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These notes are intended to supplement the content of my section of the full day tutorial on
“Quantum Models of Cognition and Decision,” given at the annual meeting of the Cognitive Science
Society, 2015. I hope to cover all the same material as the actual tutorial. In addition I will flesh
out one or two points that I didn’t have time to go into in detail, present a few mathematical results
which are interesting but not essential for the main discussion, and finally collect relevant references
and further readings.

I. PREAMBLE

These notes have been written to accompany my sec-
tion of the full day tutorial on “Quantum Models of Cog-
nition and Decision” given at CogSci 2015. The mate-
rial I am presenting consists mainly of advanced concepts
and ideas from the physics literature, some of which have
made it into more sophisticated quantum cognitive mod-
els, but some of which are yet to find a concrete appli-
cation. I am discussing these topics therefore partly in
case you come across them in some more advanced papers
on quantum modelling, but mostly because I think they
(like you) represent the future of the quantum cognition
programme.

It follows from the fact that the nature of the material
I am presenting here is different from that you’ve seen in
the rest of the tutorial, that the style of presentation will
also be different. Specifically I am aiming for a broad and
shallow overview of several different topics, or, to use a
metaphor close to home for me, a sort of ‘London Bus
Tour’ of modern quantum mechanics. What I want you
to get from this tutorial is first of all an awareness of some
of the advanced tools and issues in quantum mechanics,
and how they might impact cognitive modelling using
quantum theory. In particular I’d like you to be able
to spot where and when some of the simple assumptions
used in most existing quantum models might break down.
Second, assuming you do run into any of these issues, I’d
like you to have an idea about where to look for more
information.

Some general comments on these notes:

1. These notes are not meant as an introduction to
the whole of the Quantum Cognition program. In
particular I’m assuming readers have sat through
the previous three sessions of this tutorial. If you’re
reading these notes as a complete newcomer to the
field, I’d recommend the book by Busemeyer and
Bruza [1] as a good place to start. For more detail
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about the maths, I recommend Isham [2] or one of
the many sets of excellent lecture notes available
online [3].

2. Since they are intended as a supplement, I won’t
distinguish between ‘essential’ and ‘extra’ mate-
rial, except in one or two places where I make
large diversions. However as a good rule of thumb
you shouldn’t worry too much about understand-
ing proofs or derivations (even though I’ve tried to
keep them to a minimum.)

3. A note on the maths; I will be making use of bra-
ket notation throughout. Thus state vectors will
be written as |ψ〉. Also I won’t usually write hats
on operators or use bold/underline to denote vec-
tors - whether something is an operator, a vector
or a number should be obvious from the context.
Finally since I have no idea about what ~ is sup-
posed to be in cognition, I will adopt the physicists
convention of setting it equal to 1.

4. A note on references; I’ve tried to include only
the most useful references I could find. I’ve opted
for books or review papers where possible, but
I’ve included genuine research papers too where I
thought they were useful/comprehensible. There
is pretty much no limit to the number of refer-
ences I could have included, see e.g. [4]. There are
three particular sources worth mentioning though,
1) Wikipedia. Yes really. It’s very reliable for any-
thing mathematical, and of course easy/free to ac-
cess. 2) arXiv.org. You’re probably not familiar
with this, but it’s a pre-print archive used by the
physics/maths community as a place to upload pa-
pers prior to publication. Most are subsequently
updated upon publication to reflect the published
versions. The upshot of this is that probably the
majority of published physics papers, dating back
to the late 90’s, are available free from this one site.
Where I can track it down therefore, I’ve given the
arXiv reference alongside the journal info, in case
you run into problems accessing physics journals
at your institution. 3) The single text I’ve used
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most in putting these notes together is The The-
ory of Open Quantum Systems by H.-P.Breuer and
F.Petruccione [5]. I wouldn’t recommend you go
and buy this, as it’s much more a physics text than
a psychology one, but it’s only fair to let you know
about this, since I’ve consulted it so frequently
while preparing these notes.

5. Finally, these notes will be available online during
and after CogSci. I will update them if anything
occurs to me, but I’d also be grateful for any com-
ments and questions about the text. I may add
to the these notes if there are any strong opinions
about material I should have covered.

II. INTRODUCTION: NOISE!

The previous material you’ve encountered at this tuto-
rial mainly dealt with idealised quantum models. By this
I mean models where you have perfect knowledge/control
over the cognitive state of your participants, the form
and effect of measurements, and finally the details of any
‘evolution’ of the state.

In the real word (or even the real lab), things are rarely
this simple. I want to show you some tools that can
let you generalise the models you’ve come across so far
to apply in more realistic situations. It turns out that
doing this will also teach us some profound things about
the meaning of the quantum approach to cognition, and
how it differs from classical approaches. The theme of
this section of the tutorial is therefore ‘Noise’, specifically
‘Noise in the cognitive state’, ‘Noise in the measurements’
and finally ‘Noise in the evolution.’

III. NOISE IN THE COGNITIVE STATE:
DENSITY MATRICES

A. Introduction

Suppose I’m doing an experiment in the lab and the
expected results depend on whether my participants are
left or right-handed. My PhD student collects an equal
number of left and right handed participants and lets
them into my lab one at a time. Unfortunately my PhD
student doesn’t tell me which participants are which,
so all I know is that there’s a 50/50 chance of getting
a left/right-handed participant each time. Suppose the
cognitive state of the left handed participants is given
by |L〉 and that of the right handed ones by |R〉 (and
that these two states are orthogonal), what is the correct
cognitive state to describe my unknown participants?

You might guess the answer is,

ψ =
1√
2

(|L〉+ |R〉) (3.1)

but this turns out not to be correct. You might have
guessed this because if I ask “What’s the probability

that a participant given by this state will say they are
left/right-handed if I ask them?” then the answer is;

p(left) = 〈ψ|PL |ψ〉 =
1

2
(〈L|PL |L〉+ 〈L|PL |R〉

+ 〈R|PL |L〉+ 〈R|PL |R〉)

=
1

2

(3.2)

and the same for right. (Here PL = |L〉 〈L| etc.)
However this isn’t the correct state because what I’ve

made here is a ‘quantum’ mixture (or superposition) of
left and right, whereas what I was really looking for was a
classical mixture. |ψ〉 tells me the participant is in some
sense neither left nor right handed [19], at least until I
ask, whereas of course what’s really happening is that
each participant is definitely either left or right handed
when they enter the lab, I just don’t know which.

B. The Density Matrix ρ

Let’s see if we can get a clue about the right answer
by looking at the statistics for the outcomes of our ex-
periment on these participants. Suppose my experiment
is represented by an operator O, and for left and right
handed participants the expected result is l and r respec-
tively. Since we have an equal number of left and right
handed participants half the time I will get the result l
and half the time I will get the result r. The average
outcome across many experiments will therefore be,

〈O〉 =
1

2
〈L|O |L〉+

1

2
〈R|O |R〉 , (3.3)

=
l + r

2
.

I can write this result in a simpler way by introducing
the density matrix ρ,

ρ =
1

2
(|L〉 〈L|+ |R〉 〈R|) (3.4)

Then the expected outcome of my experiment can be
written as,

〈O〉ρ = Tr(Oρ) (3.5)

where Tr denotes the trace of an operator. The trace of
an operator is defined by,

Tr(A) =
∑
i

〈φi|A |φi〉 (3.6)

where the {φi} form an orthonormal basis of the Hilbert
space. It is easy to show that if the trace of an operator
exists, it is independent of the choice of basis {φi}[20].
(In terms of matrices, the trace of a matrix is just the
sum of the diagonal terms.)
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More generally, if we have a classical mixture of pos-
sible states |ψα〉 which occur with probabilities ωα this
ensemble can be represented by a density matrix,

ρ =
∑
α

ωα |ψα〉 〈ψα| (3.7)

It turns out that every expression you might have pre-
viously encountered in quantum theory has an equivalent
in terms of the density matrix. In fact density matrices
represent the most general way of writing the equations of
quantum theory, and they will prove extremely valuable
for the rest of this tutorial. It is therefore worth noting
a few properties of the density matrix, and the density
matrix analogues of some of the familiar expressions in
quantum theory.

Properties of the density matrix:

• It is a Hermitian [21] operator, ρ† = ρ.

• It is normalised in the sense that Tr(ρ) = 1.

• It is a positive operator, meaning,

〈ψ| ρ |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H.

These three properties essentially ensure that the eigen-
values of ρ are positive, real numbers which sum to 1,
and thus have the interpretation of probabilities.

As we mentioned above, all of the expressions you have
encountered so far in quantum theory can be rewritten
in terms of the density matrix. For example, from the
expression for the time evolution of a vector, |ψ(t)〉 =
U(t) |ψ0〉, where U(t) = e−iHt [22] it follows that,

ρ(t) = U(t)ρU†(t) (3.8)

From this, it is easy to see that the analogue of the
Schrodinger equation for a density matrix is [23],

∂

∂t
ρ = −i[H, ρ] (3.9)

This is often known as a master equation. Finally if we
perform a measurement on the state represented by the
density matrix ρ the probability that we will get the an-
swer represented by the projection operator Pa is given
by,

p(a) = Tr(Paρ) (3.10)

and if we do, the state collapses to the new state,

ρ′ =
PaρPa

Tr(Paρ)
. (3.11)

In the special case of ρ = |ψ〉 〈ψ| this is easily seen to be
equivalent to the usual expression involving state vectors.

We mentioned above that our original guess at the
state for an equal mixture of left and right-handed par-
ticipants, 1√

2
(|L〉+ |R〉), wasn’t correct. Since this state

can also be written as a density matrix, we can compare

our guess, ρg, with the correct answer, ρc. Working in
the {|L〉 , |R〉} basis, we have;

ρg =
1

2
(|L〉+ |R〉)(〈L|+ 〈R|) =

(
1/2 1/2
1/2 1/2

)
(3.12)

ρc =
1

2
(|L〉 〈L|+ |R〉 〈R|) =

(
1/2 0
0 1/2

)
(3.13)

Comparing the two expressions, we can see that they
differ only in their ‘off-diagonal’ elements. Thus the dif-
ference between the classical mixture of left and right
handed, and the quantum superposition of left and right
handed is in some way encoded in these off-diagonal
terms in the density matrix. It is tempting therefore to
think that the difference between classical and quantum
descriptions of a system can be expressed in this way, and
that quantum superpositions can be turned into classical
mixtures by somehow removing these terms. We will dis-
cuss this further in a later section, but for now note that
the situation is a bit more complicated than it seems.
For a start, the properties of the density matrix guar-
antee that it is diagonalisable, i.e. all density matrices
are diagonal in some basis. The issue about whether a
given density matrix represents a classical or a quantum
mixture is therefore more about the basis in which it is
diagonal [6].

C. Using Density Matrices

It might be useful at this point to give a short outline
of two ways in which density matrices might be used to
construct quantum models of decision. Our motivating
example was useful for setting the scene and explaining
what density matrices are, but it is obviously unrealistic.
What is true however, is that I see the usefulness of den-
sity matrices primarily in the area of modelling individual
differences [24]. I mean this less in the sense of explain-
ing the behaviour of particular participants, and more
in the sense of predicting the spread of results, rather
than just the average behaviour. Most quantum mod-
els in the literature are rather simple constructions that
are concerned with predicting a particular average be-
haviour (for example the conjunction fallacy.) An impor-
tant future direction for research will be understanding
the spread of participant behaviours, rather than just the
average behaviour. Density matrices allow us to do this
in two ways;

• If we happen to know that some individual charac-
teristic is important, and we know the distribution
of this characteristic in our testing population, then
we can make direct predictions about the average
behaviour and the spread of behaviours by encod-
ing these differences as an initial density matrix, in
a very similar way to our toy example of left and
right handed participants.

• Suppose instead we only think there might be some
individual characteristic that is important, but we
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have no idea about its distribution in our testing
population. Well then we can encode the differ-
ences in an initial density matrix again, but now
leave the distribution of the characteristics as a free
parameter, and try to fit this distribution from the
data. In other words, if we think different groups
of participants might show different behaviours, we
can use a density matrix to perform a sort of mixed
models analysis, and determine what distribution
of individual differences best fits the data.

To the best of my knowledge, neither of these approaches
have been explored so far, but they obviously represent
important next steps for the QT approach, if our ambi-
tion is to produce ever more accurate models.

D. The Entropy of a Quantum State

We introduced the density matrix as a way to cap-
ture a classical uncertainty about the quantum state. It
is therefore natural to ask about the entropy associated
with a given density matrix. The entropy of a classi-
cal state is a frequently used quantity, and is obviously
central to approaches like MaxEnt. Having a quantum
analogue is therefore very useful. However before we do
this we will first look at a simpler measure of uncertainty,
called the ‘purity’ of a quantum state. This is defined by,

γ = Tr(ρ2) (3.14)

If we write our density matrix in diagonal form, i.e. as,

ρ =
∑
i

pi |φi〉 〈φi| (3.15)

where the {φi} form a complete orthonormal basis, then,

γ = Tr(ρ2) =
∑
i

(pi)
2 (3.16)

Either by diagnalising or by directly squaring the matrix,
we can see that,

γg = 1, γc =
1

2
(3.17)

Density matrices which can be written in the form ρ =
|ψ〉 〈ψ| always have γ = 1 and are known as pure states,
states which cannot be written in this form have γ < 1
and are called mixed. Clearly ρg is a pure state, whereas
ρc is mixed. The purity of a density matrix turns out to
be a useful approximate measure of the entropy of the
state, but to see this we first need to define the entropy
proper.

For a classical probability distribution over a finite set
of variables, {pi}, the classical Shannon entropy is given
by [25],

S = −
∑
i

pi ln(pi) (3.18)

Now Eq.(3.15) suggests that we could define the quantum
analogue of the Shannon entropy in the same way as
Eq.(3.18), but where the pi are now the ‘probabilities’
associated with the various basis states |φi〉. In the basis
where ρ is diagonal, this would be equivalent to [26],

S = −Tr(ρ ln(ρ)) (3.19)

but recall the trace operation is basis independent, thus
Eq.(3.19) is valid generally. It is straightforward to com-
pute the entropies of our two quantum states,

Sg = 0, Sc = ln(2). (3.20)

Eq.(3.20) is know as the von Neumann entropy. It is
easily seen that in general pure states like ρg have zero
entropy.

We can now explain briefly one reason why the purity
is such a useful measure. Suppose our density matrix is
close to being pure i.e. ρ2 ≈ ρ. We can Taylor expand
the logarithm as,

− ln(ρ) = (1− ρ) + (1− ρ)2/2 + (1− ρ)3/3 + ... (3.21)

It follows that

S = Tr(ρ− ρ2) + higher order terms (3.22)

= 1− γ + higher order terms (3.23)

The quantity 1 − γ is often called the linear entropy, as
it’s the term that comes from the linear expansion of
ln(ρ). The linear entropy is a lower approximation to the
von Neumann entropy, but is much easier to calculate,
since it doesn’t involve diagonalising ρ. In Fig.1 I plot
both the von Neumann entropy and the linear entropy as
a function of p, for the state,

ρ = p |L〉 〈L|+ (1− p) |R〉 〈R| (3.24)
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FIG. 1: The von Neumann and linear entropies for the state
Eq.(3.24).

For a classical probability distribution, the maximum
entropy state is the one with equal probability for any
outcome. The quantum analogue of this is a density ma-
trix which is diagonal, and where all the diagonal ele-
ments are equal. This state is given (for a Hilbert space
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of dimension d) by,

ρmax entropy =
1

d


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =
1

d
11d (3.25)

where 11d is the identity matrix in d dimensions (we will
usually drop the subscript d since the number of dimen-
sions should be obvious.) It’s easy to see that,

S(ρmax entropy) = ln(d). (3.26)

E. Discussion

The introduction of states with classical as well as
quantum uncertainty represents a very significant devel-
opment in the quantum formalism. We can now go ahead
and represent a much more general variety of knowledge
states, which probably better reflect the kind of partici-
pants we might encounter in a realistic experiment.

However the introduction of these states also gives us
a chance to discuss what I think is one of the most pow-
erful a priori reasons for considering quantum models of
cognition and decision. At the heart of this argument is
the difference between classical and quantum uncertain-
ties. Suppose we have a classical system such as a fair
coin, where our best description consists of a probability
distribution for the two possible outcomes, head or tails.
The probabilistic description reflects the fact that we are
uncertain about the outcome of a given coin toss. Classi-
cal probability distributions have an associated Shannon
entropy, and so classically the uncertainty about the out-
come of the coin toss (probabilistic description) is related
to a lack of knowledge (entropy) about the state of the
system. In other words, classically we have,

Uncertainty about outcomes

⇔
Lack of knowledge about state

Suppose we want to build a classical cognitive model
of a participant’s preferences; specifically, let’s imagine
we want a model of what type biscuit I will choose to eat
from the box I have in front of me, once I’ve finished writ-
ing this subsection. To simplify matters, suppose there
are only two types, milk or dark chocolate. I am indif-
ferent between them currently, and experience (and the
number of each kind left in the box) tells me I am equally
likely to choose either variety. A classical description of
my cognitive state, which aimed to match my behaviour,
would have to be a probability distribution which gave
equal weight to milk and dark chocolate biscuits.

There’s something odd about this though. To be clear,
such a description would give the correct statistics for my
choices. However recall our discussion above; this clas-
sical probability distribution would have an associated

entropy, and should be interpretable in terms of a lack of
knowledge about the state. But wait, what information
exactly is it that we lack? In the example of a coin toss
above, if I toss a coin and ask you to guess heads or tails,
there is of course a ‘correct’ answer, a probabilistic de-
scription reflects your lack of knowledge about the true
state of the coin. Going back to our cognitive model,
the only knowledge you could be lacking here is my true
preference for my next biscuit type. In other words, ev-
ery time you use a classical probability distribution to
describe a system, you assume that there is a true state
of the system, that you are ignorant of. This might be
ok for coins, but it is far from obvious that this makes
sense for decision makers. For example, according to a
classical theory, I really do have a definite preference for
my next biscuit, I’m just not telling myself what it is...

I don’t want to build a quantum model of biscuits pref-
erence here, but suppose I represented my preference as
the superposition state 1√

2
(|milk〉 + |dark〉). This state

has the same expected outcomes as the classical probabil-
ity distribution, but critically it has zero entropy. That
is, for a quantum superposition, although the best de-
scription of the expected measurement outcomes is prob-
abilistic, there is no extra information that it is possible
to gain that would improve your ability to predict my
choice. In quantum theory,

Uncertainty about outcomes

6⇔
Lack of knowledge about state.

For my money, this is one of the most powerful arguments
for using quantum probability theory to model cognition.

Now, time for that biscuit.

F. Summary

To recap; we introduced the concept of a density ma-
trix, which can be used to represent a state with both
classical and quantum uncertainty. In particular, if we
have two different groups of participants, represented by
the pure states |P1〉 and |P2〉, then we can form a mixed
state by taking,

ρ = λ |P1〉 〈P1|+ (1− λ) |P2〉 〈P2| , 0 ≤ λ ≤ 1. (3.27)

Here λ gives the relative frequencies of the two types
of participants in our ensemble. If the two types occur
equally frequently, then λ = 1

2 .
All of the quantum theory you have encountered before

can be rewritten in terms of density matrices, and we
gave a few examples of common relations.

We discussed the purity and entropy of a density ma-
trix. Pure states always have zero entropy, but density
matrices let us think about techniques such as entropy
maximisation in quantum models.

Finally we noted that quantum models break the con-
nection between uncertainty and entropy, and this might
represent a powerful argument for their use in cognition.
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IV. NOISE IN THE MEASUREMENTS: POVMS

A. Introduction

Designing good experiments is hard. Most of the ex-
periments I do are conducted online, because this means
we can collect data from a large number of participants
quickly. However one unfortunate side effect of this is
that it can be hard to judge participant quality [27]. As
well as poor quality participants, errors can creep into
experiments for other reasons.

One type of error occurs in studies where the questions
have some sort of time pressure associated with them.
Participants are forced to rush somewhat through the
questions, and as such they sometimes click the wrong
box or make other simple errors. Another type of error
might occur when studies are very long, and participants
loose focus and start giving inconsistent answers.

Suppose I wish to model an experiment where I have
participants express a preference for one of two alterna-
tives, A or B, and that these are exhaustive and exclu-
sive alternatives. In an ideal measurement these would
be represented by projection operators PA = |A〉 〈A|,
PB = |B〉 〈B|. Suppose instead my measurement isn’t
ideal but, intentionally or otherwise, is subject to some
noise. This means some participants who really prefer A
will select option B, and vice versa.

Let’s see how we might model this. What we want is
an operator EA, whose expectation value in the state |A〉
is close to one, but which also has a non-zero expectation
value in the state |B〉, and likewise for EB . That is,

〈A|EA |A〉 = 1− ε, 〈B|EA |B〉 = ε,

〈A|EB |A〉 = ε, 〈B|EB |B〉 = 1− ε.
(4.1)

Where 0 ≤ ε ≤ 1 is some small error probability. Let us
also assume,

〈A|EA |B〉 = 0, etc. (4.2)

In the basis {|A〉 , |B〉} these operators can therefore be
written as,

EA =

(
1− ε 0

0 ε

)
, EB =

(
ε 0
0 1− ε

)
. (4.3)

Can we use these operators to describe a measurement
process? It is easily seen that they are not projection
operators, nevertheless they satisfy the following proper-
ties,

• They are positive operators, which means they have
positive eigenvalues.

• They are complete, in the sense that EA +EB = 1.

These properties mean that for any density matrix,

0 ≤ Tr(EAρ) ≤ 1 (4.4)

and ∑
i=A,B

Tr(Eiρ) = 1 (4.5)

The quantities Tr(Eiρ) can thus be interpreted as prob-
abilities, and so EA and EB are good candidates to de-
scribe a measurement process.

But what measurement process do they describe? Well
there are many ways to think about this, but probably
the easiest is to note that we can write,

EA = (1− ε)PA + εPB , EB = εPA + (1− ε)PB . (4.6)

In other words, I can write these operators like,

EA =
∑
i

pA(i)Pi (4.7)

where pA(i) have (loosely) the interpretation of probabil-
ities. So one way to think about these measurements is
that instead of performing a measurement PA, I instead
perform one of the possible measurements Pi with some
probabilities pA(i). So these sorts of measurements look
like noisy versions of ideal measurements.

B. POVMs

EA and EB are specific examples of what are known
as positive operator valued measures or POVMs for short
[8]. POVMs are the most general type of measurements
that can occur in quantum theory. What I want to do
now is present an outline of the general theory of POVM
measurements. After this we will go on to discuss another
more concrete example.

The most general description of a measurement process
in quantum theory is given in terms of a set of POVMs
{Ei}, which satisfy,

• Positivity, 〈ψ|Ei |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H

• Completeness,
∑
iEi = 1.

The probability that a measurement described by Ei
gives a positive answer is then given by,

p(i) = Tr(Eiρ). (4.8)

A family of POVMs can have many different possible
realisations. A realisation φi is essentially the operation
applied to the state ρ→ φi(ρ), so that,

Tr(φi(ρ)) = Tr(Eiρ) (4.9)

The simplest realisation of a POVM Ei is probably just
its operator square root, i.e. writing

Ei = M†iMi (4.10)

we have

φi(ρ) = MiρM
†
i . (4.11)
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The Mi are often called ‘measurement operators’. It’s
easy to see from this why a given realisation of a POVM
isn’t unique. Suppose we use different measurement op-
erators given by M ′i = UMi where U is an unitary oper-
ator. Then,

M ′†i M
′
i = M†i U

†UMi = M†iMi = Ei (4.12)

so these new measurement operators form a realisation
of the same POVM, but,

φ′i(ρ) = UMiρM
†
i U
† = Uφi(ρ)U† (4.13)

so the final state after the measurement is different in the
two realisations.

In the rest of these notes we will mostly ignore the
issue of multiple realisations, by sticking to the choice
Mi =

√
Ei. In practice the appropriate realisation can be

determined from the details of the measurement process.
The analogue of the collapse postulate in terms of

POVMs is simply that if a measurement of the POVM
Ei yields a positive answer, then the state collapses to,

ρ′ =
φi(ρ)

Tr(φi(ρ))
=
MiρM

†
i .

Tr(Eiρ)
, (4.14)

where the second equality holds for our simple choice of
realisation Eq.(4.10)

To return to our example above, for the POVM EA, in
the basis {|A〉 , |B〉} the associated measurement opera-
tor will be,

MA =

(√
1− ε 0
0

√
ε

)
(4.15)

which is nice and simple.

C. Another Application of POVMs:
Non-Orthogonal Measurements

One interesting property of POVMs, as opposed to a
description of a measurement process based on projec-
tion operators, is that the POVMs need not be orthog-
onal. This means that we can have more POVMs than
there are dimensions in our Hilbert space. One appli-
cation of this is where we have a two dimensional set
of choices, say A or B, but more than two possible re-
sponses, say “prefer A”, “prefer B” and “don’t know”.
There are doubtless better ways of modelling this situa-
tion, but let’s follow this through and see what happens.
The states associated with each outcome are given by,

Prefer A = |A〉
Prefer B = |B〉

Don’t know =
1√
2

(|A〉+ |B〉)

or
1√
2

(|A〉 − |B〉)

(4.16)

They have associated projection operators PA, PB , P+

and P− in what I hope is an obvious notation. Now
these set of projection operators can’t form a description
of a measurement, because they are not normalised, i.e.∑

i=A,B,+,−
Pi = 2 (4.17)

but we can easily turn them into POVMs by normalising.
The associated POVM measurements are given by the
set,

EA =
PA
2
, EB =

PB
2
, E+ =

P+

2
, E− =

P−
2
. (4.18)

Suppose my state is |+〉 = 1√
2
(|A〉 + |B〉). Then we

can show,

p(A) =
1

4
, p(B) =

1

4
, p(don’t know) =

1

2
. (4.19)

It turns out this example is not very realistic (e.g.
p(don’t know) = 1

2 always!) but I hope it shows POVMs
have potential for modelling this kind of measurement.

One interesting feature of this measurement set up is
that the measurement of “don’t know” is non-selective.
That is, there are two possible outcomes, but we combine
them together in our description. Technically a measure-
ment of “don’t know” means the state collapses to,

ρ′ = P+ρP+ + P−ρP−. (4.20)

Alas, non-selective measurements are beyond the scope
of these notes.

In summary, another advantage of POVMs is that they
can be used to represent nome-orthogonal measurements.
Although our simple example probably isn’t realistic, this
could be a very useful property to exploit.

D. Order effects in noisy measurements

An important question is whether noise in the measure-
ment process spoils the quantum features of that mea-
surement. One example of such a quantum feature is
order effects in survey designs [9], so we will briefly look
at whether noise in the measurements spoils order effects.

A striking simple example of an order effect is to con-
sider an initial state |A〉 and two possible projective mea-
surements, PB onto the state |B〉 and P+ onto the state,
1√
2
(|A〉+ |B〉). It is easy to see that (working for the rest

of this subsection in the basis {|A〉 , |B〉}),

p(+ and then B) =Tr(PBP+ρP+)

=Tr

((
0 0
0 1

)(
1
2

1
2

1
2

1
2

)(
1 0
0 0

)(
1
2

1
2

1
2

1
2

))
=Tr

((
0 0
1
4

1
4

))
=

1

4
(4.21)
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Whereas,

p(B and then +) =Tr(P+PBρPB)

=Tr

((
1
2

1
2

1
2

1
2

)(
0 0
0 1

)(
1 0
0 0

)(
0 0
0 1

))
=Tr

((
0 0
0 0

))
= 0.

(4.22)

This striking result arises from the fact that [PB , P+] 6= 0.
So what happens if we replace the ideal measurements
with POVMs?

We let’s replace the projection operators with the fol-
lowing POVMs [28],

PB → EB =

(
ε 0
0 1− ε

)
P+ → E+ =

(
1
2

1−2ε
2

1−2ε
2

1
2

) (4.23)

These have associated measurement operators,

MB =

(√
ε 0

0
√

1− ε

)
M+ =

(√
1−ε+

√
ε

2

√
1−ε−

√
e

2√
1−ε−

√
e

2

√
1−ε+

√
ε

2

) (4.24)

Now we can see that,

pε(+ and then B) =Tr(EBM+ρM+)

=
1

4

(
1− 2(1− 2ε)

√
ε
√

1− ε
) (4.25)

and

pε(B and then +) =Tr(E+MBρMB)

=
ε

2

(4.26)

We plot these results against the value of ε in Fig.2.
The results are interesting. The key is that the difference
in the values of the probabilities (plotted as the dotted
line) decreases sharply with increasing ε, i.e. with in-
creasing noise. Note however that the value of ε is inter-
pretable in terms of the ‘error’ probability of the measure-
ment. Realistic experiments would probably have values
of ε in the range 1-5%, and so order effects are still likely
to be visible in such experiments, although they might
appear smaller than you might have expected.

We don’t have space here to pursue this further, but it
is clear that small amounts of noise will still allow order
effects to be observed, even though very large amounts
of noise rapidly kill off such effects. This has important
implications for studies looking for these effects in the
wild [9].
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FIG. 2: pε(B and then +), pε(+ and then B), and their dif-
ference, plotted against ε.

E. Summary

We have shown that the description of measurements
in quantum theory can be generalised to non-orthogonal
sets of measurements. These POVM type measurements
can be used to describe noisy realistic measurements,
where even participants with a definite knowledge state
may not make completely predictable decisions. They
can also be used to model situations where there are sim-
ply more possible choices than orthogonal states in the
space.

We mentioned that one useful way to think about
POVMs was as averages over a set of projective mea-
surements, e.g.

EA =
∑
i

pA(i)Pi (4.27)

where the {Pi} are a complete and orthogonal set of pro-
jection operators and the pA(i) are positive numbers such
that, ∑

A

pA(i) = 1. (4.28)

which ensures the POVMs are normalised.
POVMs are likely to be a very important tool as we

strive to make the predictions of the quantum models
more accurate. They are also particularly relevant if an
experimental set up involves asking participants the same
questions repeatedly, see [7] for an example.

V. NOISE IN THE EVOLUTION: CP MAPS

A. Introduction

The final type of noise we will consider is noise in the
evolution of the state. In a typical experiment we ma-
nipulate the cognitive state of a participant by present-
ing some kind of stimuli. Although we might have good
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control over the stimuli we present, we have much less
certainty about how particular participants respond to
these stimuli. In addition, we usually assume that differ-
ent preferences and beliefs are more or less independent
of one another, so that, e.g., a model of chocolate biscuit
preference can consider this belief state as an isolated
system, independent of, e.g. preference for tea or coffee.

In reality, things are not this simple. We therefore
need more realistic models of evolution that can help us
answer two questions;

1. What effect does the interaction between different
beliefs/preferences have on the evolution of a cog-
nitive state?

2. How do we model evolution when we are unsure
about the effect of a stimuli on a particular partic-
ipant?

It will turn out that these two questions have essentially
the same answer. In addition an important motivation
for considering noisy evolutions turns out to be the fol-
lowing question,

3. How do we model evolutions that are irreversible,
or that cause a general initial state to tend towards
some final fixed state which is independent of the
initial one?

This question arrises because the usual unitary evolu-
tion we consider is reversible, ie for any unitary evolution
U(t) = e−iHt there is another unitary evolution given by
U†(t) such that U(t)U†(t) = U†(t)U(t) = 1. There are of
course many situations in cognition where we might wish
to model evolutions that are (effectively) irreversible, eg
decays. This is particular apparent when we cause a cog-
nitive state to evolve by presenting some stimuli, e.g.
some extra information, whose effects we can’t undo.

Again, somewhat remarkably, we will find that the an-
swer to question 3 is the same as the answers to questions
1 and 2. We will also find that this way of incorporating
noise into cognitive models has some very profound con-
sequences for the ‘quantum-ness’ of the systems under
study. More on that later.

B. CP Maps

Generally speaking, in quantum theory noisy evolu-
tions are motivated by considering a system of interest S
which interacts with some other less well controlled sys-
tem which we call an environment E . We will follow the
same reasoning, although it’s reasonable to have concerns
about how well the physics/cognition analogy works here.
In the end though the key point of this subsection is that
there is a standard form for these noisy evolutions which
guarantees that they make mathematical sense. In prac-
tice we just pluck noisy evolutions out of thin air to do
a particular job, our only concern being that they match

this standard form. However I think it’s useful to have
some idea about where they come from [29].

The idea is that we want to study the system S, and
we have little or no interest in or information about the
environment E . What one does then is to specify the
dynamics of the joint system+environment, including in-
formation about the evolution and initial states to arrive
at a description of the density matrix of the whole, ρS+E .
This density matrix contains information about the envi-
ronment, which we don’t want, so to get at a description
of just the system we perform an operation called a par-
tial trace, where we sum over the environmental degrees
of freedom, essentially throwing away the information we
don’t want, to leave us with an effective description of the
dynamics of the system only.

We are interested in the effect this has on the mas-
ter equation, i.e. the evolution equation for the density
matrix. For the complete density matrix ρS+E we have,

∂

∂t
ρS+E = −i[HS+E , ρS+E ] (5.1)

where HS+E is the joint Hamiltonian of the system plus
environment. When we perform the partial trace to re-
move the environmental degrees of freedom this becomes,

∂

∂t
ρS = −i[HS , ρS ] + LρS (5.2)

where L is a super-operator which encodes the extra dy-
namics that come from the system-environment interac-
tion. The most general form this equation can take is the
so-called ‘Lindblad’ form [10],

∂

∂t
ρS =− i[HS , ρS ]

+
∑
k

(
LkρSL

†
k −

1

2
L†kLkρS −

1

2
ρSL

†
kLk

)
(5.3)

where {Lk} are a set of operators called the ‘Lindblad’
operators, which model the effect of the environment.

The key feature of evolution according to the Lindblad
equation is that it preserves the properties of the density
matrix which are important if it is to describe a physical
system. The most important (in the sense of difficult to
achieve) property is positivity, which recall means that
all the eigenvalues of ρ are non-negative. For this reason
master equations of the form Eq.(5.3) are known as ‘Com-
pletely Positive’ or CP-maps [30]. In the next sections
we will consider a number particularly useful CP-maps,
designed to model specific types of evolution.

1. Mathematical Detail

For those interested in such things, let’s see if we can
add a little more math to this discussion. Those less
mathematically inclined (or interested) should feel free
to skip this subsection.
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We assume that we can separate out the system and
environmental degrees of freedom in the system. So we
can write the total Hilbert space H = HS ⊗HE . We can
therefore choose a basis for the Hilbert space which con-
sists of tensor products of basis vectors from the system
and environment, i.e. |φij〉 = |Si〉 ⊗ |Ej〉, where {|Si〉}
form a basis for HS , and likewise for the environmental
degrees of freedom. The partial trace over the environ-
mental degrees of freedom is therefore defined as,

TrE(A) =
∑
j

〈Ej |A |Ej〉 (5.4)

and the reduced density matrix for the system alone is
given by,

ρS = TrE(ρS+E). (5.5)

A couple of further points to note. First, most deriva-
tions of Eq.(5.2) for real systems assume that the initial
density matrix can be factorised as

ρS+E(t = 0) = ρS(t = 0)⊗ ρE(t = 0). (5.6)

In other words the assumption is that the system and
environment were independent to begin with, at time t =
0. This can have some funny effects on the dynamics. For
example, one of the features of noisy evolutions is that
they tend to kill of entanglement between different parts
of the system (more on this later.) However if you take
two systems and allow them to interact, they will tend to
become entangled with each other. Realistic models of
noisy evolutions can therefore have some funny behaviour
at short times, that results from assumptions made about
the initial state to simplify the analysis.

Another point to note is that in order to make the
transition from Eq.(5.1) to Eq.(5.2) tractable one often
has to make simplifying assumptions about the dynam-
ics. Typical assumptions are that the interaction between
the system and environment is weak, and also that it is
Markovian. Thus many explicit models of noisy evolu-
tions are Markovian. If you have good reason to believe
the system you are trying to model does not have this
property, you should be extra careful in your choice of
CP map.

Finally, if you are interested in seeing how a derivation
of the master equation for a real system/environment in-
teraction proceeds, I strongly recommend the paper by
Halliwell [11], for a simple introduction. This gives a
simplified derivation of the master equation for quantum
Brownian motion, that is, the dynamics of a system cou-
pled to a thermal environment. The full blown analysis
can be found in the classic paper by Caldeira and Leggett
[12], and also in [5, 13]. A nice introductory tutorial can
be found in [14].

C. A CP-Map for Irreversible Evolutions

In this section we want to introduce a tractable exam-
ple of a master equation we could use to describe a real

cognitive system. The example we will discuss is a simple
two-level system {|1〉 , |2〉}, that might be used to model
a binary variable. For the rest of this section we’ll work
in this basis.

Now a good model for the noisy evolution of such a
system is given by the so-called Quantum Optical Master
Equation (QOME), which describes the evolution of a
two level system interactive with a thermal (i.e. random)
system of other systems. The dynamics of this system are
described by a master equation of the form Eq.(5.3) with,

L1 = a

(
0 1
0 0

)
, L2 = b

(
0 0
1 0

)
(5.7)

and with the specific choice a =
√
ωN, b =

√
ω(N + 1)

where ω and N are constants.
However the full dynamics of the QOME is complex

(For a full solution see [5, 15].). So instead of considering
the full dynamics of a system interacting with an envi-
ronment, what we will do here is to use a special case
of this master equation to solve an important problem
in quantum models of cognition - how do we model an
irreversible evolution?

To keep things simple, we will specialise to the follow-
ing situation: We have an initial state |ψ0〉 = 1√

2
(|1〉 +

|2〉), and we want to imagine evolving the state in an
irreversible way, maybe by giving the participants new
information that cannot be taken back, so that the state
tends towards |1〉. Unitary evolution won’t work here,
first since it’s reversible, and second since evolving for
long enough could cause the state to ‘overshoot’ and
move back towards |2〉.

It turns out that one solution to this problem is given
by a special case of the QOME, with a =

√
γ some con-

stant and b = 0, that is,

∂

∂t
ρ = γ

(
LρL† − 1

2
L†Lρ− 1

2
ρL†L

)
(5.8)

with L =

(
0 1
0 0

)
, and we’ve assumed there is no uni-

tary part to the evolution. The solution, for the initial
condition given above, is,

ρ(t) =

(
1− 1

2e
−γt 1

2e
− γt2

1
2e
− γt2 1

2e
−γt

)
(5.9)

As we can easily see, the solution tends to |1〉 at large
times, and it doesn’t overshoot. |1〉 is therefore a fixed
point of the evolution. This solution therefore describes
a state evolving towards |1〉, and getting there asymp-
totically. Solutions for decays towards other states can
be obtained by applying unitary transformations to the
Lindblad operators.

One interesting feature of this evolution is that it does
not preserve the purity of the state, and by extension
also the entropy. Typically the entropy initially increases,
before decreasing again as the state tends to the known
final state. I’ve plotted this in Fig.3.
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FIG. 3: Evolution of the entropy, purity and value of ρ22(t)
for the evolution in Eq.(5.9).

In summary then, this particular example of a master
equation can be very fruitfully used to model irreversible
evolutions, which are common place in the lab, but im-
possible to model via unitary transformations. There are
many other possible master equations for modelling this
sort of evolution, but they all have in common that they
represent noisy, non-unitary evolution.

D. A CP-Map for Uncertain Stimuli: The
Montevideo Master Equation

In this section we want to consider a second type of
noisy evolution, which is not so readily interpretable in
terms of a system/environment interaction. However we
shall see that it too can be modelled in terms of a master
equation of Lindblad form.

Suppose we wish to model the evolution of a system
caused by the presentation of certain stimuli. Suppose
we can present our stimuli in a continuous manner, so it
could be that the change in the cognitive state depends
on the length of time for which the stimuli are presented.
Alternatively it could be that the stimuli are discrete,
but individually weak, so that presentation of multiple
stimuli can be closely approximated by a continuous in
time master equation like Eq.(5.2). Either way, suppose
the stimuli are fixed, but their effect on the participants
is unknown. We might be able to assume that the effect
of the stimuli is on average to produce a shift in a certain
direction, but the size of that shift is unknown. This is
equivalent to saying that we have a definite evolution
but we are unsure, for each participant, how long that
participant’s state is evolved for.

Specifically, we will assume that the effect of evolution
of a state for a time t is not to produce the change ρ(0)→
e−iHtρ(0)eiHt but rather,

ρ(t) =

∫
dspt(s)e

−iH(t+s)ρ(0)eiH(t+s) (5.10)

where pt(s) is a probability distribution centered around
0, reflecting the distribution of ‘evolution times’ for our

participants, and we have assumed the underlying evolu-
tion about which we are uncertain is unitary. If pt(s) =
δ(s) we recover standard unitary evolution. We have al-
lowed this probability distribution to depend on t also
to reflect the fact that the uncertainty in the evolution
time, i.e. the width of pt(s), might depend on the time
evolved for, so that longer average evolution times are
associated with larger uncertainties.

We want to be able to represent this evolution in the
form of a semi-group [31], in other words, if ρ(t) =
Lt(ρ(0)), then we want,

Lt(Ls(ρ(0))) = Lt(ρ(s)) = ρ(t+s) = Lt+s(ρ(0)). (5.11)

In other words, Lt · Ls = Lt+s. Writing this in terms
of Eq.(5.10) we see that we can express this evolution in
one of two ways,

ρ(t1 + t2) =

∫
dspt1+t2(s)e−iH(t1+t2+s)ρ(0)eiH(t1+t2+s)

(5.12)

or

ρ(t1 + t2) =

∫
ds2pt2(s)e−iH(t2+s2)ρ(t1)eiH(t2+s2)

=

∫
ds1ds2pt2(s2)pt1(s1)

× e−iH(t1+t2+s1+s2)ρ(0)eiH(t1+t2+s1+s2)

=

∫
dsdzpt2(s− z)pt1(z)

× e−iH(t1+t2+s)ρ(0)eiH(t1+t2+s)

(5.13)

Eq.(5.12) and Eq.(5.13) are equivalent if,

pt1+t2(s) =

∫
dzpt1(z)pt2(s− z) (5.14)

which constrains the possible form for pt(s). One natural
choice is the following,

pt(s) =

√
1

πσt
e−

s2

σt (5.15)

where σ > 0 is some constant. This is easily seen to be
normalised and to obey Eq.(5.14). Note also that,

lim
t→0

pt(s) = δ(s) (5.16)

in the sense of distributions. (δ(s) here is the Dirac delta
function [32].)

We want to show that this evolution can be written in
the form of a master equation. We start with Eq.(5.10),
differentiate both sides with respect to t, and use the very
useful property, for small t [33],

pt(s) =

√
1

πσt
e−

s2

σt = δ(s) +
σt

4
δ′′(s) + ... (5.17)
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to obtain,

∂ρ

∂t
= −i[H, ρ]− σ

4
[H, [H, ρ]]

= −i[H, ρ] +
σ

2
(HρH − 1

2
H2ρ− 1

2
ρH2)

(5.18)

So the master equation for this evolution is indeed of
Lindblad form, with L = L† =

√
σ
2H.

As an aside, I’ve called Eq.(5.18) the ‘Montevideo’
master equation, because it crops up as part of a partic-
ular approach to the foundations of quantum mechanics
called the ‘Montevideo Interpretation’ [16]. The deriva-
tion of this equation in that context is rather different,
but the net result is much the same.

Let’s see what the solution of this master equation
looks like, for a particular choice of Hamiltonian H. Let’s

choose H = γ

(
1 0
0 −1

)
. This can be thought as gener-

ating rotations about the z-axis. I won’t bore you by
solving this equation here, although it’s pretty easy and
I’d encourage you to try for yourselves [34]. The solution
is,

ρ(t) =

(
ρ11(0) e−2iγt−σγ

2tρ12(0)

e2iγt−σγ
2tρ21(0) ρ22(0)

)
(5.19)

where ρ11(0) etc are the initial values of those compo-
nents of ρ.

This solution tells us a lot of interesting information.
Firstly, the evolution does nothing to the diagonal com-
ponents of the density matrix. Secondly the evolution
has the effect both of causing an oscillation in the off di-
agonal components of ρ, and of causing them to decay
in magnitude. A nice illustration of this is to choose the
state we introduced way back in Section 2, which, recall,
was a superposition of left and right handed. Making the
identification |L〉 → |A〉 , |R〉 → |B〉 we have,

ρg =

(
1
2

1
2

1
2

1
2

)
(5.20)

If we evolve this state according to Eq.(5.18) we get, for
t→∞,

lim
t→∞

ρg(t) =

(
1
2 0
0 1

2

)
= ρc (5.21)

where, recall, ρc was the correct answer for a mixture
of left and right handed participants. In other words,
this sort of noisy evolution turns quantum superposition
states into classically interpretable mixtures!

In summary then, this Montevideo master equation de-
scribes a very useful sort of evolution, which corresponds
to evolving with a stimuli whose exact effect on partic-
ipants we do not know. Amongst other things, this has
the effect of killing off the off-diagonal terms in the den-
sity matrix, and thus making our superposition states
look more like classical mixtures.

E. Discussion

The result we’ve just seen, that a particular type of
noisy evolution appears to turn quantum superpositions
into classical mixtures, turns out to be pretty general.
This effect goes by the name of ‘decoherence’, and is an
important part of the story of why we don’t see quantum
effects like interference in our everyday lives [18].

In the world of cognitive modelling, this effect is also
likely to be significant. Quantum effects are generally not
robust when states are allowed to interact with an envi-
ronment, or when the evolution is otherwise not well con-
trolled. This has two implications; first, it suggests that
care might be needed to ensure cognitive states remain
quantum during experimental manipulations. Failure to
do so could mean no quantum effects are visible. Sec-
ond, it suggests an explanation for why some cognitive
variables do not show quantum effects, perhaps certain
preferences/beliefs are just to hard to isolate, and the
inevitable interaction between them and other thoughts
quickly kills off any quantum behaviour before it can be
observed. This is a worthy subject for future research.

F. Summary

In this section have have explored the idea of noisy
evolutions in quantum cognition. The idea behind such
evolutions is that interactions between the system under
study and other cognitive variables can influence the evo-
lution of the system we are interested in in a profound
way. We saw that the most general type of evolutions
in quantum cognition are those that can be written in
the form of a master equation of Lindblad form. We saw
that these evolutions, also called CP-maps, may also be
used to describe irreversible changes to the state, and the
effect of presenting stimuli of unknown strength.

We also saw that we can use CP-maps to model irre-
versible evolutions, such as we might realistically come
across in the lab. It is an open question whether the sort
of model we presented matches data from real experi-
ments, but the ideas seem promising.

Finally we noted that generally noisy evolutions have
the effect of diminishing the ‘quantum-ness’ of a system.
This might have implications for attempts to observe
quantum effects in more complex cognitive variables. It
might also explain why some such variables do not appear
to show any quantum effects.

VI. CONCLUSION

That concludes our whistle stop tour of some topics in
modern quantum theory! Let’s see if we can recap and
draw out any major themes.
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A. Summary of this section of the tutorial

In the real world, or even the real lab, all cognitive pro-
cesses involve some level of noise. We’ve discussed ways
in which we can incorporate noise into quantum systems
via the state, the measurements and the evolution. Along
the way we also learned some practical lessons, such as
how to compute the entropy of a state, how to model
non-orthogonal measurements, and how to model evolu-
tion where we are unsure about the strength of a stimuli.

Overall I hope that you’ve learnt about some inter-
esting tool and ideas that can be applied to modelling
realistic cognitive systems using QT. I look forward to
seeing these appear in your research!

B. Theme 1: QT can be adapted to cover realistic
experiments

This was sort of the point of this section of the tuto-
rial. Realistic experiments involve inhomogeneous groups
of participants, experimental error and noise and inter-
actions between the variables we would like to study, and
those we are less interested in. QT can be adapted to in-
corporate all of these things. The way is open therefore
to a whole new level of modelling which aims to repro-
duce not just the average result, but also the statistical
distribution of results for a given trial.

Having the tools to model realistic experiments also
let’s us think about taking QT out of the lab and into
the real world. In particular having an idea about how
the qualitative behaviour of a quantum system differs
when there is noise present should help us decide where
QT might be applicable in the wild.

The tools we’ve covered here can also be used to ad-
dress other problems in quantum cognitive modelling,
such as how to model non-orthogonal measurements.
Overall then, this tutorial will hopefully have some prac-
tical value for those of you who wish to go on to use QT
to model decision making.

C. Theme 2: QT features are robust in the
presence of small amounts of noise, but not against

large amounts

We haven’t often mentioned this explicitly, but it is
clear that most quantum features are robust against rea-

sonable levels of noise. This is good to know, as it gives us
hope that quantum ideas might be applicable in all sorts
of real world situations. However it’s also very interest-
ing to see how quantum features can break down when
there is too much noise, and the description reverts to
looking much like a classical one. This has important
implications, both on a practical level, for the types of
variables we can hope to see QT effects with, and on a
more fundamental level, for our understanding of why
some variables appear quantum, and some do not.

D. Theme 3: Adding noise to QT teaches us
interesting things

One thing I hope you have learned by reading these
notes is that exploring the effects of adding noise to a
quantum system does more than simply teach us how to
model careless participants. In some ways the real struc-
ture of QT is only revealed when we introduce density
matrices, POVMs and CP-maps. One particularly im-
portant thing we learn is about the connection between
classical and QT systems. Studying ideal QT systems
might lead you to believe that they are diametrically op-
posed to classical ones, and the only overlap is for idea
cases such as sets of commuting operators. However once
we learn about adding noise to a QT system, we can ap-
preciate that classical systems are in some general sense
a special case of QT ones, and that it is even possible
in some sense to dynamically transition between QT and
classical dynamics. Of course, we have only scratched the
surface of this subject, and I’d caution against overgen-
eralising from the simple case presented here, but nev-
ertheless I hope that through these notes we can begin
to glimpse the possibility of a unified approach to de-
cision making, that incorporates both the quantum and
the classical. Now that would make an exciting research
project...
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