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Abstract

No other study has had as great an impact on the development of the similarity literature as that of
Tversky (1977), which provided compelling demonstrations against all the fundamental assumptions
of the popular, and extensively employed, geometric similarity models. Notably, similarity judgments
were shown to violate symmetry and the triangle inequality, and also be subject to context effects,
so that the same pair of items would be rated differently, depending on the presence of other items.
Quantum theory provides a generalized geometric approach to similarity and can address several of
Tversky’s (1997) main findings. Similarity is modeled as quantum probability, so that asymmetries
emerge as order effects, and the triangle equality violations and the diagnosticity effect can be
related to the context-dependent properties of quantum probability. We so demonstrate the
promise of the quantum approach for similarity and discuss the implications for representation
theory in general.

Keywords: similarity, metric axioms, symmetry, triangle inequality, diagnosticity, quantum
probability
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l. Introduction

The notion of similarity is, in equal measure, a famous hero and a notorious villain in psychology.
Across most areas of psychology, similarity plays a fundamental role (e.g., Goldstone, 1994; Pothos,
2005; Sloman & Rips, 1998), but equally its various formalizations have been the source of much
criticism and debate (e.g., Goodman, 1972). A popular approach to similarity is a geometric one,
according to which stimuli/ exemplars/ concepts are represented as points in a multidimensional
psychological space, with similarity being a function of distance in that space. This geometric
approach is exemplified in Shepard’s (1987) famous law of generalization, according to which
similarity is an exponentially decaying function of distance, and is heavily used in influential cognitive
models of categorization, such as exemplar and prototype theory. It is fair to say that cognitive
psychology cannot resist using a geometric approach to similarity.

This reliance on the geometric approach to similarity is surprising because it has been
subject to intense, and, in some cases, highly compelling criticisms. The most complete and
impactful expression of this criticism is that of Tversky (1977). Tversky’s work has had a profound
influence on the development of the similarity literature (over 2,200 citations), partly because his
objections to geometric similarity models concern the most basic properties of such models — the
metric axioms, that is, the fundamental properties that any similarity measure based on distance
must obey. Thus, if the metric axioms are shown to be inconsistent with psychological similarity,
then any distance model of similarity is essentially incorrect. Tversky’s (1977) demonstration is a rare
one, in that he has been able to convincingly argue against an entire modeling framework, rather
than particular models. This is because his arguments were not dependent on e.g. particular
parametric configurations, rather they concerned the fundamental properties of any model of
similarity based on distance in psychological space (though see Nosofsky, 1991, for a parametric
way to produce an asymmetric distance-based similarity measure). It is not surprising that Tversky’s
(1977) demonstrations have come to be accepted as the golden standard of key results any
successful similarity model should cover (Ashby & Perrin, 1988; Bowdle & Gentner, 1997; Goldstone
& Son, 2005; Krumhansl, 1978).

In brief, Tversky (1977) showed that similarity judgments violate minimality (identical
objects are not always judged to be maximally similar), symmetry (the similarity of A to B can be
different from that of B to A), and the triangle inequality (the distance between two points is always
shorter directly, than via a third point). Moreover, he showed that the similarity between the same
two objects can be affected by which other objects are present (called the diagnosticity effect). In
the typical tradition of his work, part of the reason why his findings have had the influence they did
is because they go against basic logic. For example, concerning his most famous result, violations of
symmetry, if similarity is determined by distance, then how could it be the case that the similarity/
distance between two objects depends on the order in which they are considered? Yet, when he
asked participants to choose between the statements ‘China is similar to Korea’ vs. ‘Korea is similar
to China’ (actually North Korea and Red China, but for simplicity we will just talk about Korea and
China’), 66 out of 69 participants selected the latter statement as more agreeable, implying that the
similarity of Korea to China (denoted as Sim(Korea, China)) is higher than that of China to Korea
(denoted as Sim (China, Korea)). Thus, this result provided a compelling (and retrospectively
intuitive) violation of symmetry in similarity. Tversky employed several other pairs of countries,
stimuli from other domains, and alternative procedures (see also Bowdle & Gentner, 1997,
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Catrambone, Beike, & Niedenthal, 1996, Holyoak & Gordon, 1983, Op de Beeck, Wagemans, &
Vogels, 2003, Ortony et al., 1985, and Rosch, 1975). Note that some researchers have questioned
the reality of asymmetries in similarity. For example, Gleitman et al. (1996) suggested that in
directional similarity statements, we cannot assume that, e.g., Korea gives rise to the same
representation in the target position, as it does in the referent position. But Gleitman et al.’s (1996)
analysis cannot explain why it is more intuitive to place, e.g., Korea in the referent, as opposed to
the target, position, the absence of asymmetries in some cases (Aguilar & Medin, 1999), and the
demonstration of similarity asymmetries with non-linguistic measures (Hodgetts & Hahn, 2012).

We will present what can be labeled a quantum similarity model. Quantum probability (QP)
theory is a theory for how to assign probabilities to events (for more refined characterizations see
e.g. Aerts & Gabora, 2005; Atmanspacher, Romer, & Wallach, 2006; Busemeyer & Bruza, 2012;
Khrennikov, 2010). QP theory is a geometric theory of probability. It is analogous to classical
probability theory, though QP theory and classical theory are founded from different sets of axioms
(the Kolmogorov and Dirac/ von Neumann axioms respectively) and so are subject to alternative
constraints. QP theory is based on linear algebra, augmented with a range of assumptions and
theorems (such as the Kochen-Specker theorem and Gleason’s theorem; Busemeyer & Bruza, 2012;
Hughes, 1989; Isham, 1989; Khrennikov, 2010). Note that a quantum approach to cognitive modeling
does not introduce assumptions regarding neural implementation and we are agnostic on this issue.
Specifically, operations which are quantum-like can emerge at the computational level from a
classical brain (Atmanspacher & beim Graben, 2007) and do not assume quantum neural
computations (this latter thesis is very controversial; Hameroff, 2007; Litt et al., 2006).

A unique feature of the quantum similarity model is that, whereas previous models would
equate objects with individual points or distributions of points, in the quantum model, objects are
entire subspaces of potentially very high dimensionality. This is an important generalization of
geometric models of similarity, as it leads to a naturally asymmetric similarity measure.

The quantum similarity model follows the recent interest in the application of quantum
probability (QP) theory to cognitive modeling. Applications of QP theory have been presented in
decision making (Blutner et al., in press; Busemeyer, Wang, & Townsend, 2006; Busemeyer et al.,
2011; Bordley, 1998; Lambert-Mogiliansky, Zamir, & Zwirn, 2009; Pothos & Busemeyer, 2009;
Trueblood & Busemeyer, 2011; Wang & Busemeyer, in press; Yukalov & Sornette, 2010), conceptual
combination (Aerts, 2009; Aerts & Gabora, 2005; Blutner, 2008; Bruza et al., under review), memory
(Bruza, 2010; Bruza et al., 2009), and perception (Atmanspacher, Filk, & Romer, 2004). Psychological
models based on quantum probability seem to work well (for overviews see Busemeyer & Bruza,
2009; Bruza et al., 2009; Khrennikov, 2004; Pothos & Busemeyer, in press) and add to the increasing
realization that the application of QP need not be restricted to physics. For example, QP has also
been applied to areas as diverse as economics (Baaquie, 2004) and information theory (Nielsen &
Chuang, 2010).

We first present QP theory and motivate our similarity model. Subsequently, we consider
three main results from Tversky (1977). Violations of symmetry, violations of the triangle inequality,
and the diagnosticity effect. Violations of symmetry provide and most compelling and intuitive
evidence against (simple) geometric representational models. Moreover, the diagnosticity effect is
obviously impossible to reconcile with similarity models based on distance alone, as it shows that
similarity judgments between the same two elements might be affected by the presence of other
elements. Note, we do not consider violations of minimality, i.e., the finding that naive observers do
not always assign the maximum similarity rating for pairs of identical stimuli. Violations of minimality



5 a quantum geometric model of similarity

can simply be explained by noise in the system, so that the same stimulus presented twice would
lead to slightly different internal representations. Violations of minimality have been typically
demonstrated in confusability experiments, whereby participants have to decide whether two
consecutively presented stimuli are identical or not. But, lack of identity judgments for identical
stimuli can be explained if the time course of sampling stimulus information is stochastic and,
moreover, it is straightforward to couple minimality violations and stimulus complexity (Lamberts,
2000; Nosofsky & Palmeri, 1997).

Il. QP theory and geometric similarity

Representation in QP theory is based on a multidimensional space, in which different subspaces
correspond to different entities. The current state of the system is described by a vector in this space
(the knowledge state vector). Projecting the state onto different subspaces and computing the
squared length of the projected vector tells us about the consistency between the state vector and
these other entities in the quantum space. We present the quantum model in three steps. First, we
outline the relevant elements of quantum theory. Second, we discuss the assumptions for how
operations in quantum theory can be employed to provide a model of psychological similarity. Third,
we briefly consider some prior general motivating considerations and criticisms. Finally, each
empirical situation we consider involves some specific information. In each corresponding section,
we discuss how this information can be incorporated in the quantum model.

Main elements of quantum theory

We require a psychologically realistic quantum space, which represents all the knowledge of a
person. Therefore, this knowledge space can have a very high dimensionality (potentially infinite
Foomote ) The state vector, 1, is a unit length vector in the knowledge space; we will refer to 1 as the
current knowledge state vector or just the state vector. It corresponds, broadly speaking, to
whatever a person is thinking at a particular time (e.g., a knowledge state could be determined by
the experimental instructions). If we employ Dirac notation, then |i) corresponds to a column
vector and (| corresponds to a row version of this vector. The expression (i |/} indicates a
standard dot or inner product between vectors |y) and |[}).

Subspaces of the knowledge space represent different concepts, like China. A subspace
could be a ray spanned by a single vector, or a plane spanned by a pair of vectors, or a three
dimensional space spanned by three vectors, etc. Suppose that the China subspace is spanned by
two orthonormal vectors, |v1) and |v,) (that is, the China subspace is two-dimensional; we will
shortly consider how meaning may be ascribed to |v;), |v,)). Thatis, |v1) and |v,) are basis vectors
for the China subspace. Then, the concept of China is basically all the vectors of the form a - |v;) +
b - |v,), where a? + b% = 1 (as is required for a state vector in quantum theory). Note that this
statement is different from, though obviously related to, the statement that a category corresponds
to a region of psychological space (Ashby & Perrin, 1988; Gardenfors, 2000; Nosofsky, 1984). So, to
represent China with a subspace is to assume that the concept China is the collection of all thoughts,
a|vl) + b|v2), which are consistent with this concept. For example, our knowledge of China would
include information about culture, food, language etc. The representation of China as a subspace
implies that all these properties have to be contained in the China subspace. Therefore, the greater
the range of thoughts we can have about a concept (e.g., properties or statements), the greater the
dimensionality of the subspace. If we represent China as a two dimensional subspace and Korea as a
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one dimensional subspace, this means that we can have a greater range of thoughts for China, than
for Korea, which is equivalent to assuming that we have greater knowledge for China than for Korea.

The representation of China as a subspace is consistent with the idea that properties are not
uniquely chained to particular concepts. For example, suppose that my current thought is |¢) =
|Chinese ) (I am thinking about the Chinese language). Then, this thought would be included in the
China subspace, but it would also be included in many other subspaces (for example, the subspace
corresponding to my concept of ‘foreign languages’). That is, a particular thought can be included in
several subspaces at the same time.

Note that a thought of the form |) = a|v1) + b|v2) is neither about |v1) nor |v2), but
rather reflects the potentiality that the person will end up definitely thinking about |v1) or |v2). For
example, if |a|>|b|, then this means that the person has a greater potential to think of |v1) than
|v2). In QP theory, states like a|v1) + b|v2) are called superposition states and the fact that we
cannot ascribe definite meaning to such states is the result of a famous theorem (the Kochen-
Specker theorem).

We next further consider the meaning of vectors |v1) and |v,), in the claim that they span
the China subspace. We could consider each such vector as a separate, distinct property of China.
However, in general, different subsets of properties of a particular concept are likely to correlate
with each other. For example, the properties relating to Chinese food are likely to correlate with
properties relating to the general health of the average Chinese person. We so interpret |v;) and
|v,) as vectors which correlate with sets of properties, which are characteristic of China. How to
determine the set of appropriate vectors, properties, or dimensions is an issue common to all
geometric approaches to similarity. Recent work, especially by Storms and collaborators (e.g., De
Deyne et al., 2008), shows that this challenge can be overcome, for example, through the collection
of similarity information across several concepts or feature elicitation. Then, the relatedness of the
properties will determine the overall dimensionality of the concept.

Given the China subspace and a state vector, we can examine the degree to which the state
vector is consistent with the subspace, by projecting it onto the subspace. In quantum theory, this
operation is achieved by a projector. A projector can be represented by a matrix, which takes a
vector and projects it (lays it down) onto a particular subspace. For example, say Pcping and Pxorea
are the projectors on the China and Korea subspaces, respectively. The projection Pxoreq * |¥)
represents the match between the current knowledge state and Korea, in other words, it computes
the part of the vector |Y) which is restricted or contained in the Korea subspace. More specifically,
suppose that |Korea) is a normalized vector which is used to represent our knowledge of Korea.
Then, the projector onto the one-dimensional subspace or ray spanned by |Korea) is denoted by
Pxorea = |Korea){Korea| (this corresponds to the matrix formed by the outer product of the
column vector and the row vector).

In Figure 1, for example,, we are projecting vector B onto vector A. Let us assume that both
vectors are unit length. Then, the projection (indicated with the thick yellow line) would be another
vector, specifically, the part of B which is contained in A. This is given by |A){A|B), noting that
P, = |A){A| is the projector onto the A ray. Indeed, the notation |A){A|B) indicates a multiplication
between a vector |A) and an inner product (4|B). But, from elementary geometry, we have that the
inner product between two real vectors is (A|B) = |A| - |B| - cos@, where 6 is the angle between
the two vectors (see also Sloman, 1993). If the two vectors are normalized, then (A|B) = cos6.
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Furthermore, if we assume that the China concept is represented by a subspace spanned by
vectors |v1) and |v2), then the mathematical expression for China is a projector denoted as
Pchina = |[vIXv1| + |[v2){v2|. This seems an elegant way to express our intuition that the
representation of a concept corresponds to all the possible thoughts we can have about the concept.
Thus, following from the example above, if we think about the Chinese language, then |¢) =
|Chinese), and P_pinq|Chinese) = |Chinese), showing that this is a thought included in the China
concept (but, the China concept would include many other thoughts; e.g., P.ping|Chinese food) =
|Chinese food)). More generally the range of thoughts |i) such that Peping|¥0) = [) is the range
of thoughts consistent with the concept of China or, equivalently, the thoughts which are part of the
concept of China. Equally, Proreign tanguages|Chinese) = |Chinese), illustrating that this particular
thought would be consistent with other concepts too.

One of the fundamental axioms of QP theory concerns how to derive a numerical measure
of consistency between a subspace and a state vector, from the projected vector. Specifically, the
length of the projection squared can be shown to be the probability that the state vector is
consistent with the corresponding subspace. For example, the probability that a thought i is
consistent with the China concept equals ||Pcring * |W)|1? = (W|Pchina); for simplicity, we will
denote the length of a vector A, ||4l], as |A|. If the state vector is orthogonal to a subspace, then the
probability is 0.

Throughout this section, projection was described as an operation revealing the consistency
between a state vector and a subspace. In the next section, we suggest that, when the state vector,
subspaces etc. are endowed with psychological meaning, this consistency can lead to a similarity

measure.

Towards a quantum similarity model
We propose that the similarity between two concepts is determined by the sequential projection
from the subspace corresponding to the first concept to the one for the second concept. Then, it can
be shown that the similarity comparison is a process of thinking about the first of the compared
concepts, followed by the second. Similarity in the quantum model is about how easy it is to think
about one concept, from the perspective of another. Next, when a naive observer is asked to rate
the similarity between two concepts, she is typically not influenced by any prior thoughts. Therefore,
we suggest that, prior to a similarity comparison, the state vector is set so that it does not bias the
similarity judgment in favor of either concept. But, sometimes a similarity comparison is carried out
in a way that reflects the influence of other concepts or stimuli. We suggest that, in some
circumstances, it is appropriate to model this contextual influence by prior corresponding
projections of the state vector. All these ideas can be implemented in a straightforward way.
Suppose we are interested in how similar Korea is to China. We have to project a neutral (as
above) state vector to the subspace for one country and then to the subspace for the other. When
there is no particular directionality in a sequential projection, we can either average the result from
both directionalities or determine the directionality in another way (Busemeyer et al., 2011).
However, similarity judgments are often formulated in a directional way (Tversky, 1977). When this
is the case, we suggest that the directionality of the similarity judgment determines the
directionality of the sequential projection, i.e., the syntax of the similarity judgment matches the
syntax of the quantum computation. For example, the similarity of Korea to China would involve a
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process of thinking about Korea (subject, mentioned first) and then China (object, mentioned
second), which corresponds to sim(Korea, China) = |Pchina * Prorea * |W)1?.

The link in quantum theory between projection and probability theory can help justify the
use of |Pchina * Prorea * |¥)|? in computing sequential projection. Suppose the initial state is |1)).
From this initial state, the probability of a match to Korea equals |Pxoreq * |W)|2. If the person thinks
that the current state matches the Korea subspace, then the new state is revised to become the

normalized projection of the previous state onto the Korean subspace, so that |Yxoreq) =

PKorea'W))
|PKorea'|1.b>|

|PChina ' w}Korea)lZ- Thus, |PChina ) wJKorea)lZlPKorea ' |¢)|2 exactly computes the sequence of
probabilities for whether |1) is consistent with the Korea subspace and whether the (normalized)

Finally, the probability that this conditional state is consistent with China equals

projection of |) onto Korea is consistent with the China subspace. The product rule then follows
from,

p orea'w)) 2
|PChma |¢Korea)|2|PKorea |¢)|2 Pchina m |PKorea ' |1l1)|2 = |PChina " Pkorea * |¢)|2

(Busemeyer et al., 2011).

As noted, in the absence of priming manipulation or contextual influence, we require the
state vector to be neutral between the compared concepts, so that, in the China, Korea example,
|Pkorea * [WN? = |Pching * |¥)1? (Appendix 1). Such an assumption is equivalent to that of a uniform
prior in a Bayesian model (Trueblood & Busemeyer, 2012). Then, it is straightforward to show that
Sim(Korea, China) X |Pching * [Wkorea)|?, Whereby the vector [xoreq) is @ normalized vector
contained in the Korea subspace. Therefore, the quantity |Pcpina * [¥korea)|? depends on only two
factors, the geometric relation between the China and the Korea subspaces and, as we shall see, the
relative dimensionality of the subspaces. That is, the outcome of the similarity comparison between
China and Korea depends only on the relation of what we know about China and Korea, which seems
appropriate, in the absence of prior priming. If one imagines a set of concepts all represented as
rays, then rays closer to each other (smaller angles) indicate higher similarities.

Modifying the basic similarity calculation to take into account context was motivated from
Tversky’s (1977) diagnosticity effect, one of the most compelling demonstrations in the similarity
literature. In his experiment, participants had to identify the country most similar to a particular
target, from a set of alternatives, and the empirical results showed that pairwise comparisons were
influenced by the available alternatives. Such an influence can be accommodated within the
guantum similarity model.

Occasionally, what a person is thinking just prior to a comparison cannot be assumed to be
irrelevant to the comparison. Suppose that the similarity of A and B is computed in a way that has to
take into account the influence of some contextual information, C, which is represented by a
particular subspace. This information C could correspond to the alternatives in Tversky’s (1977)
diagnosticity task. The similarity between A and B should then be computed as Sim(4, B) =

|PgPs|")|? = |Pg )| |Palp’)|?, where [')= |Ypc) = IPC:iil is no longer a state vector neutral

between A and B, but rather one which reflects the influence of information C. If we minimally
assume that the nature of this contextual influence is to think of C, prior to comparing A and B, then

Sim(A,B) = |PgP,4|Y')|? = |PgPy Iic:iil |2 = |PgPyPc|P)?/|Pc|)|?. In other words, if the
c

similarity comparison between A and B involves first thinking about A and then about B, then the

same similarity comparison, in the context of some other information, C should involve an additional
first step of thinking about C. Additional contextual elements correspond to further prior
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projections, though note that eventually this process must break down (there must be a limit to how
many proximal items can impact on a decision).
As before, the link with probability justifies the choice of |PgP4Pc|)|?, since

Pcly)
|PsPaPc|¥)|? = |PsPalY ) Pl = |Pplac)|?[Palp)*|Pclp)]?, where [1pc) = |Pz|¢>| and
[Yac) = %. Therefore, the similarity comparison between A and B is now computed in relation

Al¥YC

to a vector which is no longer neutral, but contained within the C subspace. Depending on the
relation between subspace C and subspaces A and B, contextual information can have a profound
impact on a similarity judgment. Also, the term |P.|)|? affects the overall magnitude of the
similarity comparison, but we assume that a computation like |PgP,P¢|)|? can lead to a sense of
similarity in relation to other, matched computations. Such an assumption follows from discussions
on the flexibility of similarity response scales, e.g., depending on the range of available stimuli
(Parducci, 1965).

Some prior justifications and criticisms for the quantum similarity model

Why is it valuable to explore the quantum similarity model? In feature-based representation
approaches (Tversky, 1977), there is a mechanism for modeling differences in the extent of
knowledge we have for different concepts. This is an obvious requirement for representation models
since, clearly, for some concepts we have more knowledge than for others. But, a corresponding
mechanism does not exist in classical geometric representation schemes, according to which a
concept (or exemplar etc.) is represented by a single vector, suchas C = x; + x5 + x3 + -+ xp,
(any coefficients have been absorbed in the vector). Classically, if one dimension is, e.g., length and
another height, a point in the corresponding space is about a stimulus of a certain length and height.
Crucially, all other represented stimuli will also have a representation in terms of the same two
dimensions, length and height, and it is not possible to have stimuli in the same space, represented
with a different set of features. The quantum model is a major departure from classical geometric
representation schemes, in that it provides a rigorous framework for associating concepts with
subspaces. As the dimensionality of subspaces can vary arbitrarily, there are no constraints in the
number of features that can be employed in a representation.

Many researchers have pointed out a potential link between decision-making and similarity
(Medin, Goldstone, & Markman, 1995). For example, in Tversky and Kahneman’s (1983) famous
experiment, participants rated as more probable the statement ‘Linda is a bank teller and a feminist’
than ‘Linda is a bank teller’, even though classically a conjunction can never be more probable than
an individual statement. According to Tversky and Kahneman, this decision involves a process of
similarity (Linda is more similar or representative of a feminist), rather than a process based on
probabilistic inference. This idea was systematically explored in Shafir, Smith, and Osherson (1990),
who reported that a measure of probability of whether a conjunctive statement applied to a person
predicted a measure of membership of the person to the corresponding category. Is there a tension
between decision-making as probabilistic inference vs. as a similarity process? Not if one adopts a
quantum approach. In this work, Sim(4, B) = |PgP,|y)|%. In the quantum decision-making model
for the conjunction fallacy of Busemeyer et al. (2011), Prob(A A then B) = |PgP4|Y)|?. The only
difference between the two models concerns an assumption that probabilistic judgments are
typically directionless, so that directionality has to be determined in another way. Thus, quantum
theory shows how nearly identical computations can model both similarity and decision making
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judgments. This equivalence predicts that similarity findings (such as the diagnosticity effect) may
well have analogues in decision-making situations (cf. Roe et al., 2001).

Specific aspects of the present proposal can be related to prior proposals. The squared
distance between two unit length vectors X, Y in a psychological space is given by || X — Y|[|? =
|X]2 + |Y]? — 2(X|Y) = 2 — 2(X|Y). Thus, the computation |Pcpina|Wkorea)|? depends on the
distance between the corresponding vectors, as in standard geometric model of equating
dissimilarity with distance. Also, the idea that concepts are subspaces is related to the influential
exemplar models of categorization (Nosofsky, 1984), in which a category is associated with a region
in psychological space.

Sloman (1993) suggested that the similarity between two categories, A and B, can be
F(A)-F(B)

computed as (A, B) = |[F(A)| |[F(B)|

, where F(A) and F(B) are the vectors representing the categories,

the numerator is a dot product, and |F(4)| = (4|A)Y/2. Our proposal and Sloman’s similarity
measure are identical, if one employs normalized vectors, and in the special case where subspaces
are unidimensional rays. This can be easily seen by noting that, according to our proposal, in the
case of unidimensional subspaces, Sim(4, B) = |PgP4|Y)|? = ||B){B|A}XA[)|?. But, by
assumption, [(B[)|? = |{A|y)|?, so that we can write Sim(4, B) « ||A)A|B)|? = [(4|B)|? «
Sim(B, A). Sloman notes that his similarity measure is symmetric and the same applies to our
measure, in this unidimensional case. It is noteworthy that Sloman’s intuition effectively led him to
some of the same constructs as those in the formal framework of QP theory.

We next consider potential criticisms. First, in the basic definition of similarity, how robust is
the postulated sequence of projections? We proposed that Sim(4, B) = |Pg - P, - |)|? but could
one equally postulate that Sim(4, B) = |P, - Pg - |)|*? The answer is mostly no. Assuming that
order of projection is matched to syntactic order follows from the interpretation of the state vector
as current thought, so that Sim(4, B) = |Pg * P, - [1)|? corresponds to thinking about A first
(because A is mentioned first) and then thinking about B. One could argue that projection sequence
should be instead set by subject, predicate relations. But, we suggest that this is a more involved
assumption, than syntactic order (e.g., what determines subject, predicate status or why should this
information be relevant in similarity judgments?). The point is not that alternative assumptions for
projection sequence cannot be made; rather, that an assumption based on syntactic order is fairly
minimal. Relatedly, Tversky’s (1977; see also Krumhansl, 1978) similarity model cannot produce
asymmetric similarities, without assuming that the target or the referent has a higher salience in a
comparison. The quantum model does not require such an assumption. We think that to require an
assumption of higher salience is a more involved assumption, than one relating to just the order of
consideration of the two predicates.

Second is the assumption that the initial state vector is neutral, e.g., | Py - |¢)|2 = |Pg-
|1)|?, problematic? We think not because this assumption implies that Sim(Korea, China) «
|Pching * [Wkorea)|?, @ quantity which depends only on the geometric relation between the Korea
and the China subspaces and their relative dimensionality. This is what we require for a similarity
judgment, in the absence of relevant context or priming. The initial state vector needs to be
something. The assumption that the state vector is neutral with respect to the two subspaces, i.e.,
that |P, - [)|? = |Pg - |Y)|?, simply means that the state vector does not bias the similarity

comparison.

llIl. Asymmetry, Korea-China
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The prototypical experimental finding we are interested in is that

Sim(Korea, China) > Sim(China, Korea). Tversky (1977) explained this result by assuming that
typical participants have more knowledge for China, than for Korea, so that China is more salient
than Korea. Of these intuitions, the one that can be implemented in the quantum model relates to
knowledge, since more extensive knowledge for a concept translates to a greater dimensionality for
the corresponding subspace. We can write Sim(Korea, China) = |Pcpina * Pxorea * [W)? =

|Pchina - wKorealzlpKorea ' WJ)lZ and, likewise, Sim( China, Korea) = |Pgoreq - WJChina)lzlPChina )
|1/J)|2. As the initial state vector is neutral with respect to the China, Korea subspaces, we need to
prove that |Pepina | Wkorea)|* = |PkorealWchina)|?, assuming that the dimensionality of the China
subspace is greater than that of the Korea one (|¥xorea) and |Wching) are normalized projections
within the respective subspaces).

Note first that for |Peping * [Wkorea)|* # |Prorea * [Wchina)|? it has to be the case that
Pchina * Prorea # Prorea " Pchina- TWO operators will not commute if at least some of the basis
vectors of the corresponding subspaces are at oblique angles, which means neither identical nor
opposite (orthogonal). Regarding the Korea-China example, we can safely assume that the Korea
features will not all be either identical or opposite to the China ones, so that Pcpinag * Prorea #
Pxorea * Pchina-

In Appendix 2, with some simplifying assumptions, we prove that for a random two-
dimensional subspace corresponding to China and a random ray corresponding to Korea, it will
always be the case that |Pgpina|[Wkorea|? = |PxorealWcnina)|?- Note that deviance from an 100%
prediction can be predicted by assuming that not all naive observers know more about China than
Korea. The intuition for why the quantum model works is that projection to a subspace of larger
dimensionality will generally preserve more of the amplitude of the original vector, compared to
projection to a subspace of smaller dimensionality. For example, if we have a vector |k) and a
projector P = [x){x| + |y)y|, then, P|k) = |x){x|k) + |y){y|k), so that the amplitude of the
projection would depend on the absolute magnitude of both (x|k) and {(y|k). By contrast, in the
projection |x){x|k) the amplitude of the projection depends just on {x|k). The larger the subspace,
the more the ‘opportunity’ that the resulting projection will be large. For example, in Figure 2, in
both panels the green line corresponds to a one-dimensional subspace (e.g., Korea), the yellow
plane to a two-dimensional subspace (e.g., China), and the black solid line halfway the two to the
state vector. The length of the first projection corresponds to a solid blue line and, by assumption, is
the same regardless of whether we project to the ray or onto the plane. But, the length of the
second projection (the solid red line) differs depending on whether it is to a ray or to a plane, so that
when this second projection is onto the plane, it is longer.

We next explored the quantum model prediction computationally. Consider a one-
dimensional Korea subspace and a two-dimensional China one, which reside in a three-dimensional
space. We make no assumptions regarding the relation between the Korea, China subspaces. Thus,
the projector for the Korea subspace was the outer product Pg,req = |korea){korea|, where
|korea) was a random vector (note all vectors are normalized). For China, we need to specify two

. Footnote 2
orthonormal basis vectors, call them |vector1) and |vector2) "°"

. The |vector1) was another
random vector. We next created another random vector, |[Random), and computed |vector2) as
the normalized (I — |vectorl1){vectorl|) - |Random), where I is the three-dimensional identity
matrix. The way this works is because the projector to the orthogonal complement of a subspace W
is given by Py,. = I — Py,). Therefore, (I — |vector1){vectorl|) - |Random) is the part of

|Random) which is orthogonal to |vector1). Thus,
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Pchina = |vectorl){vectorl| + |vector2){vector2|. The state vector |Y) was computed so that
|Prorea * [W)? = |Pepina * |W)I?, as in Appendix 1. With 100,000 repetitions of this scheme, in 100%
of all cases Sim(Korea, China) > Sim(China, Korea), as required.

We further illustrate the model in a number of ways. First, we ran a variation such that China
was a random ray (like Korea), instead of a random plane. As the projections to both Korea and
China are to rays, we expect no difference between Sim( China, Korea) and Sim(Korea, China).
We found that Sim( China, Korea)< Sim(Korea, China) in 40.8% of all times in 100,000
repetitions, with another 18.4% of all times corresponding to exact equalities (the simulation does
not always produce equalities because of rounding errors). Likewise, when the subspaces for both
China and Korea corresponded to random planes, we found that
Sim(China, Korea)< Sim(Korea, China) in 35.8% of all times in 100,000 repetitions, with 28.2% of
all cases corresponding to exact equalities.

We then explored a five-dimensional space, with China corresponding to a four-dimensional
subspace and Korea to a random plane. In this case, instead of comparing a projection to a plane
with a projection to a ray, we compared a projection to a four dimensional subspace (China) with a

1 0
0 1
projection to a plane (Korea). Let x; = [0, x, = | 0| etc. be a basis set for this five dimensional
0 0
0 0

subspace. Then, Pepina = |x1)(xq |+]x2) x5 + |x3){x3]|+]x4){x4|. Korea corresponded to a random
plane and was specified as above. In 100,000 runs of this scheme,
Sim(China, Korea)< Sim(Korea, China) in 100% of all times.

Overall, a violation of symmetry in similarity judgments, in the predicted direction, emerges
naturally from the quantum model, just by assuming that the dimensionality of the China subspace is
larger than that of the Korea subspace. In the quantum model this means that we know more about
China than Korea. To produce a similarity asymmetry, no parameters were manipulated, nor did we
require an assumption about the target or the referent being more salient.

Bowdle and Medin (2001; cf. Rosch, 1975) suggested that the statement ‘Korea is similar to
China’ is preferred because it is more informative than the converse statement. Bowdle and Medin
(2001) further assumed that naive observers typically prefer informative statements (cf. Grice, 1975)
and that in considering a statement like ‘A is similar to B’ “information flows directionally from base
[Blto target [A]” (p. 121). So, ‘Korea is similar to China’ will be preferred to ‘China is similar to Korea’,
because in the former case the target (Korea) is a more deviant item and the base (China) is more
like a reference point, which means that there is more potential for new inferences regarding Korea,
on the basis of knowledge for China. This is similar to how the quantum model works. In computing
Sim(Korea, China), we project from the Korea to the China subspace, hence we can
understand/interpret the Korea properties, with the more extensive set of China properties (basis
vectors). By contrast, when projecting from China to Korea (for Sim(China, Korea)), the state
vector can be understood in a more limited way, with the more limited set of Korea properties.

IV. Triangle inequality
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Tversky (1977) considered how similarity judgments can lead to violations of the triangle inequality,
another one of the metric axioms. The triangle inequality can be expressed as Distance (A, B) <
Distance (A, C) + Distance (C, B). If we equate distance with dissimilarity, and assume similarity is the
negative of dissimilarity, then the triangle inequality states that Dissimilarity (A, B) would always be
less than Dissimilarity (A, C) plus Dissimilarity (C, B) or that Similarity (A, B) would always be greater
than Similarity (A, C) plus Similarity (C, B). Tversky (1977) reported an example where the latter
relation is violated. Consider A=Russia and B=Jamaica, so that Similarity (A, B) = Similarity (Russia,
Jamaica) is low. Consider also C=Cuba. But, Similarity (A, C) = Similarity (Russia, Cuba) is high
(because of political affiliation) and Similarity (C, B) = Similarity (Cuba, Jamaica) is also high (because
of geographical proximity). Thus, Tversky’s example shows that Similarity (Russia, Jamaica) <
Similarity (Russia, Cuba) + Similarity (Cuba, Jamaica), which suggests a violation of the triangle
inequality (Figure 3). Note that this demonstration does not depend on an assumption that one
country is more salient than the others.

If one employs an exponentially decaying function to link distance and similarity (e.g.,
Nosofsky, 1984; Shepard, 1987), then similarities can violate the triangle inequality, even if the
underlying distances obey the triangle inequality. For example, consider Distance (A,B)=5 units,
Distance (A,C)=4 units, and Distance (C,B)=4 units; these distances obey the triangle inequality. For
the similarities to follow Tversky’s results we need that Similarity(A,B) < Similarity(A,C) +
Similarity(C,B), and this relation is obtained from e ™> = 0.0067 < e * + e~* = 0.018 + 0.018.
Alternatively, shifts in attention across comparisons can also lead to violations of the triangle
inequality, even if dissimilarity is equated with (just) distance (Nosofsky, 1984). So, unlike for the
case of violations of symmetry, violations of the triangle inequality do not present a challenge for
basic geometric approaches to similarity. However, the QP similarity model does not link distance
and similarity via an exponentially decaying function, nor do we employ an attention mechanism, so
the question remains whether it is consistent with Tversky’s (1977) so-called violations of the
triangle inequality.

The application of the quantum similarity model only requires to specify the various
concepts (Russia, Jamaica, Cuba; also, Communist, in the Caribbean sea) in a way consistent with
Tversky’s (1977) assumptions. First, we make the simplifying assumption that all concepts are
represented with one-dimensional subspaces. Second, the concepts Communist and Not communist
have to be orthogonal to each other, since a country cannot be both Communist and Not
communist. Third, the Caribbean and Not Caribbean concepts (corresponding to countries in the
Caribbean or not) are specified in an analogous way. Fourth, the Communist concept is assumed to
be unrelated to the Caribbean one, therefore, the one-dimensional subspaces corresponding to
these two concepts are at an approximately 45° angle with respect to each other. This means that, if
the state vector is, for example, in the Communist subspace, then the length of the projection to the
Caribbean ray is the same as to the Not Caribbean ray. In other words, knowing that a country is
communist is uninformative regarding whether the country is in the Caribbean.

Specifying the Communist and Caribbean concepts allows us to specify the Russia, Cuba, and
Jamaica ones. Congruency between a country and a property is reflected in the proximity between
the corresponding subspaces. Thus, the Russia subspace would have to be close to the Communist
subspace (Tversky’s experiment was done in the 70s) and away from the Caribbean subspace. Then,
projecting from the Russia subspace to the Communist one would lead to a large projection, in the
same way as for the quantum computation regarding the similarity between two concepts. The Cuba
subspace is in-between the Communist and the Caribbean one and the Jamaica one is near the
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Caribbean one, but far from the Communist one (Figure 4). Thus, different properties for the three
countries are implied by proximity to the subspaces corresponding to these properties. Also, the two
countries which are near the Communist subspace would both have large projections onto the
Communist subspace and, therefore, they would be similar to each other by virtue of the fact that
they both share the property of Communism.

Note that, as we are dealing with subspaces of the same dimensionality, any similarity
computations here are insensitive to order (one order would not systematically produce a higher
similarity than the opposite order, with an unbiased initial state, when averaging across a random
sample of projector pairs). Note also that, as before, we require that the state vector (the activated
thoughts just prior to the similarity comparisons) is set up so that |Peypa|¥)? = |Prussia|¥)? =
|P]amaica|¢)|2, that is, the state vector is not biased towards any of the countries. But, in this case,
rather than compute the initial state vector explicitly, which would require a dimensionality greater
than two, we assume for simplicity that Sim(Russia, Cuba) = |P¢ypal|Wrussia)|?, Whereby
[Yrussia) = |Russia), and likewise Sim(Cuba, Jamaica) = |Pjamaica|Pcuba)|?, Whereby
[Ycuba) = |Cuba), and Sim(Russia, Jamaica) = |Pjgmaica|Wrussia)|*- This approach just affects
the overall scaling of the similarity results. To account for the findings regarding the triangle
inequality we require |PCuba|¢Russia)|2+|P]amaica|¢Cuba)|2>|P]amaicaW)Russia)lz'

Let us denote the angle between Russia and Cuba as Jg and likewise for the angle between
Cuba and Jamaica (9;). Note also that, as all countries correspond to unidimensional subspaces, for
example, |PCuba|lpRussia)|2 = HCuba)(C”ballpRussia)lzf WherEby (CuballpRussia) = COSﬁRC and
||Cuba)|? = 1. Starting from the condition required to account for Tversky’s (1977) related finding,
|PCuba|¢Russia)|2+|P]amaica|¢Cuba)|2>|P]amaicaw}Russia)lz: we must have COSZ'&RC + COSZﬁC] >
COSZI9R] or cos?Vgc + COSZI9C] > cos?(9gc + Y¢;). For angles up to 90°, the cosine function is
monotonically decreasing. Therefore, the condition cos?9g + coszﬁcj > cos?(9gc + Icy) will be
true, as long as Ug¢ and J¢; are in the [0, 450] range, i.e., as long as Russia is similar to Cuba and
Cuba is similar to Jamaica (it does not matter whether Russia is more or less similar to Cuba, than
Cuba is to Jamaica). For illustration, we created a set of vectors corresponding to the ones in Figure
4. Russia was 5° counterclockwise from the Communist ray, Jamaica 5° clockwise from the Caribbean
ray, and Cuba halfway between the Communist and the Caribbean rays (i.e., 67.5° relative to the
horizontal). We obtained |Peypa |Wrussia)|> = c0s%9gc = cos (27.5%)2 = 0.79,
|P]amaica|¢Cuba)|2 = 0.79, and |P]amaica|¢Russia)|2 = cos? (ﬁRC + 19C]) = cos (550)2 = 0.33,
thus reproducing Tversky’s (1977) finding regarding the violation of the triangle inequality.

It is straightforward to see why the quantum model produces violations of the triangle
inequality. Different regions in the knowledge space reflect different properties. Cuba is at the
boundary between the Communist and Caribbean regions. Proximity to the Communism region
makes it similar to Russia and to the Caribbean region to Jamaica. As the dimensionality of the
knowledge space increases, more intricate patterns of similarity can emerge.

Tversky’s (1977) own proposal was that different similarity comparisons are based on
different properties. For example, the similarity between Russia and Cuba is based on the
Communism property. Thus, the basic idea is not unlike the way the quantum model works, since
proximity in different regions of knowledge space implies similarity on the basis of likewise different
properties (e.g., proximity in the Communism part of the knowledge space implies similarity on the
basis of Communism). However, there is an important difference between Tversky’s (1977) and the
guantum model. In Tversky’s (1977) model, one needs to invoke particular features, which plausibly
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guide the similarity between two concepts. Thus, in comparing Russia and Cuba, the Communism
feature is invoked. However, this mechanism is underspecified: why is only the Communism feature
invoked? Why not also features relating to trade ties or similar political leaders? In fact, there is an
infinite number of possible features one could invoke. We are just re-expressing Goodman’s (1972)
concerns regarding the arbitrariness of similarity, though we do not think the problem is with
similarity, rather it has to do with guessing features. The quantum model avoids this problem:
proximity in psychological space implies the existence of common features, but identifying these
features is not required for the similarity computation.

V. Diagnosticity effect

This finding concerns the context dependence of similarity relations. Tversky (1977) employed a
forced choice similarity task, whereby participants were asked to decide which country was most
similar to Austria, amongst a set of candidate choices. Performance in such a task clearly depends on
the pairwise similarity between the target country, Austria, and each of the candidate countries.
Equally, each pairwise similarity may be affected by the alternative choices. Indeed, when the
candidate choices were Sweden, Hungary, and Poland, participants tended to select Sweden as most
similar to Austria (49% of participants favored this choice). When the candidate choices were
Sweden, Norway, and Hungary, participants, tended to select Hungary as most similar to Austria
(60% of participants favored this choice; analogous demonstrations were provided with schematic
stimuli). The exact task Tversky (1977) employed involved presenting two groups of participants with
20 sets of four countries. Participants were required to choose, for each set of four countries, the
country in the set most similar to a target country. Regarding the critical comparisons between
matched quadruples of countries (e.g., Austria, Sweden, Hungary, Poland vs. Austria, Sweden,
Norway, Hungary), the design was a between-participants one. We consider how, in the set of
countries Hungary, Poland, Sweden, and Austria, Sweden ends up being most similar to Austria,
since the situation involving Hungary, Sweden, Norway, and Austria is entirely analogous.

Tversky’s (1977) explanation for the diagnosticity effect was partly the idea that a diagnostic
feature of Eastern vs. Western Europe emerges, and it is this feature that makes Sweden more
similar to Austria, than Hungary and Poland. Because this approach is popular in the literature, we
note that it can be expressed in quantum terms. Suppose there is an Austria ray in a 3D space, which
is equidistant to Hungary/Poland rays and a Sweden ray. A suitable 2D space corresponding to the
Eastern vs. Western feature could be identified, such that, when expressing the Sweden, Austria,
Hungary, Poland rays with the basis of that subspace, the Sweden ray becomes most similar to the
Austria one. But, per our discussion for the triangle inequality, the idea of emergent features is
underspecified. For example, what determines the particular diagnostic features that emerge, why
would there be only one pair of (Eastern, Western Europe) diagnostic features, and how does the
similarity between the countries in the comparison moderate the emergence of diagnostic features?
Therefore this explanation is questionable, and the findings demand an alternative approach.

Tversky (1977) selected his materials so that two options are grouped together (Hungary,
Poland) and these are approximately equally similar to the target (Austria) as the third option
(Sweden). Representing these concepts in a quantum knowledge space and computing similarity in a
way that takes into account the relevant context leads to a diagnosticity effect.
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We seek the country which maximizes the similarity with the target, that is, the one for
which Sim(Chosen country, Target country) = max. In this similarity comparison, the state
vector |i) would be influenced by the alternative possibilities, since these are possibilities directly
relevant to the similarity comparison. Therefore, when examining the similarity between Austria and
a candidate country, the remaining two alternatives constitute a context of relevant information. For
example, Sim(Sweden, Austria) = |P,Ps[y’)|?, but where |’} reflects some influence from the
other possibilities of Hungary and Poland (note the subscripts A, S, H, and P, correspond to Austria,
Sweden, Hungary, and Poland). So, [{’) = PyPp|) or [p") = PpPy|p). That is, the vector relevant
in the comparison between Sweden and Austria is the one produced by first thinking of Hungary and
Poland, so that Sim(Sweden, Austria ) = |P4PsPyPp|)|? or by first thinking of Poland and then
Hungary, so that Sim(Sweden, Austria ) = IPAPSPPPH|1,D)|2. The context elements would influence
the comparison in one order for some participants (e.g., Py Pp) and in another order for others
(PpPy). Averaging across the two possible orders for contextual influence, we have

(IPAPsPuPp|Y)?+|P4PsPpPy|¥)*)
5 .
The country most similar to the target Austria is identified by comparing

Sim(Sweden, Austria ) =

Sim(Sweden, Austria ), with Sim(Poland, Austria ) and Sim(Hungary, Austria ). Specifically,
we are led to
(IPAPsPyPp|Y)2+|P4PsPpPy|Y)*)
2
(|PAPHPSPP|1P>|2';'|PAPHPPPS|1P>|2) and
(IP4PpPsPH|Y)?+|P4PpPHPsP)®)
2
Sim(Sweden, Austria) is highest amongst Sim(Hungary, Austria) and Sim(Poland, Austria ),

Sim(Sweden, Austria) = , and likewise

Sim(Hungary, Austria) =

Sim(Poland, Austria ) = . The empirical result is that

given the appropriate context for each comparison. We seek to reproduce the diagnosticity effect,
only on the basis that some of the available choices are grouped together (Tversky, 1977).

As before, it simplifies computations if we assume that the countries are represented by
unidimensional subspaces (there is no indication that we have greater knowledge for one country, as
opposed to the others). Analytically (Appendix 3), in comparing Sim(Sweden, Austria),

Sim( Hungary, Austria), and Sim( Poland, Austria), we are comparing

c0s%Vsy * c0s29yp + c05%9sp * c05%9py ,

c0os?Vyg * c0s*9sp + cos?Iyp - cos?Ipg,

c0s?Vpg * c0s?9gy + cos?Ipy  cos?Iys.

But, the only ‘high’ cosine terms are those which involve the angle between Hungary and Poland,
since this is the only ‘small’ angle (Hungary and Poland are the only countries assumed to be similar
to each other). It is clear that Sim(Sweden, Austria) is the only term which involves two high
cosine terms, while each of the Sim(Hungary, Austria) and Sim(Poland, Austria) terms involve
only one high cosine term. It follows that Sim(Sweden, Austria) would be, on average, higher than
Sim(Hungary, Austria) and Sim(Poland, Austria), as required for a demonstration of Tversky’s
(1977) diagnosticity effect. Similar considerations can be made for when the task is to identify the
country most similar to Hungary and the country most similar to Sweden (Appendix 3). For example,
in the former case, we are comparing Sim(Austria, Hungary), Sim(Sweden, Hungary), and
Sim(Poland, Hungary). In this case, Sim(Poland, Hungary) emerges as highest because the
high cosine term (corresponding to the low angle between Poland and Hungary) appears only in the

case of Sim(Poland, Hungary).
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It is straightforward to provide a computational illustration of the effect. Figure 5 shows a
plausible geometrical arrangement for Austria, Sweden, Poland, and Hungary. As we did for the
Russia-Cuba-Jamaica example, rather than directly compute an initial state vector which leads to the
same projection for all four countries (that is, an initial state vector which is not biased towards any
of the countries), it is simpler to assume that Psyeqen|W) = |Sweden), Ppoianal) = |Poland) etc.,
that is, that the first projection to any of the countries is simply a normalized vector along the
countries.

Let us define the Sweden angle to correspond to the angle between the Sweden ray and the
horizontal, and likewise for the Austria angle, the Poland angle, and the Hungary angle. We set the
Sweden angle equal to a random angle between 0 and 45°, the Poland angle equal to the Sweden
angle plus 90° plus a random angle between -5° and 5° the Hungary angle equal to the Poland angle

plus a random angle between -5° and 5°, and the Austria angle equal to

(Hungary angle+Poland angle)/2+Sweden angle
2

scheme 100,000 times, we found that the Sim(Sweden, Austria) was highest in 77.1% of all times.

plus a random angle between -5° and 5°. Repeating this

This preference for Sweden is a demonstration consistent with Tversky’s diagnosticity effect, since
the context of Hungary and Poland make Austria and Sweden more similar to each other, than they
would have been without this context. Without the context elements, Sim(Sweden, Austria) was
highest in approximately 44% of all cases, compared to Sim(Hungary, Austria) and
Sim(Poland, Austria). Note that the model was set up so that Sweden is equally similar to Austria
as Hungary/Poland are. Therefore, without context, about half the time Austria turned out to be
most similar to Sweden and about half the time to either Poland or Hungary.

According to Tversky (1977), it is (partly) the implied classification of some of the
alternatives, which produces the diagnosticity effect. We next explore the emergence of the
diagnosticity effect, as the relation between the four countries is altered. Suppose that Hungary and
Poland are dissimilar to each other and/ or Sweden is similar to Hungary and Poland. Under such
circumstances, we expect the diagnosticity effect to break down. We verified that the QP model is
consistent with this expectation. We examined model predictions across a range of values for the
angle between the Sweden ray and the Poland ray (the Sweden, Poland offset angle) and the
maximum allowed angle between the Hungary and Poland rays (the Hungary ‘jiggle’ angle). Figure 6
shows these results. It can be seen that the diagnosticity effect attenuates as the Hungary ‘jiggle’
angle increases and as the Sweden, Poland offset angle decreases. In other words, as the grouping of
Hungary and Poland against all the other countries breaks down, so does the presence of the
diagnosticity effect.

We illustrate the model in two additional ways. We examined its predictions when the task
was to identify the country most similar to Hungary amongst Austria, Sweden, and Poland and the
country most similar to Sweden amongst Austria, Poland, Hungary. Across 100,000 iterations, in
100% of all cases, the model predicted that Poland would be chosen as most similar to Hungary in
the former case and Austria would be chosen as most similar to Sweden in the latter case. Both
these results are consistent with expectation.

Tversky (1977, 343) insightfully observed that “The diagnosticity of features is determined
by the classifications that are based on them.” But, according to Tversky, the grouping of some
alternatives, such as Hungary and Poland, leads to the emergence of particular diagnostic features,
such as Eastern European country vs. not Eastern European country. Then, these diagnostic features
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make the remaining alternative more similar to the target country. But, as discussed, an explanation
relying on diagnostic features can have problems.

In the quantum model, context corresponds to successive projections between the context
elements. When the context elements are grouped together (as for Hungary, Poland), projecting
across them leads to little loss of amplitude of the state vector, so that the similarity judgment ends
up being higher. When there is no grouping across any of the possible contexts, then the effect of
context is simply to uniformly scale the similarity judgments. So, context can make the same
similarity comparison appear higher or lower, depending exactly on the grouping of the context
elements. Finally, a grouping of alternatives means that there are subspaces along which these
alternatives have a high projection, that is, properties or features that are common to some
alternatives, but not others. So, overall, the intuition for how the quantum model produces the
diagnosticity effect is not much different from that of Tversky’s (1977). But, in Tversky’s (1977)
model it has to be assumed that diagnostic features are invoked, as a result of the grouping, while in
the quantum model, the diagnosticity effect emerges directly from the presence of a grouping.

VI. Conclusions and future directions

The objective of this paper was to generalize the notion of geometric representations. In the
guantum proposal, the representation of an object need not be restricted to a single vector in a
multidimensional psychological space, rather it can be a subspace of arbitrary dimensionality. The
QP framework was developed to do exactly this, that is, associate knowledge with subspaces. The
idea of representations as subspaces allows us to capture the intuition that a concept is the span of
all the thoughts produced by combinations of the basic features that form the basis for the concept.
Such relevant thoughts can include a central tendency, individual relevant instances, and properties.
Moreover, the insight that concepts are about relevant thoughts, as well as instances, prototypes,
etc., has been often expressed in discussions on representation and similarity (cf. Fodor, 1983;
Murphy & Medin, 1985), but particular schemes for formalization have been lacking. Finally, the
proposal for similarity is that this involves a process of thinking of the first and then the second of
the compared entities. We were so able to cover some key empirical results: the basic violation of
symmetry and the triangle inequality (Tversky, 1977) and the diagnosticity effect (Tversky, 1977).

One challenge for future work is to expand the range of empirical issues considered and
motivate novel empirical demonstrations. For example, violations of symmetry can also arise from
differences in perceptual salience or even frequency (Polk et al., 2002) and similarity judgments
sometimes reflect correspondence between the parts of the compared stimuli (Larkey & Love, 2003;
Markman & Gentner, 1993). More generally, a theoretical link between similarity and subjective
probability has been the basis of influential ideas (Medin, Goldstone, & Markman, 1995; Shafir,
Smith, & Osherson, 1990; Sloman, 1993; Tversky & Kahneman, 1983). Quantum theory provides a
way to formalize this link. For example, in directional probability judgment tasks, one might seek to
induce asymmetries in the consideration of predicates, analogous to the ones observed in similarity
judgments.

The present emphasis was on the mathematical specification of the quantum model. One
challenge for future work is detailed comparisons with alternative similarity models. We make some
preliminary comments, in relation to symmetry. Tversky’s (1977) own contrast model is that



19 a quantum geometric model of similarity

Similarity(A,B) = 0f(ANB) —af(A— B) — Bf (B — A), where 6, a, B are parameters, AN B
denotes the common features between A and B, A-B the features of A which B does not have and B-
A the features of B which A does not have. Such a scheme can predict violations of symmetry if A has
more features than B and the parameters a,  are different to each other and suitably set (e.g.,

6 > 0,a =1, = 0). Tversky’s model of similarity is fairly complex, as it involves two independent
parameters. According to Tversky, these can be set by considering the relative salience of subject
and referent in similarity judgments.

Krumhansl (1978) and Ashby and Perrin (1988) both provided sophisticated extensions to
geometric models of similarity. In Krumhansl’s (1978) proposal, the distance between two points A
and B in psychological space is affected by the local density around each point, D(A) and D(B). The
local density around a point reflects the number of other points within a certain radius. Thus,
d'(A,B) = d(A,B) + aD(A) + bD(B), where d(A, B) is the standard geometric distance, a and b
are weight parameters, and d'(4, B) is the modified distance measure, as affected by local densities.
In the case of the Korea-China example, for a violation of symmetry to occur, one needs to assume
that the local density around China is different from the local density around Korea. Krumhansl
(1978) suggested that prominent objects are likely to have many features and so these objects are
likely to share features with a greater number of other objects, compared to objects with fewer
features. Therefore, prominent objects are more likely to exist in denser regions of psychological
space.

In Ashby and Perrin’s (1988) general recognition theory, each stimulus (e.g., presented in
different trials) can correspond to different points in psychological space, according to a particular
probability distribution. Psychological space is divided into response regions, such that within each
response region it is optimal to make a particular response. Then, similarity between two stimuli
depends on the extent to which the distribution of perceptual effects for the first stimulus overlaps
with the optimal response region for the second stimulus. For the Korea-China example, there are
two factors predicting that Sim(Korea, China) > Sim(China, Korea), first, that for many
observers Korea will be a ‘more vague and poorly defined concept’ (p.133), so that the
representation of Korea in psychological space will have a greater variability. Second, they argued
that the response region for Korea would be smaller than that of China, because Korea is very similar
to many other countries. But, observe that Krumhansl (1978, p.454) made the exact opposite
assumption, that is, that it is China, not Korea, which is similar to a greater number of other
countries. Thus, Ashby and Perrin (1988) and Krumhansl (1978) make opposite assumptions,
regarding whether it is Korea or China, which is similar to a greater number of other countries. Of
course, both Krumhansl’s (1978) and Ashby and Perrin’s (1988) models are sophisticated and a
comprehensive examination requires more discussion. Our point is that coverage of even just
symmetry violations in similarity is not straightforward.

Another fruitful comparison direction concerns models of information retrieval in large text-
based corpuses. The quantum similarity model provides a way to assess the similarity between
qguery and target, in a way that allows for asymmetries in the information content between the two
and, also, can be informed by some proximal context (cf. Bruza, 2008). For example, an influential
tool for information retrieval is Latent Semantic Analysis (LSA; Dumais, 2004). LSA works on a word
by document matrix, with cells containing information about the frequency of words in the
documents. Singular value decomposition is then employed to identify a set of dimensions, so that
both the words and the documents can be represented in the same semantic space. Such a common
space can be flexibly employed to compute similarities between words and documents or
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documents and other documents etc., usually in terms of the cosines of corresponding angles. A key
difference between the LSA and the quantum similarity model is that in the former all documents,
regardless of extent or complexity, would still be represented as single vectors. In the context of LSA
applications, does it matter if more extensive documents are represented in a way equivalent to that
of shorter ones? A related issue is that the similarity metric in LSA is symmetric, so the method
would fare poorly with Tversky’s (1977) key results (but see Griffiths, Steyvers, & Tenenbaum, 2007,
for a generalization of these ideas, in a way allowing violations of the metric axioms). Again, one can
ask whether empirical results in LSA application reveal any asymmetries or not. Moreover, LSA
provides a data-driven mechanism for creating representations. If this work can be adapted to the
specification of subspaces, instead of individual vectors, then this would enable a major
development in the quantum similarity model.

It is natural to compare applications of quantum theory to psychology with ones of classical
probability (CP) theory, since both are general, formal frameworks for assigning probabilities to
events. Classical models have had an enormous influence in psychological theory (Chater,
Tenenbaum, Yuille, 2006; Griffiths et al., 2010; Oaksford & Chater, 2007; Tenenbaum et al, 2011)
and many researchers recognize the appeal of the kind of psychological explanation provided by CP
models. Researchers interested in the application of QP theory in cognition aim to develop models
with the same general characteristics as CP models. Specifically, quantum models aspire to cognitive
explanations emphasizing the nature of representations, the operations on these representations,
and the identification of the computational biases which guide cognitive process (Griffiths et al.,
2010). Because of the sequential nature of projection in quantum theory, it will perhaps be easier to
extend quantum models to include process assumptions, than it is generally the case for CP models
(Jones & Love, 2011).

Quantum and classical probability theories arise from sharply different axiomatic
foundations and so quantum theory has many unique characteristics, which have no analogue in
classical theory. Notably, in quantum theory, computation can be order and context dependent and
states are often superposition states, relative to the outcomes of a question. A superposition state
vector cannot be said to possess a specific value for any of these possible outcomes and possible
outcomes may interfere with each other, as the state vector develops in time. These features of
guantum theory have enabled probabilistic models for situations which have been puzzling from a
classical perspective (Aerts, 2009; Atmanspacher et al., 2004; Blutner, 2008; Bruza, 2010; Busemeyer
& Bruza, 2012; Khrennikov, 2004; Yukalov & Sornette, 2010). A general difference between quantum
and classical theories is that the latter require that there is always a complete joint probability
distribution for all the questions relevant for a system (this is the principle of unicity; Griffiths,
2003). We suggest that such a requirement is psychologically unrealistic and, rather, the perspective
dependent nature of calculation in quantum theory provides a more plausible framework for
cognitive modeling (e.g., Pothos & Busemeyer, in press).

In this vein, regarding the quantum similarity model, its foremost characteristic is its
sensitivity to the order and context of evaluating projections (and so similarities). There is a growing
realization that analogous order effects are common in psychology, which recommends further
study of QP cognitive models. Indeed, researchers interested in cognitive modeling have been
increasingly employing computational machinery from this important class of models (Aerts &
Gabora, 2005; Atmanspacher, Filk, & Romer, 2004; Bruza, Busemeyer, & Gabora, 2009; Bruza,
Busemeyer, & Gabora, 2009; Busemeyer, Wang, & Townsend, 2006; Busemeyer et al., 2011; Franco,
2009; Khrennikov, 2004; Pothos & Busemeyer, 2009; Van Rijsbergen, 2004). The present work adds
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to this effort. As discussed, important challenges remain. We hope that the current analyses will
motivate the application of the model in more specific problems and its further elaboration.
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Footnotes

Footnote 1. Infinite dimensional spaces are routinely employed in QP theory. Such spaces, when
subject to certain completeness properties (e.g., that the infinite sum |x;|? + |x;|? + - strongly
converges, where x4, X, etc. correspond to the amplitudes of the state vector along different basis
vectors), are the famous Hilbert spaces. From a psychological point of view, an infinite dimensional
space means that it is possible, in principle, to have an infinite number of possible kinds of
knowledge.

Footnote 2. As noted, these dimensions are best understood as vectors which correlate with sets of
features.
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Appendix 1: Computing the initial state vector (), so that it does not bias the similarity comparison
towards China or Korea, when assessing the similarity between the two.

This requires that 1 has the same projection to the China and Korea subspaces, or that |Pypreq

Y|? = |P.pina * W1%. We first work this out in the case where Korea is a one-dimensional subspace (a
ray) and China is a two-dimensional subspace (a plane). Let’s say that |y) = |korea) + a|chinal) +
a|china2), where |korea), |chinal), etc. are the respective basis vectors (we will shortly abbreviate
these to |k), |c1), etc.). We want to find a so that the projections to the Korea and China subspaces
are the same. Note that i may need some additional normalization and that {|korea) and

|chinal, 2)} do not constitute an orthonormal basis.

Prorea " |W) = |k) + alkl|c)|k) + alklco) k) = (1 + alk|cy) + alklcy)|k)

Likewise,
Peping - 1) = {c1lk}c1) + {czlk)cz) + aler) + alcz) = (erlk) + a)|cq) + (ezlk) + a)|cy)
(Noting that we are in a real space so that (a|b) = (b|a))

|Prorea * W2 = 1+ a?(klcy)? + a?(klcy)? + 2alk|cy) + 2alk|cy) + 2a%(k|ci Xk cy)
|Pehing * W% = (cq k)2 + a? + 2alcy k) + (c;31k)? + a? + 2a{c,|k)

Equating:
a?((klcy)? + (kleg)? + 2¢kley)klcy) — 2) = (cqlk)? + (calk)* — 1

We next work out a more general formula:

Let’s say

Prorea = |kiXky| + [kaXko| + o [k Xk |

Pcping = leiXer| + [ea){ea| + -+ e Xl

k < ¢ (k and c are the dimensionalities of the Korea and China subspaces respectively).

So that the initial state vector is:

) = iu«i) +ai|cj>
i=1 j=1

k k c k k c
Prorea  [¥) = 2 Pkoreaz Elki) + aZ|Cj) = Elki) + az Pkoreai Z'Cj)
=1 i=1 j=1 i=1 i=1 j=1
k k ¢
= Dk + ) > allale) k)
i=1

i=1 j=1
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k c c c k

Pehina * 1) = zc: Pching, Zlki) + a2|cj) = aZ|Ci) + Z Pchina; Z“‘j)
=1

i=1 j=1 i=1 i=1 j=1
c c k
=) Ja)+ ) ) elig)e)
i=1 i=1j=1

From these expressions we have that

k c 2 c k 2
Z 1+Za(ki|cj) =Z +Z Cllk
i=1 j=1 i=1 j=1
c c
1+a22 k; |c] +2a2(k |c])+2a Z (kile)!kiley) | =
i=1 j=1 j=1 l=1m=1+1
c k k k
a’ + Z Cllk +2 2(cl|k ) Z (c;lk)cilknm)
i=1 j=1 j=1 l=1m=1+1

Or:
k c k c
2
ka2 y Dlklgl +2a2 ) > Gale)tkilen) =
i=1j=1 i=1l=1m=1l+1
c k
¢ a? 2 cilk;) +zz Z (cilkp)eqliem)
j=1 i=11l=1m=1+1
Or:
k ¢ k c
2 2
a (kilc;)” +2 (kileokilem) — ¢
i=1j=1 i=11=1,m=Il+1
c k c k
= > ek’ 2 > (alkXeilkn) — k
i=1j=1 i=11l=1,m=Il+1

From this last equation, a can be computed.

Consider next how the value of the a parameter changes, depending on the relative
dimensionality of the Korea, China subspaces. For example, in the case when both subspaces are
assumed to be two-dimensional (this was one of the control demonstrations), [) = |korea,) +
korea,) + a - (|china,) + |china,)). Thus, a reflects the extent to which the Korea basis vectors
are weighted more or less than the China ones, so as to achieve the required condition of |Pcping *
|1/J)|2 = |Pxorea * |1,l))|2. In that case, when both China and Korea were planes, a>1 in 50.4% of all
times and a<1 in 49.6% of all times, as expected (note that a values were computed across 100,000
specifications of random planes for Korea and China). For when China was modeled with a four-
dimensional subspace and Korea with a two-dimensional one, |) = |korea,) + korea,) + a -
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(|chinaq) + |china,) + |chinaz) + |chinay,)), so we would expect China basis vectors to be
weighted less than the Korea ones. Indeed, we found that a<1 in 96.2% of all cases.
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Appendix 2: An analytic examination of the quantum model for the Korea-China example, in the
simple case in which Korea is a one-dimensional subspace and China a two-dimensional one.

Let us assume that the Korea subspace is spanned by | k) and the China one by |c1), |c2). Let us
consider first |PchinaWkorea|?, remembering that Y oyeq is @ normalized vector in the Korea
subspace and so it can only be |k), since Korea is one dimensional. Then,

|Pehina¥roreal? = 1(Jc1Xc1] + [c2)(c2])|k)[? = [|c1)c1|k) + |c2)(c2|k)|? = (c1|k)* + (c2|k)

In the converse case, Ycpina €an be any vector of the form a|c1) + b|c2), whereby a?+b%=1.
Then,

|Pxorea®chinal® = |lkXk|(alcl) + blc2))|?* = [|k)(alk|c1) + b{k|c2))|* = (alk|c1))? +
(b(k|c2))? + 2ab{k|c1){k|c2)

So, comparing |PchinaWkoreal? and |PxoreaWchina|? involves comparing (Cl|k)2 + (cZ|k)2 and
(alk|c1))? + (b(k|c2))? + 2ab{k|c1){k|c2). To acquire some further insight into these
computations we can make the simplifying assumption that (cl|k)2 = (62|k)2 = (k|cl)2 = (leZ)Z.
Then, comparing |PerinaWkoreal’ and |PxoreaWchinal|? reduces to the comparison between

2(Cl|k)2 and (k|cl)2 + 2av1 — az(k|cl)2, where we used the fact that b = V1 — a2. It can be

readily seen that 2aV1l — a2 is always less than 1, unless a is exactly equal to b, and so, in the vast
1

majority of cases |PChina¢Korea|2 > |PKorea¢China|2- Ifa=0>b= z’ then
2 1 o .
2aV1 —a? = NGl 1- 5= 1, that is, in this case |PchinaWkoreal® = |Pkorea¥chinal®- Thus, it can

never be the case that |PChinalpbKorea|2 < |PK0rea¢China|2-
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Appendix 3: Analytic computations for the series of projections relevant to the demonstration for
Tversky’s (1977) diagnosticity effect.

We first consider the problem of identifying the country most similar to Austria, from the set of
Sweden, Poland, Hungary (this was Tversky’s original experiment for the diagnosticity effect).
Let us consider, for example, |P4Pp Py Ps|)|* = |Pa¥pus|?*|Peus|*|Pubs|?|Ps)]?.

(A, P, H, S correspond to Austria, Poland, Hungary, Sweden, respectively.)

[Ys) = Ps|y) = |S) . The initial state vector is defined so that its projection has the same magnitude
along the rays corresponding to each of the four counties; for simplicity we can assume that this
projection is equal in magnitude to the original vector, so that |Pg|y)|? = 1. Noting, however, that
more than two dimensions would be required to explicitly compute an appropriate initial state
vector.

Py|yps) = |HXH|S) = |H)cosOys so that |Py|s)|? = cos?9ys . Note that, in general, {(a|b) =
|al||blcos8 only in real spaces, but throughout this work we assume real spaces (and also that all
vectors are normalized to 1, as is standard in QP).

[Yus) = |H)

[Wpns) = Pplys) = [PXP|H) = |P)cosdpy so that |Pp|iys)|* = cos*Ipy
[Ypus) = |P)

P4lpus) = |AXA|P) = |A)cosp 50 that [P4[Ppys)|? = cos?Iyp

Thus, |P4PpPyPs|th)|? = cos?94p * c0s?9py * cos?Iys

Note the correspondence between the angle indices and the indices for the series of projections.
Thus, any related projection terms can be straightforwardly computed. For example,

|PAP5PHPP|I!))|2 = C05219AS . COSZﬁSH . C05219HP

Thus,

(IP4PsPHPp|Y)*+|PoPsPpPH|P)I?) or
2
c0s%9,5 + (c0s?9gy * c0s?Iyp + c0s?9gp - c0s%Vpy)

2

Sim(Austria, Sweden) =

Sim(Austria, Sweden) =

(IPAPHPsPp|Y)I*+|P 4P PpPs|P)*) or
2
c0s?9,y * (c0s?Iyg - c0s?9sp + c052Iyp - c052Ipy)

2

Sim(Austria, Hungary) =

Sim(Austria, Hungary) =

(IPaPpPsPH|Y)|*+|PaPpPyPs|P)*) or
2
cos?Y,p * (c0s?Vpg * c0s?Ygy + c0s?Ipy - cOS?Iys)

2

Sim(Austria, Poland) =

Sim(Austria, Poland) =
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Note, finally, that the model assumes that the Austria ray is approximately halfway the
Poland/Hungary rays and the Sweden one. That is, we also have cos?9,5 ~ c0s?94y =~ c0s%4p.

We now apply the above computation in the two related problems of, first, identifying the country
most similar to Hungary from the set of Austria, Sweden, Poland and, second, identifying the country

most similar to Sweden from the set of Austria, Poland, Hungary.

Computing similarity to Hungary

|PEPAPsPp|W)*+IPyPoPpPs|P)*) or
2
c0s?9y, * (c0s?9 5 c0s?9gp + c05%Iyp - cOS?Ipg)

2

Sim(Austria, Hungary) = ¢

Sim(Austria, Hungary) =

(IPHPsPpPalY)|*+|PuPsPaPp|Y)?) or
2
cos?Vys * (c0s?9gp * c0s?Vpy + 0525, * c0S29yp)

2

Sim(Sweden, Hungary) =

Sim(Sweden, Hungary) =

(IPHPpPsPAlY)?+|PuPpP aPs|P)I?) or
2
c0s%9yp * (c0s29pg - cOS?Vgy + c0520p, * c052y5)

2

Sim(Poland, Hungary) =

Sim(Poland, Hungary) =

The high cosine term (corresponding to the low angle between Poland and Hungary appears only in
the case of Sim(Poland, Hungary), hence this is predicted to be the highest similarity.

Computing similarity to Sweden

(IPsPAPHPp|Y)*+|PsP4PpPH|P)?) or
2
€025, * (c0s?9,y * c0s29yp + c0s29,p * c0s29py)

2

Sim(Austria, Sweden) =

Sim(Austria, Sweden) =

(IPsPuPpPalY)*+|PsPuPaPp|Y)I?) or
2
c0s?Vy * (c0s29yp - c0s29p, + c0529y, * cOS?9yp)

2

Sim(Hungary, Sweden) =

Sim( Hungary, Sweden) =

(IPsPpPHPAIY)I*+|PsPpP aPH|Y)*) or
2
c0s%p * (c0529py * €529y, + c0529p, - cOS?Iyy)

2

Sim(Poland, Sweden) =

Sim(Poland, Sweden) =

The relatively high cosine term (corresponding to the relatively low angle between Austria and
Sweden appears only in the case of Sim(Austria, Sweden), hence this is predicted to be the highest

similarity.
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Figure captions

Figure 1. An illustration of the idea of projection.

Figure 2. The figure illustrates how a successive projection from a ray and then to a plane will
preserve more amplitude than a successive projection to a plane and then to a ray. The first
projection is assumed to retain the same amount of amplitude, regardless of whether it is to a ray or

to a plane.

Figure 3. Tversky’s (1977) example of when human similarity judgments can violate the triangle
inequality, assuming that dissimilarity is some linear function of distance in a psychological space.
The diagram implies that Similarity(Russia, Jamaica)> Similarity (Russia, Cuba) + Similarity (Cuba,
Jamaica), but in practice the opposite is true.

Figure 4. A geometric, two-dimensional representation of the information in Tversky’s Russia-Cuba-
Jamaica example. The triangle inequality requires that Dissimilarity (Russia, Cuba) + Dissimilarity
(Cuba, Jamaica) > Dissimilarity (Russia, Jamaica). The black perforated lines illustrate how the
corresponding projections allow for Similarity (Russia, Cuba) (green) + Similarity (Cuba, Jamaica)
(yellow) > Similarity (Russia, Jamaica) (blue), thus violating the triangle inequality.

Figure 5. lllustrating a model for Tversky’s (1977) diagnosticity effect. The top panel shows the series
of projections in |P4PsPy Pp1|?, corresponding to the similarity between Sweden and Austria (the
subscripts correspond to Austria, Sweden, Hungary, and Poland). The bottom panel illustrates the
series of projections in |P,PpPsPy1p|?, corresponding to the similarity between Poland and Austria.
It can be seen that the overall result of the projection depends on whether the projections to

Hungary and Poland are successive or not.

Figure 6. The horizontal axis correspond to the Poland Sweden offset angle and the vertical axis to
the Hungary jiggle angle (please see text for explanation). The frequencies to compute the
probabilities for each data point in the graph were computed across 10,000 iterations. Blue colors
correspond to lower values and red colors to higher values. Thus, red values are more consistent

with the presence of a diagnosticity effect.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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