proceed with the inference calculations. We assume that jurors have no initial prefer-

ence toward guilt or innocence. Thus, our initial state vector is given by:

x ¼

xh1;e2

xh1;e2

xh2;e1

xh2;e2

2
664

3
775 ¼ 1ffiffiffi

4
p �

1
1
1
1

2
664
3
775:

We fit the quantum inference model to the average data from McKenzie’s first and second

experiments given in Table 3. We use three parameters to fit the six conditional probabilities

given in the table. Specifically, xSP coordinates the juror’s belief in the defendant’s guilt

with the strong prosecution, xWP coordinates the juror’s belief in guilt with the weak prose-

cution, and xWD coordinates the juror’s belief in innocence with the weak defense. Although

three parameters to six data points is not a high ratio of data points to parameters, the

data are very complex and remain a challenge to fit even with many parameters. The results

are shown in Table 4. The best-fitting parameters are xSP ¼ 2.3238, xWP ¼ )3.5370,

xWD ¼ )1.8154.

Table 3

Mean probability of guilt from Experiments 1 and 2

After First Case After Second Case

Pr(G | SP) ¼ .672 Pr(G | SP, WD) ¼ .719

Pr(G | WD) ¼ .51 Pr(G | WD, SP) ¼ .75

Pr(G | WP) ¼ .600 Pr(G | WP, WD) ¼ .525

1538 J. S. Trueblood, J. R. Busemeyer/Cognitive Science 35 (2011)



4.2. The belief-adjustment model

To further evaluate the quantum inference model, we compared the quantum model with

an alternative explanation of order effects, the belief-adjustment model (Hogarth & Einhorn,

1992). The belief-adjustment model accounts for order effects by either adding or averaging

evidence.

The belief-adjustment model assumes that individuals update beliefs by a sequence of

anchoring-and-adjustment processes. The algebraic description of the model is

Ck ¼ Ck�1 þ wk � ðsðxkÞ � RÞ; ð2Þ

where 0 £ Ck £ 1 is the degree of belief in the defendant’s guilt after reading case k, s(xk) is

the strength of case k, R is a reference point, and 0 £ wk £ 1 is an adjustment weight for case

k. Hogarth and Einhorn (1992) argued that evidence can be encoded either in an absolute

manner or in relationship to the current belief in the hypothesis. If evidence is encoded in an

absolute manner and there exists a positive/negative relationship between the evidence and

hypothesis, R ¼ 0 and )1 £ s(xk) £ 1. However, if evidence is encoded in relationship to

the current belief, R ¼ Ck)1 and 0 £ s(xk) £ 1. Also, Hogarth and Einhorn assumed that the

adjustment weight wk depends on the level of current belief and the sign of the difference

s(xk))R. Specifically, if s(xk) £ R, then wk ¼ Ck)1. However, if s(xk) > R, then wk ¼
1)Ck)1.

Using this information, we can rewrite the belief-adjustment model as either an adding

model or an averaging model. The adding model results when information is encoded in an

absolute manner and is given by

Ck ¼
Ck�1 þ Ck�1 � sðxkÞ; if sðxkÞ � 0
Ck�1 þ ð1� Ck�1Þ � sðxkÞ; if sðxkÞ > 0

�
:

In contrast, the averaging model results when information is encoded in relationship to the

current belief and is given by

Ck ¼
Ck�1 þ Ck�1 � ðsðxkÞ � Ck�1Þ; if sðxkÞ � Ck�1
Ck�1 þ ð1� Ck�1Þ � ðsðxkÞ � Ck�1Þ; if sðxkÞ > Ck�1

�
:

Rearranging the terms above shows that the current belief is an average of the prior belief

and the strength of the new evidence weighted by the prior belief.

Table 4

Quantum inference model results for jury task

After First Case After Second Case

Pr(G | SP) ¼ .688 Pr(G | SP, WD) ¼ .703

Pr(G | WD) ¼ .506 Pr(G | WD, SP) ¼ .745

Pr(G | WP) ¼ .598 Pr(G | WP, WD) ¼ .509

SSE 0.00056
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McKenzie et al. (2002) showed that the standard belief-adjustment model cannot account

for the probabilities given in Table 3. This is due to the fact that the weak defense increased

confidence in guilt when preceded by the strong prosecution but decreased confidence in

guilt when preceded by the weak prosecution. McKenzie et al. developed an extended ver-

sion of the belief-adjustment model called the minimum acceptable strength (MAS) model

to account for the results.

The MAS model extends the belief-adjustment model by defining the reference point as a

case’s MAS (McKenzie et al., 2002). Thus, Eq. (2) becomes

Ck ¼ Ck�1 þ wk � ðsðxkÞ �mk�1Þ; ð3Þ

where mk)1 is the MAS of the previous case and )1 £ s(xk) £ 1. Neither the adding model

nor the averaging model can predict that a defense would increase confidence in guilt. How-

ever, it is possible to select a value for mk)1 such that the difference between the strength of

the weak defense and mk)1 is positive. Therefore, confidence in guilt increases as a result of

the weak defense. McKenzie et al. argued that a strong case presented first produces a

demanding reference point, leaving room for a later weak case to fall short. For example, if

the strength of a weak defense is )0.1 and the MAS determined by the previous case is

)0.3, then the weak defense will fall short and have a reverse impact on judgments of guilt.

The downside to the MAS model is the increase in parameters. The adding and averaging

models specify a parameter for each case, namely s(xk). However, the MAS model also

needs a MAS parameter for each case, thereby doubling the number of parameters needed

in the original model.

We fit McKenzie’s model of MAS to the data in Table 3. We assumed )1 £ s(xk),

mj £ 1, and we let the prior confidence in guilt be C0 ¼ 0.5. Following Hogarth and Einhorn

(1992), we let

wk ¼
Ck�1; if sðxkÞ � m1�k
1� Ck�1; if sðxkÞ > m1�k

�
:

We set the MAS of the first case to be m0 ¼ 0 because we assume the juror has no prior

assumptions about case strength. Because s(xk) 2 [)1,1] for all k, we used a logistic func-

tion to map the average independent strength ratings from participants into this desired

range. Specifically, the strength, s(xk), of case k is determined by

sðxkÞ ¼ �1þ
2

1þ e�ðBxkÞ
;

where B is a gradient parameter and xk is the average independent strength rating for the

case in question. Besides the gradient parameter, McKenzie’s model requires three MAS

parameters used in the calculation of Pr(G | SP, WD), Pr(G | WD, SP), and Pr(G | WP,

WD). We denote these three MAS parameters as mSP, mWD, and mWP, respectively. The

results are shown in Table 5. The best-fitting parameters are B ¼ 1.3161, mSP ¼ )0.1562,

mWD ¼ )0.1548, and mWP ¼ 0.0541.
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Fig. 5 illustrates the MAS and quantum model fits to the probabilities given in Table 3.

From the figure, we see that the quantum model provides a better fit to the data. Further, we

rescaled the dependent variable to lie between 0 and 100 and calculated the root mean-

squared error to provide an estimate of the average error on a 0–100 scale for each model.

These calculations show that the average error for the MAS model is about 0.19, whereas

the average error for the quantum model is only about 0.10.

Another drawback to the MAS model is the number of parameters needed to fit the data.

We used four parameters to fit the MAS model, whereas we used three parameters to fit the

quantum model. Moreover, this number increases to 7 if case strengths s(xk) are treated as

free parameters.

Table 5

Minimum acceptable strength model results for jury task

After First Case After Second Case

Pr(G | SP) ¼ .682 Pr(G | SP, WD) ¼ .719

Pr(G | WD) ¼ .480 Pr(G | WD, SP) ¼ .750

Pr(G | WP) ¼ .565 Pr(G | WP, WD) ¼ .513

SSE 0.0022
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Fig. 5. MAS and quantum model fits to the mean probability of guilt from the study conducted by McKenzie

et al. (2002).
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5. Experiment 1: Extending McKenzie et al.

McKenzie et al. did not examine all possible combinations of case strength and order.

Assuming that there are only two possible strengths, weak and strong, there are 12 total possi-

ble conditional probability judgments that can be made (see Table 6). Thus, we designed a

new experiment to collect data for these 12 probabilities. Participants in this new study read

eight different scenarios involving a defendant standing trial for either robbery, larceny, or bur-

glary. Each participant was placed into one of eight conditions for each scenario. These eight

conditions arise from the eight possible sequential judgments that can be made when taking

into consideration order and case strength (e.g., weak prosecution followed by strong defense).

Participants were placed in a different condition for each crime so they would experience all

eight conditions by the end of the experiment. The participants reported the likelihood of the

defendant’s guilt before reading either case, after the first case, and after the second case.

Participants in the study were 299 undergraduate students from Indiana University who

received experimental credit for introductory psychology courses. For each scenario, there

were approximately 38 participants in each condition. All stimuli were presented on a com-

puter and students entered their responses using the computer keyboard. For each scenario,

participants were asked to imagine that they were jurors on the trial. They were also told that

in each crime, the defendant was arrested after the police received an anonymous tip.

One of the eight scenarios was directly patterned after the crime used by McKenzie et al.

Likelihood of the defendant’s guilt was reported on a continuous scale from 0 to 1 with

0 ¼ ‘‘certain not guilty,’’ 0.5 ¼ ‘‘equally likely’’, and 1 ¼ ‘‘certain guilty.’’

5.1. Results

Eight of the 299 participants were excluded from the analyses because the majority of

their initial ratings (before being presented with the prosecution or defense) were 0. These

participants most likely assumed a literal interpretation of ‘‘innocent until proven guilty.’’

We first analyzed each scenario alone, and our analysis revealed a prevalence of recency

effects. These effects arise when decision makers place disproportionate importance on

recent evidence (e.g., Pr(G | SP, SD) < Pr(G | SD, SP)). For each crime, there were four

defense-prosecution pairs (SD vs. SP, SD vs. WP, WD vs. SP, and WD vs. WP) that could

exhibit order effects. A two-sample t test showed the majority of pairs exhibited a significant

recency effect (p < .05). Because the scenarios were designed to be very similar, we

Table 6

Conditional probabilities from inference task

After First Case After Second Case

Pr(G | WP) Pr(G | WP, WD) Pr(G | WP, SD)

Pr(G | SP) Pr(G | SP, WD) Pr(G | SP, SD)

Pr(G | WD) Pr(G | WD, WP) Pr(G | WD, SP)

Pr(G | SD) Pr(G | SD, WP) Pr(G | SD, SP)
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reanalyzed the data by collapsing across all eight scenarios. A two-sample t test showed a

significant recency effect for each of the four defense-prosecution pairs (p < .001).4

5.2. Fitting the data

The presence of recency effects in this new data set confirms earlier findings and provides

the largest data set so far for comparing models that explain recency effects. As mentioned,

Hogarth and Einhorn discovered that recency effects are prevalent in simple, step-by-step

tasks with short series of evidence. Furthermore, there is evidence of recency effects in stud-

ies involving mock trials (Furnham, 1986; Walker et al., 1972).

As the data exhibit recency effects, we can fit the standard belief-adjustment model

instead of the MAS model. We fit the averaging model, the adding model, and the quantum

inference model to the mean likelihood of guilt for the eight different crimes as well as the

averaged data. All three models used four parameters to fit the 12 data points associated

with each crime. These parameters were fit by minimizing the SSE between the data and

model predictions. The four parameters used by the averaging and adding models arise from

the four case strengths, s(xk), in Eq. (2). The four parameters for the quantum model arise

Table 7

Estimated average errors for three models

Crime Averaging Adding Quantum

1 0.77 0.31 0.33

2 0.73 0.26 0.22
3 1.00 0.42 0.24
4 0.88 0.36 0.33
5 0.87 0.28 0.30

6 0.74 0.33 0.31
7 0.87 0.42 0.27
8 0.72 0.37 0.14
Average 0.77 0.22 0.22

Table 8

Model fits for eight order conditions

Data Averaging Adding Quantum

First Second First Second First Second First Second

WP ¼ 0.651 WP,WD ¼ 0.516 0.578 0.552 0.631 0.541 0.647 0.502

WP,SD ¼ 0.398 0.436 0.404 0.407

SP ¼ 0.805 SP,WD ¼ 0.687 0.748 0.587 0.793 0.680 0.870 0.689

SP,SD ¼ 0.540 0.437 0.508 0.527

WD ¼ 0.390 WD,WP ¼ 0.619 0.499 0.589 0.394 0.587 0.390 0.639

WD,SP ¼ 0.779 0.747 0.768 0.758

SD ¼ 0.278 SD,WP ¼ 0.495 0.401 0.568 0.294 0.519 0.275 0.487

SD,SP ¼ 0.690 0.756 0.730 0.702
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from the matrix operators used to transform the belief vector. The root mean-squared

errors rescaled between 0 and 100 for all three models are shown in Table 7. From this

table, we see that there is less error for both the adding and quantum models than the averag-

ing model. Further, the quantum model fits slightly better than the adding model in most

cases.

Table 8 shows the mean judgment, averaged over participants for the eight cases. The ini-

tial judgment produced a mean probability equal to .459. The first column of Table 8 shows

the effect of the first piece of information (i.e. , either the prosecution or defense). From the

table, we see that there is a clear effect of evidence strength on probability judgments. The

second column of the table shows probability judgments after both pieces of information are

presented. From the data in this column, we see strong recency effects. The remaining col-

umns provide the estimates from the averaging model, the adding model, and the quantum

model.

5.3. A generalization test

To further assess the three models (quantum, adding, and averaging), we collected data

from 432 new subjects completing the same jury decision-making task as discussed above.

In this version of the experiment, subjects gave responses on the 21-point confidence scale

used by McKenzie et al. (2002). Other than the change in reporting scale, there were no

other differences in the two versions of the task. Similar to the first version of the task, we

analyzed the data by collapsing across all eight scenarios, and a two-sample t test showed a

significant recency effect for each of the four defense-prosecution pairs (p < .001).5 We fit

the three models by minimizing the SSE. The rescaled root mean-squared error was 0.27 for

the quantum model, 0.31 for the adding model, and 0.89 for the averaging model.

We used the data collected from the two versions of the task to perform split-half cross-

validation (Browne, 2000; Shiffrin, Lee, Wagenmakers, & Kim, 2008).6 First, we used the

data from the probability scale version of the task to form the training set and the data from

the confidence rating version to form the test set. Next, we let the data from the confidence

rating version form the training set and the data from the probability scale version form the

test set. This procedure allowed us to assess model generalization across different response

scales and populations (Busemeyer & Wang, 2000). We calculated the mean-squared error

for each test set for all three models. The overall mean-squared error for each model was

calculated by averaging the mean-squared error from the two test sets. The overall rescaled

root mean-squared error was 0.32 for the quantum model, 0.36 for the adding model, and

0.85 for the averaging model. From these results, we conclude that the quantum model best

predicts the unseen data followed closely by the adding model.

6. Experiment 2: Extreme evidence

To provide even more of a distinction between the quantum model and the adding model,

we conducted a second jury decision-making experiment involving extreme evidence.
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In this task, subjects read about an individual on trial for a crime in which the defense had

an irrefutable argument. Specifically, the defense stated that the defendant was giving a pub-

lic lecture when the crime was committed. The prosecution’s argument was moderately

strong: A witness claimed to have seen the defendant near the scene of the crime. It seems

reasonable to believe that the probability of guilt after hearing the defense will be near zero.

Now, if the prosecution is presented after the defense, it is unlikely that the probability of

guilt will increase by much.

6.1. Model predictions

So far, the model comparisons indicate that the averaging model does not fit as well as the

quantum model or the adding model, but the fits of the latter two are so similar that it is diffi-

cult to distinguish them. Therefore, we designed an experiment that makes a priori predic-

tions to distinguish the two models. Because the predictions are a priori and parameter free,

one cannot argue that a better prediction is merely a consequence of one model being more

flexible than another. We designed a situation in which the adding model predicts that a piece

of evidence (i.e., the prosecution) will produce a minimal effect when observed by itself,

whereas the quantum model predicts that the same piece of evidence will have a major effect.

The problem for the adding model is that an extreme defense constrains the prosecutor’s

evidence to remain a very low strength even when it comes first; whereas for the quantum

model, under the same constraint of extreme defense evidence, the prosecutor’s evidence

must remain strong when it comes first. To see this, let’s first examine the adding model:

Cp ¼ Cd þ ð1� CdÞ � sðxpÞ;

where Cp is the evaluation of the guilty hypothesis after hearing the prosecution’s case. We

might assume the evaluation of the hypothesis after hearing just the defense, Cd, is near 0,

say Cd ¼ �1. Thus, s(xp) must also be a near 0, say s(xp) ¼ �2, in order for Cp to remain

small:

Cp ¼ �1 þ ð1� �1Þ � �2 ¼ �1 þ �2 � �1 � �2 � 0:

Now, suppose the prosecution is presented before the defense. According to the adding

model,

Cp ¼ C0 þ ð1� C0Þ � sðxpÞ;

where C0 is the evaluation of the guilty hypothesis before hearing either the prosecution or

defense. We might assume that C0 � 0.5. Thus, we have

Cp ¼ 0:5þ 0:5 � �2 � 0:5;

showing the prosecution has little impact on the initial evaluation of the hypothesis.

However, it seems unlikely that initial beliefs will be unaltered by the presentation of

J. S. Trueblood, J. R. Busemeyer/Cognitive Science 35 (2011) 1545



the prosecution. On the contrary, we might expect this prosecution to be very effec-

tive when no prior defense is presented. Essentially, the problem arises from the mod-

el’s assumption that the strength of the prosecution, s(xp), is determined independently

of other evidence.

We also derived a priori predictions from the quantum model by examining all the possi-

ble values for Pr(Guilty | Prosecution) that the model can produce. Because closed form

mathematical predictions are difficult to derive, we gathered information about this proba-

bility by exploring the parameter space. Because we believe that the probability of guilt

after hearing the defense will be near zero, we restricted our search to parameters yielding

Pr(Guilty | Defense), Pr(Guilty | Defense, Prosecution) £ .1. We might also assume that the

probability of guilt after hearing the prosecution followed by the defense will be small. So

we also restricted our search to parameter values resulting in Pr(Guilty | Prosecution,

Defense) £ .2.

The quantum model uses two parameters to account for all four probabilities mentioned

before. Of over nine million parameter pairs, 1,340 pairs met all of the restrictions. From

these parameters, we found that Pr(Guilty | Prosecution) can range from .5017 to .9965.

Fig. 6 illustrates the results of the parameter search as a histogram showing the frequency of

particular values of Pr(Guilty | Prosecution). From this graph, we see that probabilities near

.5 rarely occur. In fact, the most frequent probabilities occur between .7 and .9. These results

suggest the quantum model is a priori more likely to predict an increase in probability with

the presentation of the prosecution.
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Fig. 6. Frequency of Pr(Guilty | Prosecution) from the quantum inference model.
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6.2. The experiment

Participants in the study were 164 undergraduate psychology students from Indiana Uni-

versity who received experimental credit for introductory psychology courses. Subjects were

placed into one of two conditions corresponding to the two possible case orders: prosecution

followed by defense or defense followed by prosecution. Similar to Experiment 1, subjects

entered responses on a computer and were told that the defendant was arrested after the

police received an anonymous tip. Instead of providing the likelihood of the defendant’s

guilt, subjects were asked to rate their confidence in guilt on the same 21-point scale used by

McKenzie et al. Like Experiment 1, a significant recency effect was found (p < .023).7

We converted the confidence ratings to probabilities and fit the quantum model and the

adding model to the mean of these probabilities. We did not fit the averaging model

because Experiment 1 shows the adding model outperforms the averaging model. Fig. 7

shows the model fits for the two models. Both the quantum model and the adding model

use two parameters (xP and xD for the quantum model and s(xp) and s(xd) for the adding

model) to fit the data. We calculated the rescaled root mean-squared error to provide an

estimate of the average error for each model. These calculations show that the average

error for the adding model is about 0.62, whereas the average error for the quantum model

is only about 0.07.

The standard belief-adjustment model cannot capture dependences between the strength

of the prosecution and the irrefutable defense. As predicted, it substantially underestimates
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the impact of the positive evidence when it comes first. Thus, the model provides a poor fit

to the data. Unlike the belief-adjustment model, the quantum model does not assume indi-

viduals combine evidence by simple arithmetic procedures such as adding or averaging. The

quantum model correctly predicts a large impact of the prosecution when it comes first. The

quantum model accounts for the effects of extreme evidence by assuming that judges view

information from different or incompatible perspectives.

7. General discussion

Cognitive models based on the principles of quantum probability have the potential to

explain paradoxical phenomena arising in cognitive science. Previously, quantum models

have been used to account for violations of rational decision-making principles (Pothos &

Busemeyer, 2009), paradoxes of conceptual combination (Aerts, 2009), human judgments

(Khrennikov, 2004), and perception (Atmanspacher, Filk, & Romer, 2004). This article

describes a quantum inference model that accounts for order effects observed in human

inference tasks involving two hypotheses.

The quantum model models order effects in terms of the change in viewpoints produced

by evaluating different sources of information. For example, in the jury decision task, the

individual evaluates his or her belief state from different points of view depending on

whether the source is the prosecutor of the defense. During the prosecutor’s presentation,

the person views the evidence from the prosecutor’s point of view, and the belief state is

evaluated with respect to the prosecution basis vectors (prosecution arguments); but later

during the defense’s presentation, the person changes to the defense’s point of view and

evaluates his or her beliefs with respect to the defense basis vectors (defense arguments).

The rotations used to change from one perspective to another do not commute with the pro-

jectors, so that the order of performing these changes in perspectives matters, which then

produces the order effects.

One might question the extent to which quantum probabilities are rational. Like classic

(Kolmogorov/Bayesian) probability theory, quantum theory is based on a coherent set of

axioms. Then, the question falls back on which set of axioms is most appropriate for an

application. A Bayesian model assumes that all events are compatible. In other words, eval-

uating two events always results in the same outcome regardless of the order of evaluation.

While this might be an appropriate assumption in many contexts, it is not clear why this

should always be the case. Quantum probability theory gives modelers more freedom when

approaching problems in which order manners. In quantum theory, events can be defined as

either compatible or incompatible. In the case when all events are compatible, quantum

probability is identical to classical probability. Deciding when two events should be treated

as compatible or incompatible is an important research question. There has been some work

on this problem for questions involving human judgments (Busemeyer, Pothos, Franco, &

Trueblood, 2011).

Another important consideration is whether a set of axioms is within the range of human

information processing capabilities. Classic probability theory requires assigning
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probabilities to all combinations of hypotheses, types of evidence, and levels of evidence.

For example, if there are two hypotheses, n sources, and two types of evidence per source,

then the classic model requires assigning 2n+1 joint probabilities; but the quantum model

presented here can maintain a low four-dimensional space by evaluating the n different

sources from n different points of view. The classic model can attempt to overcome this

curse of dimensionality by imposing additional assumptions (e.g., conditional indepen-

dence), but this could sacrifice its normative status if the assumptions are invalid. Thus, the

quantum approach may be the most coherent way to assign probabilities that remain within

human information processing capabilities.

To summarize, we demonstrated that the quantum model can account for recency effects

and order effects caused by the manipulation of information strength. These order effects

violate the commutative axiom of Bayesian models. We first showed the quantum inference

model can closely fit data from the medical decision-making task by Bergus et al. (1998).

The quantum model accounts for the presence of recency effects in the medical task by

using different viewpoints (sequences of basis vectors) to represent different orderings of

information. Using data collected by McKenzie et al., we showed that the quantum infer-

ence model outperforms the MAS model. We also provided evidence that the quantum

model performs as well or slightly better than the belief-adjustment model when fitting data

from Experiment 1. Finally, we described some of the limitations of the belief-adjustment

model in relationship to irrefutable evidence. We argued that the quantum inference model

is not faced with these limitations and provides more reasonable predictions. In future work,

we plan to study the complexity of the quantum model in a more rigorous fashion than sim-

ply equating the number of parameters in each model. For the purposes of this article, we

felt that comparing the number of data points and parameters was a useful start or beginning

point until a more detailed analysis can be performed. In the future, we plan to continue

empirically investigating the quantum inference model in the hope of developing a more

coherent theory concerning human inference tasks.

Notes

1. There is another line of research that uses quantum physical models of the brain to

understand consciousness (Hammeroff, 1998) and human memory (Pribram, 1993).

We are not following this line of work. Instead, we are using quantum models at a

more abstract level analogous to Bayesian models of cognition.

2. We use Dirac, or Bra-ket, notation in keeping with the standard notation used in quan-

tum mechanics. For our purposes, |ejæ corresponds to a column vector, whereas Æej|

corresponds to a row vector.

3. The matrix exponential function is commonly available in mathematical programs,

such as R, or Matlab, or Gauss, etc.

4. We used a two-sample t test without the assumption of equal variances. The t-statistic

and degrees of freedom given by Satterthwaite’s approximation for the four pairs

are t ¼ )7.76 and df ¼ 570.71 for SD versus SP, t ¼ )4.89 and df ¼ 579.99 for SD
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versus WP, t ¼ )5.82 and df ¼ 562.55 for WD versus SP, and t ¼ )5.93 and df ¼
567.76 for WD versus WP.

5. Again, we used a two-sample t test without the assumption of equal variances. The

t-statistic and degrees of freedom given by Satterthwaite’s approximation for the four

pairs are t ¼ )6.82 and df ¼ 861.79 for SD versus SP, t ¼ )4.47 and df ¼ 859.55 for

SD versus WP, t ¼ )6.06 and df ¼ 819.24 for WD versus SP, and t ¼ )4.70 and

df ¼ 861.51 for WD versus WP.

6. Although split-half cross-validation is not as good as using accumulation prediction

error, the latter method is computationally difficult to implement with the quantum

model because the parameter search is difficult.

7. We used a two-sample t test without the assumption of equal variances. The t-statistic

and degrees of freedom given by Satterthwaite’s approximation are t ¼ )2.30 and

df ¼ 152.11.
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Appendix: Eigen decomposition of unitary matrices

To provide some insight into the unitary matrices UAN and UBN, we proceed by comput-

ing the matrix exponential

UjN ¼ e�ixjðH
00
1
þH00

2
Þ; ð4Þ

where j ¼ A and B. First, we diagonalize the sum H00 ¼ H001 þ H002 such that H00 ¼ KCK)1,

where

C ¼
�1�

ffiffiffi
3
p

0 0 0
0 1þ

ffiffiffi
3
p

0 0
0 0 1�

ffiffiffi
3
p

0
0 0 0 �1þ

ffiffiffi
3
p

2
664

3
775;

is the matrix of eigenvalues and

K ¼

1ffiffi
3
p 2þ

ffiffiffi
3
p

2�
ffiffiffi
3
p �1ffiffi

3
p

�1� 2ffiffi
3
p 1 1 �1þ 2ffiffi

3
p

�1ffiffi
3
p

ffiffiffi
3
p

�
ffiffiffi
3
p

1ffiffi
3
p

1 1 1 1

2
6664

3
7775;
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is the matrix composed of eigenvectors. The eigenvectors are not normalized to maintain a

simple numerical representation. Because UjN is unitary, the K matrix is as well. As a result,

the inverse of K is equal to its adjoint making it fairly easy to compute K)1. Next, we can

write Eq. (4) as

UjN ¼ Ke�ixjCK�1;

where e�ixjC is the matrix

cis½xjð1þ
ffiffiffi
3
p
Þ� 0 0 0

0 cis½xjð�1�
ffiffiffi
3
p
Þ� 0 0

0 0 cis½xjð�1þ
ffiffiffi
3
p
Þ� 0

0 0 0 cis½xjð1�
ffiffiffi
3
p
Þ�

2
6664

3
7775;

where cis(x) ¼ cos (x) + i sin (x).

This decomposition is useful in understanding the products of unitary matrices. For

example, in the medical decision-making task, we assume that the group of physicians pre-

sented with the history and physical first change their point of view with the presentation of

the laboratory results by applying the UBA unitary transformation to the state ah&p. By using

the eigen decomposition, we can write this as

bh&p ¼ UBNU
y
ANah&p ¼ ½Ke�0:3306iCK�1�½Ke�4:4045iCK�1��1ah&p

¼ Keð�0:3306þ4:405ÞiCK�1ah&p ¼ Ke4:0744iCK�1ah&p )

:6054

:1159

:1645

:1141

2
6664

3
7775
:

This shows how the parameters xA ¼ 4.4045 and xB ¼ 0.3306 are combined in defining

UBA.
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