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a b s t r a c t

Recently, Busemeyer et al. (2011) presented a model for how the conjunction fallacy (Tversky & Kahne-
man, 1983) emerges, based on the principles of quantum probability (QP) theory. Pothos et al. (2013)
extended this model to account for the main similarity findings of Tversky (1977), which have served as
a golden standard for testing novel theories of similarity. However, Tversky’s (1977) empirical findings
did not address the now established insight that, in comparing two objects, overlap in matching parts of
the objects tends to have a greater impact on their similarity, than overlap in non-matching parts. We
show how the QP similarity model can be directly extended to accommodate structure in similarity com-
parisons. Smolensky’s et al.’s (2014) proposal for modeling structure in linguistic representations, with
tensor products, can be adapted ‘as is’ with the QP similaritymodel. The formal properties of the extended
QP similarity model are analyzed, some indicative fits are presented, and, finally, a novel prediction is de-
veloped.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

We call quantum probability (QP) theory the rules for assigning
probability to events, without any of the physics (Hughes, 1989;
Isham, 1989). QP theory is a framework for probabilistic inference
alternative to that of classical probability (CP) theory. A case for
adopting QP theory, instead of classical probability (CP) theory, in
cognitive modeling has been made when human behavior appears
at odds with the prescription from CP theory (e.g., Aerts, 2009;
Aerts &Gabora, 2005; Blutner, Pothos, & Bruza, 2013; Nelson, Kitto,
Galea, McEvoy, & Bruza, 2013; for overviews see Busemeyer &
Bruza, 2012; Haven&Khrennikov, 2013; Khrennikov, 2010; Pothos
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& Busemeyer, 2013; Wang, Busemeyer, Atmanspacher, & Pothos,
2013; Yearsley & Pothos, 2014). Recently, Busemeyer, Pothos,
Franco, and Trueblood (2011) presented a model of decision mak-
ing, based on QP principles, with an emphasis on how the con-
junction fallacy (Tversky & Kahneman, 1983), and related findings,
emerge. For example, in the conjunction fallacy experiment, par-
ticipants were told of a hypothetical person, Linda, described very
much as a feminist (F) and not at all as a bank teller (BT). Partic-
ipant responses indicated that Prob (F ∧ BT ) > Prob(BT ), which
is impossible classically. In Busemeyer et al.’s (2011) QP model for
this conjunction fallacy, if one assumes that the BT , F possibilities
are incompatible, then it can emerge that the quantum probability
of F ∧ then BT is higher than that of B.

Pothos, Busemeyer, and Trueblood (2013) considered whether
the QP decision model could be extended to account for basic sim-
ilarity judgments. Their motivation was that QP theory is formal-
ized in multidimensional, vector spaces, called Hilbert spaces. The
most common, standard way to model basic similarity involves
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multidimensional representations (e.g., Shepard, 1987) and the
conceptualization of similarity as a function of distance. For ex-
ample, such models have been employed in the predominant ap-
proaches to categorization (e.g., Goldstone, 1994a; Nosofsky, 1984;
Wills & Pothos, 2012). Therefore, since QP representations are also
geometric (that is, involve elements in some multidimensional
vector space), perhapsQP theory canprovide some interesting gen-
eralization to the standard distance-based similarity models?

Note first that, by basic similarity judgments, we imply ones
that are nonanalytic (in the psychological sense), direct, and im-
mediate. If we accept the view that basic similarity judgments can
be modeled as some function of distance, then they have to be
consistent with the metric axioms—mathematical requirements
that all (simple) functions of distances need to obey. These ax-
ioms are intuitively appealing. For example, the symmetry ax-
iom, requires that distance (A, B) = distance(B, A), implying that
similarity (A, B) = similarity(B, A). In one of the most influential
studies in the basic similarity literature, Tversky (1977) showed
that all metric axioms can be violated in similarity judgments of
naïve observers. Tversky’s (1977) findings have become a golden
standard of empirical results that should be accounted for by any
basic similarity model and, indeed, have been the focus of theo-
retical effort in related research ever since (e.g., Ashby & Perrin,
1988; Krumhansl, 1978). It is worth noting that basic, distance-
based similarity metrics can be made to violate the metric ax-
ioms. For example, symmetry can be violated if similarity (A, B) =

pAB · distance (A, B), where pAB is just a directionality parameter,
that is a parameter which can have a different value depending on
whether the similarity evaluated is between A and B or between B
andA (Nosofsky, 1991). However, the real challenge has been to ex-
plore how consistency with Tversky’s (1977) findings can emerge
from the structure of a basic similarity model.

Pothos et al. (2013) showed how the QP decision model can
indeed accommodate Tversky’s (1977) key findings, with fairly
minor modifications. The objects to be compared in a similarity
judgment are represented as subspaces, whose dimensionality de-
pends on the extent of knowledgewe have about the objects. Then,
similarity judgments are modeled just as conjunctive probabilities
of thinking of the first compared object and then the second (one
also needs to assume a relevant mental state, that is neutral be-
tween the compared objects), that is, Sim (A, B) = Prob(A∧ then B)
(see also Section 2). For example, Tversky’s (1977) famous example
of violations of symmetry in similarity judgments was the finding
that Sim (Korea, China) > Sim(China, Korea), given that partici-
pants have more extensive knowledge for China, than Korea (note,
actually Red China and North Korea). In the QP model similarity
model, this asymmetry can emerge, as long as the dimensionality
for the China subspace is greater than that for the Korea subspace.

The application of the QP decision model onto similarity indi-
cates that the formalism can encompass findings from both deci-
sion making and basic similarity. Clearly, such a statement needs
to be qualified, since the decision QP model addresses only certain
kinds of decision making results and, likewise, the similarity one,
only certain kinds of basic similarity results. Nevertheless, Pothos
et al.’s theory (2013) is encouraging and fits with an overall pre-
rogative to explain as wide a range of empirical findings as possi-
ble, with as few explanatory principles as possible. For example,
supporting the same QP model in both decision making and basic
similaritymakes it plausible that the same principles underlie both
kinds of cognitive processes.

While our focus until now has been on basic similarly, a
somewhatmore recent line of work concerns analogical similarity,
which partly concerns the study of analogy formation. Simplifying,
analogy formation is about how a naïve observer can establish
associations between the elements of two representations (e.g., the
atom and the solar system). A key focus for models of analogical
similarity has been the correspondence between the constituent
elements of two compared objects; how do they develop and
what is their role in the overall similarity judgment, between the
compared objects (Gentner, 1983; Goldstone, 1994b; Goldstone &
Son, 2005; Larkey &Markman, 2005; Taylor & Hummel, 2009)? For
example, suppose we are comparing two persons, Sue and Linda,
with black hair. Surely, this fact would contribute more to the
overall similarity judgment between Sue and Linda, compared to
an alternative situation, where Sue has black hair and Linda has
black shoes. That is, there is intuition and supporting evidence
that human similarity judgments are sensitive to the structure of
the compared objects. An influential idea in modeling structure in
similarity judgments is that feature matches can be aligned or not
aligned (Goldstone, 1994b; cf. Markman & Gentner, 1993). That
is, parts of one object can be placed in correspondence with the
parts of another or not. The implication is that matching aligned
parts have a greater impact on similarity judgments thanmatching
unaligned parts, but the latter can increase similarity too.

We note that the distinction we make between basic and
analogical similarity is partly one of convenience, as it allows us
to easily refer to models of similarity not emphasizing structure
(e.g., Ashby & Perrin, 1988; Krumhansl, 1978) and ones that
do (Gentner, 1983; Goldstone, 1994b). Cognitively, it is possible
that there are differences between judgments of basic similarity
and analogy formation (e.g., the latter has been claimed to be
sometimes analytic, Casale, Roeder, & Ashby, 2012), but these
issues do not concern us presently and the distinction between
basic and analogical similarity we employ refers to the objectives
and scope of corresponding models.

The purpose of this work is to examine whether the QP ba-
sic similarity model can be further extended to cover some key
requirements for analogical similarity, notably the way similarity
computations are affected by correspondences between represen-
tation parts (we do not consider the mechanisms that lead to the
discovery of which features align or not; this is an important as-
pect of research in analogical similarity, but beyond the scope of
this work). An extension of this sort cannot be expected to perform
as well on analogical similarity results, as thoroughbred models of
analogical similarity (e.g., Goldstone, 1994b; Hahn, Close, & Graf,
2009; Larkey & Markman, 2005). Nevertheless, attempting the ex-
tension is important: if successful, it will show that the mathe-
matical mechanisms for basic similarity judgments are (plausibly
and to some extent) the same as the ones for analogical similar-
ity judgments. Equally, if the general model leads to inferior fits
in the novel domain, perhaps a restricted scope is more appropri-
ate. This question of possible equivalence of mathematical mecha-
nisms is separate from the one concerning brain systems (cf. Casale
et al., 2012). Note also that most basic similarity models cannot ac-
count for structure in similarity judgments (Ashby & Perrin, 1988;
Krumhansl, 1978; Tversky, 1977; we return to this point later).
Likewise, current attempts to extend analogical similarity models
to cover Tversky’s (1977) results have difficulties. This separated-
ness of the literatures on basic similarity and analogical similarity
further motivate the present effort to develop a QP model of ba-
sic/analogical similarity.

As it turns out, there is a very straightforward way to extend
the QP model of basic similarity into one of analogical similar-
ity, using Smolensky, Goldrick, andMathis’s (2014) and Smolensky
(1990) ideas for modeling structure in linguistic representations.
They were interested in the similarity between linguistic repre-
sentations, where the role in one representation was compared to
the role in the other, and likewise for the fillers (e.g., in relation
to phonology, a role could be ‘syllable-onset’ and a corresponding
filler could be ‘r’, for the word ‘rat’, as in Smolensky et al.’s, 2014,
example in p. 5). They derived their similarity method by employ-
ing a tensor product representation, which effectively separated
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out information of different kinds (roles, fillers), in separate vector
spaces. Smolensky et al.’s ideas can be applied to the QP similarity
model more or less as they are (since tensor products are standard
in QP representations), thus revealing an interesting convergence
between QPmodeling and computational tools in prior, totally un-
related work. Does the resulting QP model of basic/analogical sim-
ilarity has any interesting or unique properties? We take up this
challenge in relation to possible interference in the contributions
to similarity, from different parts of the compared objects. We also
provide some indicative fits of the QP model, showing that, with a
reasonable parameterization, the performance of the model is ac-
ceptable.

2. Quantum probability theory in cognitive modeling and the
quantum similarity model

We briefly outline the QP model of basic similarity (for a
more complete presentation and the application of the model to
Tversky’s, 1977 findings see Pothos et al., 2013). The QP basic
similaritymodel is based on a unit length state vector representing
mental states, which exists in a Hilbert space. Subspaces of varying
dimensionality represent the instances, objects, or concepts, which
are to be compared. Each subspace is associated with a linear
operator, called a projector. Projectors are fundamental in QP
theory. Their function is to take a vector and ‘lay it down’ onto
a corresponding subspace. Suppose that we are interested in the
similarity between objects A and B, such that the projectors to
the corresponding subspaces are PA and PB. The mental state
vector just prior to the comparison is denoted as |ψ⟩, in Dirac
bra–ket notation, whereby |x⟩ denotes a column vector and |x⟩′ the
complex conjugate of the transpose of |x⟩ (and so a row vector).
Then, according to the quantum similarity model, just prior to a
comparison, the state vector is assumed to be neutral between the
compared objects. For example, when comparing objects A and B,
we assume ∥PB · |ψ⟩∥

2
= ∥PA · |ψ⟩∥

2.1 This condition |PA · |ψ⟩|
2

=

|PB · |ψ⟩|
2 on the state vector is equivalent to that of an uninformed

Bayesian prior and basically means that the mental state prior to
comparing objects A and B is such that it favors neither A nor B. As
noted, Sim (A, B) = Prob(A∧then B), which is givenby Sim (A, B) =

|PB · PA · |ψ⟩|
2; this is the squared length of the projection of the

state vector, from the subspace of one compared entity, to the next.
The specific interpretation of probability is that the state vector
is consistent with the first possibility and then the second (note
that, a remarkable theorem by Gleason, 1957, shows that the QP
probability rule, for how to go from projections to probabilities, is
unique).

As a simple illustration of the quantum similarity model, con-
sider the case where A and B both correspond to unidimensional
subspaces in a two-dimensional space. Let |A⟩ and |B⟩ be nor-
malized column vectors along the A and B subspaces respec-
tively. Then, the complex conjugate transpose vectors would be
denoted as ⟨A| and ⟨B|. The corresponding projector operators are
easily defined as, e.g., |A⟩ ⟨A|. If |A⟩ =


a1
a2


, then PA = |A⟩

⟨A| =


a1
a2

 
a1∗ a2∗


, which is a 2 × 2 matrix. Also, ⟨A|A⟩ =

a1∗ a2∗
 a1

a2


= a1∗

· a1 + a2∗
· a2, that is, ⟨A|A⟩ is a dot prod-

uct. With the above definition of similarity we have Sim (A, B) =

|PB · PA · |ψ⟩|
2

= ||B⟩ ⟨B| · |A⟩ ⟨A| · |ψ⟩|
2

= |⟨A|B⟩|2|⟨A|ψ⟩|
2 and

Sim (B, A) = |⟨A|B⟩|2|⟨B|ψ⟩|
2, noting that the norm of |A⟩ and

1 Note, the double lines indicate the norm of the projected vector and single lines
the modulus of a complex number. As in all cases we are dealing with normalized
vectors, norms such as the above resolve to computing themodulus of dot products.
So, to simplify notation, henceforth we will just write e.g. |PA · |ψ⟩|

2 .
|B⟩ is 1 and that |⟨A|B⟩|2 = |⟨B|A⟩|
2. With the assumption that

|⟨B|ψ⟩|
2

= |⟨A|ψ⟩|
2, the relative similarity between A and B is

effectively based on |⟨A|B⟩|2. In a real space, ⟨A|B⟩ = |A| · |B| ·

cos θ , where θ is the angle between the |A⟩ and |B⟩ vectors (nor-
malization further means that |A| = |B| = 1). Thus, overall,
Sim (A, B) ∝ (cos θ)2, that is, at least for objects represented with
one-dimensional subspaces, similarity is just a decreasing function
of the angle between the subspaces (up to θ =

π
2 ). In brief, this

explains how the quantum similarity model works and the basic
intuition that drives its formulation.

3. Extending to the QP model of basic similarity to analogical
similarity

We introduce the analogical extension to the QP model of basic
similarity, using a standard example of analogical similarity, from
Goldstone (1994b). In one of his experiments, participants were
asked to compare drawings of birds with four distinct parts, left
wing, right wing, body, and head (Fig. 1). Each part would include
a specific feature (one of 21 random symbols). The features for the
four parts can be denoted with four letters, such as ABCD. Thus, a
comparison in Goldstone’s (1994b) experiment can be denoted as
ABCD vs. BADC. In this particular comparison, the two birds share
four features, but the shared features do not correspond to the
same parts of the birds. Goldstone (1994b) called such matches
MOPs, that is, matches out of place. By analogy, MIPs, matches in
place, are shared features for the same parts of the bird. Thus, the
two representations ABCD and ABXZ would have two MIPs. The
distinction betweenMIPs andMOPs captures a fundamental aspect
of structure in representations, namely the fact that particular fea-
tures could be shared between two objects, without correspond-
ing to the same part of the objects. Goldstone (1994b) found that
MIPs have more of an impact on similarity than MOPs, but both
MIPs and MOPs increase similarity. He also reported that having
both a MIP and a MOP for the same feature (e.g., AACD compared
to ABXZ) would actually lead to a lower rating, than just a corre-
sponding MIP (e.g., AYXZ). Specifically, in his Experiment 2 (stim-
uli were schematic birds with symbols), the similarity result for
comparing objects with threeMIPswas higher than the result with
three MIPs and one MOP (Fig. 7, p. 11). Goldstone (1994b) consid-
ered this result important enough to highlight the ability of his
model, (Similarity as Interactive Activation and Mapping; SIAM)
to capture it, against competitors. But, the corresponding differ-
encewas not significant and not replicated in Larkey andMarkman
(2005). Finally, note that there is a related distinction in the litera-
ture, between aligned and unaligned differences (e.g., Markman &
Gentner, 1996). The consideration of similarity using aligned and
unaligned differences is not quite equivalent to that of MIPs and
MOPs but, as far as we can see, there are no relevant implications
in the discussion below.

Smolensky, Goldrick, and Mathis (2014) solved the problem of
introducing structure into geometric representations in the con-
text of combinatorial structure in connectionistmodels of language
processing. Specifically, their starting point (Smolensky et al.,
2014) was two structured representations S and S ′, which were
composed of roles (denoted by r) and fillers for each role (denoted
by f ). In other words, S = {fj/rj}j and S ′

= {f ′

k/r
′

k}k, whereby {fj/rj}j
denotes a set of roles and corresponding fillers. For example, S and
S ′ might be two different syllables, r different roles, such as ‘on-
set’ or ‘coda’, and f possible fillers, i.e., phonemes. Then, Smolen-
sky et al. suggested that the similarity between these structured
representations should be given by a scheme which computes
sim


S, S ′


=


j


k sim(fj, f
′
k)·sim(rj, r ′

k), that is, a schemewhich
computes the similarity between the corresponding fillers, for all
combinations of roles. Smolensky (1990) and Smolensky et al.
(2014) noted that one way to implement this similarity measure is
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Fig. 1. A figure reproduced from Goldstone (1994b, Fig. 6), illustrating the stimuli
employed in his Experiment 2.

by considering the tensor product between roles and fillers and it is
this approach which we adopt in the QP model of basic/analogical
similarity. Note that other researchers have employed Smolensky’s
(1990) tensor product idea in analogy formation (e.g., Wiles, Hal-
ford, Stewart, Humphreys, & Wilson, 1994; see also Humphreys,
Bain, & Pike, 1989), but placed less emphasis on the distinction
between MIPs and MOPs. In Wiles et al. (1994) work, tensors are
employed to examine analogies between e.g. ‘‘mother: baby’’ and
‘‘mare: foal’’. Humphreys et al.’s (1989) model is a model of mem-
ory, whereby tensor products are employed to bind words with
their contexts. Also, some researchers have pointed out that a ten-
sor product scheme for combining roles and fillers may involve
a combinatorial explosion of overall dimensionality. It is unclear
how much a problem this is in practice. Smolensky et al. (2014)
argued that it is not. Also, in similarity applications, a problem of
overall dimensionality is likely to be less severe than in language.

What is the subset of possible role combinations allowed?
This depends entirely on how the vectors for roles are set up. In
the most general form for the similarity measure, sim


S, S ′


=

j


k sim(fj, f
′
k) · sim(rj, r ′

k), it should be clear that all combina-
tions of roles are allowed, so that the similarity measure is consis-
tent with both MIPs and MOPs.

We first illustrate our approach just for MIPs, for simple objects
having three distinct parts, top, middle, and bottom (a part is
like a role in Smolensky et al.’s example above). Each part can be
any of two shapes, a square or a circle. Moreover, any shape can
be any of two colors, say blue or red (the shapes and colors are
possible fillers, for the roles above). Following Smolensky (1990)
and Smolensky et al. (2014), we suggest that the set of all such
objects would be represented by vectors of the form |top part⟩ ⊗

|shape⟩⊗|color⟩+|middle part⟩⊗|shape⟩⊗|color⟩+|bottom part⟩⊗
|shape⟩⊗ |color⟩. Note that in our approach the rank of the tensors
depends on the number of elementary features, which together
characterize an object part (for an alternative approach see Wiles
et al., 1994). The role vectors indicate the part under consideration
and, since we are assuming only MIPs, we can set these to a
canonical basis to write1
0
0


⊗ |shape⟩ ⊗ |color⟩ +

0
1
0


⊗ |shape⟩ ⊗ |color⟩

+

0
0
1


⊗ |shape⟩ ⊗ |color⟩. (1)

The tensor product of the part vector, with the vector corre-
sponding to shape, and the vector corresponding to color, allows
all combinations of shapes and colors for each part.

In the QP basic similarity model, the similarity between two
objects, A and B, is Sim (A, B) = |PB · PA · |ψ⟩|

2. In the extended
QP model of basic/analogical similarity, the definition of similarity
is identical. The similarity computation is straightforward to carry
out. Note first that we can write Sim (A, B) = ||A⟩ ⟨A|B⟩ ⟨B|ψ⟩|

2.
The first dot product, ⟨B|ψ⟩, can be ignored, since we require the
state vector, |ψ⟩, to be neutral with respect to the A and B rays (i.e.,
|⟨B|ψ⟩|

2
= |⟨A|ψ⟩|

2). The |A⟩ term can be ignored as well, since
||A⟩|

2
= 1. Therefore, we can write Sim (A, B) = |⟨A|B⟩|2. The dot

product is

⟨A|B⟩ =

1
0
0


A

⊗ (shape)A ⊗ (color)A

+

0
1
0


A

⊗ (shape)A ⊗ (color)A

+

0
0
1


A

⊗ (shape)A ⊗ (color)A

×


1
0
0


B

⊗ (shape)B ⊗ (color)B

+

0
1
0


B

⊗ (shape)B ⊗ (color)B

+

0
0
1


B

⊗ (shape)B ⊗ (color)B


. (2)

This leads to

⟨shapeA | shapeB⟩Part 1 ⟨colorA | colorB⟩Part 1
+ ⟨shapeA | shapeB⟩Part 2 ⟨colorA | colorB⟩Part 2
+ ⟨shapeA | shapeB⟩Part 3 ⟨colorA | colorB⟩Part 3 . (3)

The above computation is simpler than perhaps how it looks. All
terms combine with each other and each individual dot product is
of the form ⟨x ⊗ y ⊗ z|x′

⊗ y′
⊗ z ′

⟩ = ⟨x|x′
⟩ ⟨y|y′

⟩ ⟨z|z ′
⟩. In other

words, the dot product between two tensor products decomposes
into dot products for each ‘slot’ (space) separately. The first of these
dot products involves the vector for the particular parts under
consideration in the two objects. But, these part vectors have been
set up in such a way that, unless they are the same, their dot
product is zero. For example, consider the dot product involving
the first part of object A and the second part of object B. This is1

0
0


A

⊗ (shape)A ⊗ (color)A


0
1
0


B

⊗ (shape)B ⊗ (color)B



=

1 0 0


A

0
1
0


B

. . . = 0. (4)

So, overall, this particular way of setting up the part vectors readily
allows for similarity comparisons to be faithful to structure, in the
sense that shape equivalence adds to the similarity computation,
only when the corresponding parts are the same between the two
objects. In brief, this is a scheme for MIPs.

The QP model of basic/analogical similarity can easily allow for
contributions to similarity fromMOPs as well, in a way identical to
that of Smolensky et al. (2014), by allowing non-orthogonal part
vectors (i.e., non-orthogonal roles). Note that, in the QP model,
MOPs can only arise from similarities between roles; if roles have
no similarity structure, then the QP model must predict no MOPs.
We are also now led to a key distinction between the QP model of
basic/analogical similarity and Smolensky et al.’s (2014) approach.
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The native space of QP representations is complex. In QP theory,
complex numbers are employed as a technical convenience and
all outputs of the theory are guaranteed to be real. But, in part
because of the use of complex vectors, QP theory computations
sometimes give rise to interference effects, not possible with real
vectors. Therefore, with non-orthogonal, complex vectors for roles,
we are led to the possibility of not only MOPs, but of interference
effects between MOPs and MIPs.

To illustrate, consider a simplified example of two objects
created of two possible features in two possible roles, so that A =

r1 ⊗ f1 + r2 ⊗ f2 and B = r1 ⊗ f ′

1 + r2 ⊗ f ′

2 , noting that r1 is the
role vector for the first part and r2 the role vector for the second
part. The actual features f1, f2 etc. could be the same or not, this
is not relevant presently. Then, Sim (A, B) ∝ |⟨A|B⟩|2. The inner
product is computed as ⟨A|B⟩ = ⟨r1 ⊗ f1 + r2 ⊗ f2|r1 ⊗ f ′

1 +

r2 ⊗ f ′

2⟩ = ⟨f1|f ′

1⟩ + ⟨f2|f ′

2⟩ + ⟨r1|r2⟩ ⟨f1|f ′

2⟩ + ⟨r2|r1⟩ ⟨f2|f ′

1⟩. The
first two terms are contributions from MIPs; the cross-terms are
MOPs. Here, we are only concernedwith the cross-terms, since the
MIPs’ contribution cannot change by altering the role vectors. We
can rewrite the cross-terms as: cross = ⟨r1|r2⟩G + ⟨r2|r1⟩H , where
G = ⟨f1|f ′

2⟩ and H = ⟨f2|f ′

1⟩. Depending on the form of r1, r2, there
is potential for the cross-terms to reduce the overall value of ⟨A|B⟩,
when the contributions to similarity from MOPs can be negative.
This is simply illustrated in two dimensions. Letting x, y, a, b, be
all positive, real numbers, consider four possibilities:

r1 =


x
y


, r2 =


a
b


, then ⟨r1|r2⟩G + ⟨r2|r1⟩H

= (xa + yb)(G + H) (5a)

r1 =


x
iy


, r2 =


a
b


, then ⟨r1|r2⟩G + ⟨r2|r1⟩H

= xa (G + H)+ iby(H − G) (5b)

r1 =


x
iy


, r2 =


ia
b


, then ⟨r1|r2⟩G + ⟨r2|r1⟩H

= ixa (G − H)+ iby(H − G) (5c)

r1 =


ix
iy


, r2 =


−ia
−ib


, then ⟨r1|r2⟩G + ⟨r2|r1⟩H

= −(xa + yb)(G + H). (5d)

In the first case, we have a baseline, additive, positive contribu-
tion from MOPs to similarity. In cases (5b) and (5c) the contribu-
tion from MOPs is lower, relative to that in the baseline case (5a).
Finally, in case (5d) the contribution to similarity from MOPs is
negative, meaning that the similarity we would expect from MIPs
would be reduced, because ofMOPs. Note that all themodifications
to the role vectors do not alter their norms (i.e., the computations
for MIPs are unaffected).

Thus, with complex role vectors, the QP model of basic/
analogical similarity predicts a possibility that MOPs will interfere
with MIPs, which is a novel prediction from the QP model of ba-
sic/analogical similarity. Goldstone’s (1994b) SIAMmodel can also
predict such an interference. The QP model and SIAM are not nec-
essarily competing models, as they emphasize different aspects of
psychological explanation (the QP model is concerned with the
guiding mathematical principles, SIAM is a network model aimed
at capturing underlying processes). As noted, Goldstone (1994b)
indeed reported a nonsignificant trend where MOPs reduce the
overall similarity between two objects. Exploring the reality of
such interference effects and identifying the circumstances which
make them likely is an exciting (and challenging) direction for fur-
ther work. For example, perhaps more complex stimuli, for which
the different roles have complex relationships with each other
(such as those employed in Goldstone, 1994b), make interference
effects more likely, as opposed to stimuli with simpler structure
and more schematic form (e.g., Larkey & Markman, 2005). Note,
Goldstone’s (1994b) own view was that such interference effects
arise when the same feature is involved in both a MIP and a MOP.

4. Further exploring theQPmodel of basic/analogical similarity

4.1. Analytical examination

In Section 3 we provided an example for how the QP model
of basic/analogical similarity can account for MIPs and MOPs (and
possible interference effects between the two). Here, first, we
consider the formal properties of the model more systematically,
with an emphasis on three main findings from Goldstone (1994b):
(1) MIPs have more of an impact on similarity than MOPs, (2)
MIPS increase similarity, and (3) MOPs increase similarity. Second,
having analytically examined the formal sensitivity of themodel to
these aspects of structural similarity, we provide a computational
demonstration of its behavior.

We use the terminology of Smolensky et al. (2014), to make
it easier to appreciate the links between our work and theirs.
Consider objects composed of n roles (these would be analogous to
stimulus components or parts, in the language of basic similarity
models) and a set of fillers for each role (a filler is a feature, that
is, the way in which a particular stimulus component can appear).
Let |r1⟩, |r2⟩, . . . , |rn⟩ be n-dimensional positive real vectors with
unit length representing the roles. Let |fi⟩ be a real unit length
vector representing the filler associated with role i. A standard
simplifying assumption in similarity research is that fillers are
orthonormal, so that there is no similarity between the different
e.g. features which make up a schematic stimulus. Although we
assume filler orthonormality in this section, the QPmodel does not
require it; we discuss the implications of violating this assumption
and, also, do not require it in the computational demonstration
(note, Goldstone’s, 1994b, model incorporates violations of filler
orthonormality in terms of a global parameter). Note that, unless
stated otherwise, role orthonormality is not assumed (MOPs arise
when roles are not orthonormal).

In the quantum similarity model, an object S is represented by
the tensor product r1 ⊗ f1 + r2 ⊗ f2 + · · · + rn ⊗ fn. The similarity
between two objects S and S ′ can be written as the following, up
to a normalizing constant:

Sim(S, S ′) = |⟨S|S ′
⟩|

2

= |⟨r1 ⊗ f1 + r2 ⊗ f2 + · · · + rn ⊗ fn|r1 ⊗ f ′

1

+ r2 ⊗ f ′

2 + · · · + rn ⊗ f ′

n⟩|
2

=

 n
i=1

n
j=1

⟨ri|rj⟩ ⟨fi|f ′

j ⟩


2

. (6)

A MIP between S and S ′ implies that there is some role i, such
that the fillers for the role match, ⟨fi|f ′

i ⟩ = 1. A MOP between S
and S ′ implies that there are roles i and j, which are not orthonor-
mal (i.e., 0 < |⟨ri|rj⟩| ≤ 1; note that ⟨ri|rj⟩ could be negative,
hence the absolute value is necessary), such that the fillers match,
⟨fi|f ′

j ⟩ = 1. In other words, the existence of a MOP implies the con-
junction of two things: |⟨ri|rj⟩| > 0 and ⟨fi|f ′

j ⟩ = 1. Also, notice that
|⟨ri|rj⟩| ≤ |⟨ri|ri⟩| = 1, because of the assumption that role vectors
have unit length. That is, matching roles will have more impact on
similarity judgments, than non-matching roles.

Our first claim is thatMIPs havemore of an impact on similarity
than MOPs. Let S, S ′, and S ′′ have n roles. Let S and S ′ have k ≤ n
MIPs (and no MOPs) and let S and S ′′ have k ≤ n MOPs (and no
MIPs). If different fillers are orthonormal, that is, ⟨fi|fi⟩ = 1 and
⟨fi|f ′

i ⟩ = 0 for fi ≠ f ′

i , then Sim(S, S ′) ≥ Sim(S, S ′′). The proof is
straightforward. Since there are no MOPs in the comparison of S
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and S ′, all of the fillers for mismatching roles are different. Then,
⟨fi|f ′

j ⟩ = 0 for all i ≠ j because of filler orthonormality. The
presence of MIPs implies that there are exactly k ≤ n nonzero
terms of the form ⟨ri|ri⟩ ⟨fi|f ′

i ⟩ where ⟨ri|ri⟩ = 1 and ⟨fi|f ′

i ⟩ = 1.
Since there are no MIPs in the comparison of S and S ′′, all of the
fillers for matching roles are different. That is, ⟨fi|f ′′

i ⟩ = 0 for all i,
because of filler orthonormality. The presence of n MOPs implies
that there are exactly k ≤ n nonzero terms of the form ⟨ri|rj⟩ ⟨fi|f ′′

j ⟩

where 0 < |⟨ri|rj⟩| ≤ 1 and ⟨fi|f ′′

j ⟩ = 1. Because |⟨ri|ri⟩| ≥ |⟨ri|rj⟩|
for all i and j, Sim(S, S ′) ≥ Sim(S, S ′′).

Without filler orthonormality, we could have situations where
two objects have a high similarity without either MIPs or MOPs.
Suppose ⟨ri|rj⟩ ≠ 0 (no MIPs) and we do not have the same fea-
ture in the roles i, j (no MOPs). Then, without filler orthonormality,
there could be instances when ⟨fi|f ′

j ⟩ > 0. Depending on the sim-
ilarity structure of the features, a large number of (relatively high
value) cross-terms of this form could exceed the contribution of a
small (or zero) number of actual MIPs or MOPs, in a different com-
parison. This partly illustrates why filler orthonormality is a useful
assumption in practical research, since ignoring cross-terms
(i.e., ignoring contributions to similarity which are neither MIPs
norMOPs and, instead, arise from similarity between non-identical
features) makes similarity computations and modeling more
tractable.

The second claim concerns the impact of MIPs on similarity
judgments. We show that increasing the number of MIPs increases
similarity. Specifically, suppose S and S ′ havemoreMIPs than S and
S ′′ and there are noMOPs. Then, if different fillers are orthonormal,
that is, ⟨fi|fi⟩ = 1 and ⟨fi|f ′

i ⟩ = 0 for fi ≠ f ′

i , it will be the
case that Sim(S, S ′) > Sim(S, S ′′). To prove this, note first that,
since there are no MOPs, all of the fillers for mismatching roles
are different. That is, ⟨fi|f ′

j ⟩ = 0 and ⟨fi|f ′′

j ⟩ = 0 for all i ≠ j
because of filler orthonormality. The remaining terms correspond
tomatching roles and are of the form ⟨ri|ri⟩ ⟨fi|f ′

i ⟩ for Sim(S, S
′) and

⟨ri|ri⟩ ⟨fi|f ′′

i ⟩ for Sim(S, S ′′), where ⟨ri|ri⟩ = 1 for all i. A MIP implies
the same filler inmatching roles. Becausewe assume that the fillers
are orthonormal, ⟨fi|f ′

i ⟩ = 1 if fi = f ′

i and zero otherwise, likewise
for ⟨fi|f ′′

i ⟩. Because S and S ′ have more MIPs than S and S ′′, there
existmore fillers f ′

i such that fi = f ′

i than fillers f ′′

i such that fi = f ′′

i .
Thus, there are more nonzero terms equal to 1 in the calculation of
Sim(S, S ′) than Sim(S, S ′′).

Eliminating the assumption of filler orthonormality potentially
confounds this conclusion. Suppose that there are fewer MIPs in
comparing S with S ′′, than in comparing S with S ′, and no MOPs.
In comparing S with S ′′, it could be the case that there is a large
contribution from feature pairs where the roles are identical, but
⟨fi|f ′

i ⟩ ≠ 1 (i.e., no MIP) and ⟨fi|f ′

i ⟩ > 0.
By analogy with the second claim, the third claim is that MOPs

increase similarity. That is, suppose S and S ′′ have a subset of the
MOPs of S and S ′ and there are no MIPs (e.g., ABCD vs. BCXZ com-
pared to ABCD vs. BCDZ). If different fillers are orthonormal, then
Sim(S, S ′) > Sim(S, S ′′). For the proof, consider that, if there are no
MIPs, then all of the fillers for matching roles are different. That is,
⟨fi|f ′

i ⟩ = 0 and ⟨fi|f ′′

i ⟩ = 0 for all i because of filler orthonormality.
The remaining terms corresponding to mismatching roles are of
the form ⟨ri|rj⟩ ⟨fi|f ′

j ⟩ for Sim(S, S ′) and ⟨ri|rj⟩ ⟨fi|f ′′

j ⟩ for Sim(S, S ′′)
where ⟨ri|rj⟩ > 0. A MOP implies the same filler in different roles.
Because we assume that the fillers are orthonormal, ⟨fi|f ′

j ⟩ = 1 if
fi = f ′

j and 0 otherwise, likewise for ⟨fi|f ′′

j ⟩. Because S and S ′′ have
a subset of the MOPs of S and S ′, there exist some i and j such that
fi = f ′

j and fi ≠ f ′′

j . (Note that the MOPs of S and S ′′ involve the
same role vectors as the MOPs of S and S ′, due to the fact that the
MOPs of S and S ′′ are a subset of those of S and S ′.) Therefore, there
are more nonzero terms of the form ⟨ri|rj⟩ ⟨fi|f ′

j ⟩ for Sim(S, S
′) than

terms of the form ⟨ri|rj⟩ ⟨fi|f ′′

j ⟩ for Sim(S, S ′′).
The implications for violating filler orthonormality are as above.
Here, additionally, we have to take into account the similarity
structure between roles, between the compared stimuli. All the
MOPs concern terms for which ⟨fi|f ′

j ⟩ = 1. In addition, for a MOP,
we have ⟨ri|rj⟩ > 0. But the exact magnitude of ⟨ri|rj⟩ will depend
on role similarity and this may vary from comparison to compari-
son. It could be the case that a smaller number of MOPs could con-
tribute more to similarity than a greater number of MOPs, if the
role similarities for the former are suitably higher. This is why the
‘subset’ assumption is needed to prove this third claim. For simple,
schematic stimuli, it is reasonable to assume that role similarity is
flat, that is, all terms of the form ⟨ri|rj⟩, which are nonzero, have
the same magnitude. In such a case, the ‘subset’ assumption is not
needed and this claim can be proved just on the basis of filler or-
thonormality.

4.2. Computational examination

The analytical demonstration shows that broad level predic-
tions from the QP model are sensible. But how well does the QP
model perform against relevant models? We considered the re-
sults from Hodgetts et al.’s (2009) Experiment 1. Hodgetts, Hahn,
and Chater (2009) built on previous empirical studies on analogical
similarity (e.g., Larkey & Markman, 2005) and, moreover, they re-
ported results from a range of relevant models. Their Experiment 1
is the simplest one in their paper and so suitable for this first com-
putational examination of the QP model of basic/analogical simi-
larity.

The results fromHodgetts et al.’s (2009) Experiment 1 consisted
of 13 object pairs, with information on the proportion of times
each object pair was selected, amongst alternative object pairs, in a
forced choice task. Selection was based on the perceived similarity
between the objects making up an object pair. Each object was
composed of two features (out of three available, denoted A, B, and
C), each placed in one of two positions (i.e., two roles). Thus, an
object pair could be represented as AA/AA, indicating that the same
features appeared in both roles, for both objects. Unsurprisingly,
this object pair was selected most frequently (91.56% of all times).
By contrast, object pair AB/BB was selected only about half the
time. The least selected object pair was AB/CC (23.57%). Hodgetts
et al. (2009) manipulated the physical form of the three features,
so that, depending on the condition, A could be any of a circle, a
square, or a triangle.

Tomotivate the parametric choices for the QPmodel, consider a
simple example of computing the similarity between objects, such
that Object1 = r1 ⊗ f1 + r2 ⊗ f2 and Object2 = r1f3 + r2f4 (for the
second object and henceforth we omit the tensor product symbol).
Then, Sim (object1, object2) = |⟨r1f1+r2f2|r1f3+r2f4⟩|2 = |⟨f1|f3⟩+
⟨f2|f4⟩ + ⟨r1|r2⟩ ⟨f1|f4⟩ + ⟨r2|r1⟩ ⟨f2|f3⟩|2, whereby the first two
terms are contributions from MIPs and the latter two from MOPs.
Casually inspecting Hodgetts et al.’s (2009) Experiment 1 data, it
is clear that there are contributions from MOPs (e.g., the object
pair AB/BA was chosen quite frequently; without MOPs, the two
objects in the pair would have no similarity). Therefore, we have
to allow for non-orthogonal role vectors. Also, the data indicate
that the assumption of feature orthonormality is not tenable as
well (e.g., AB/AAwas not chosen as equally often as AB/BB). Indeed,
intuitively, it is unlikely that participants considered a square,
circle, and triangle as maximally dissimilar and equally similar to
each other.

Based on these observations, we chose to represent roles as
non-orthogonal vectors in a two dimensional real space and
features as non-orthogonal vectors in a separate two dimensional
real space. The restriction to real spaces implies no possibility
of interference between the contribution to similarity from MIPs
and MOPs, which is reasonable, given our preliminary intuitions
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Fig. 2. Comparison of the observed choice data from Experiment 1 (Hodgetts
et al., 2009) and the best fit of the QP model of basic/analogical similarity, with a
regression line.

for when to expect such effects (Section 3). Note, employing a
two dimensional real space for three features implies that it is
impossible for the three features to be orthonormal, but limits the
overall number of parameters. Overall, the QP model had three
parameters, one to characterize feature A, one for feature B, and
one for the first role. Since all vectors are normalized and two-
dimensional, a single parameter is needed to characterize any
vector. The vector for feature C was fixed to 1

√
2


1
1


, since what

matters is the relative similarity structure of the three feature
vectors and we allowed A and B to vary freely; likewise, the
vector for the second role was fixed to


0
1


. We allowed the free

parameters to vary, so as to optimize the correlation between the
similarities between object pairs, computed by the QP model, and
the empirically observed choice proportion for each pair.

The best identified correlation was 0.81 and the results are
illustrated in Fig. 2 (the optimization was carried in Matlab and
the code is available from the authors). The ‘representational
distortion’ model, favored by Hodgetts et al. (2009), achieved
a correlation of −0.95. Hodgetts et al. (2009) also report that
the correlation for the Structure Mapping Engine model (SME;
Falkenhainer, Forbus, & Gentner, 1989) was 0.74, the correlation
for the SIAM model (Goldstone, 1994b) 0.76, and the correlation
which can be achieved by the best linear weighting of MIPs and
MOPs 0.77 (this value is inferred from Fig. 9 in Hodgetts et al.,
2009).

We note the limitations of the QP model. First, achieving
the correlation of 0.81 relied on post hoc fitting of three free
parameters. By contrast, the representational distortionmodel had
no free parameters (the predictions are based on the specification
of a coding scheme), regarding SIAM (Hodgetts et al., 2009)
employed a recycled set of parameter values from previous work,
and SME’s application involved no parameters anyway. Thus, the
QP model failed to achieve the best fit, even though it was aided
by the greatest number of parameters. We can only consider the
performance of the QP model as promising, given of course that
this is the very first application of the QP model in this domain.

5. A brief consideration of alternative approaches

The similarity literature is vast and it is beyond our objective to
summarize it in detail (for a review, see Goldstone & Son, 2005).
We consider a limited range of basic similarity or analogy models,
with a view to illustrate some of the points made throughout this
paper.

One important motivation for the present paper has been our
argument that basic similarity models are ill equipped to handle
analogical similarity. This can be illustrated fairly simply. Distance-
based models of similarity and feature-based models (such as
Tversky’s, 1977, model) could, in principle, account for some
analogical aspects of similarity (e.g., through the introduction of
conjunctive features or dimensions). In simple distance-based
models of similarity, the similarity between two entities A and B is
given by Sim(A, B) = e−c·distance(A,B), where c is a constant. In Tver-
sky’s (1977) proposal, Similarity (A, B) = θ f (A ∩ B)−af (A − B)−
βf (B−A), where θ, a, β are parameters,A∩B denotes the common
features between A and B, A−B the features of Awhich B does not
have and B−A the features of BwhichAdoes not have. In both cases
structure could be modeled by conjunctive dimensions or features
(e.g., dimension 1 is shape for feature 1 etc.; cf. Goldstone & Son,
2005), but such a solution is not elegant and appears demanding,
in terms of representational resources. Moreover, a distance-based
model of similarity could be augmented with a tensor product ap-
proach, analogous to Smolensky et al.’s (2014) method. However,
without further refinements, such a distance-based model would
still have difficulty with Tversky’s (1977) empirical findings.

Two important approaches in basic similarity are Krumhansl’s
(1978, 1988) distance–density model and Ashby and Perrin’s
(1988) general recognition theory. The formermodel assumes that
alternatives lying within dense subregions of psychological space
are subject to finer discrimination than alternatives lying in less
dense subregions. This implies that the distance (dissimilarity)
between two points A and B in psychological space should be
affected by the local density around each point, D (A) and D (B).
Thus, d′ (A, B) = d (A, B) + aD (A) + bD(B), where d (A, B) is the
standard geometric distance, a and b are parameters, and d′ (A, B)
is the modified distance measure. These ideas are interesting, but
it is unclear how to generalize them in the case of structured
representations. Ashby and Perrin’s (1988) general recognition
theory is a probabilistic approach to similarity for perceptual
stimuli. Each stimulus (e.g., presented in different trials) can
correspond to different points in psychological space, according to
a particular probability distribution. Psychological space is divided
into response regions, such that within each response region it is
optimal to make a particular response. Thus, similarity between
two stimuli depends on the overlap between the distribution of
perceptual effects for the first stimulus and the optimal response
region for the second stimulus. As with Krumhansl’s (1978) model,
it is unclear how to extend Ashby and Perrin’s (1988) approach to
take into account the structure of particular stimuli.

We now turn to the converse point: can models of analogical
similarity cover Tversky’s (1977) key results? Somemodels of ana-
logical similarity do not consider these results in a detailed way
(e.g., Gentner, 1983; Larkey & Love, 2003 andMarkman & Gentner,
1996). An interesting proposal is Taylor and Hummel’s (2009) LISA
model, which involves a representation scheme analogous to that
of Smolensky (1990), but for the crucial difference that roles and
fillers are combined additively, rather than multiplicatively. This
means that the impact of role similarity is independent of the im-
pact of filler similarity, in establishing an analogy. Regarding com-
putations of similarity, the similarity between two objects A and B
reflects a term fromMIPs and a term fromMOPs. Consider trying to
map the structure of a source, S, to a target, T . Then, the similarity
between the two is given byσtotal (T , S) = σMIP (T , S)+σMOP (T , S),
where σMIP (T , S) and σMOP (T , S) is a contribution from MIPs and
MOPs, respectively. The first term provides ameasure of the extent
to which units in S uniquely map onto units in T . The second term,
σMOP (T , S), is a measure of similarity across all objects and roles
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in T and S, with no regard of whether they map or not. How well
does LISA fair with Tversky’s (1977) main findings? A key result is
that Sim(Korea, China) > Sim(China, Korea), originally explained
as arising, in part, because participants’ representation of China
would involve more features, than that of Korea. The MIPs term in
LISA can be shown to have the form features of A uniquely matched to B

all features of A and
it can lead to similarity asymmetries, when there are differences in
thenumber of features forA andB. Thus, the LISAmodel can explain
the Korea, China asymmetry. Another one of Tversky’s (1977) key
results, a violation of the triangle inequality, involved similarities
amongst three countries, Cuba, Jamaica, Russia. Here, for LISA to
accommodate the result in the observed direction, it had to be as-
sumed that Russia was represented in terms of government, Cuba
in terms of government and climate, and Jamaica in terms of cli-
mate, so introducing a somewhat arbitrary difference in the extent
of representations. Notwithstanding the fact that, as far as we can
judge, LISA is a very competent model of analogy, we think that
its coverage of Tversky’s (1977) main results is not fully satisfac-
tory. The specification of LISA involves many architectural choices,
which are not always possible to fully constrain. In this way we
illustrate what we think is a general feature of models of analog-
ical similarity: the emphasis is on the computational procedures
which can lead to the identification of MIPs and MOPs (something
currently unspecified in the QP model), not on the algebraic prop-
erties of similarity judgments; it is the latter that bears onwhether
satisfactory coveragewith Tversky’s (1977) results can be achieved
or not.

Finally, another model of analogical similarity, the representa-
tional distortion model (Hahn, Chater, & Richardson, 2003; Hod-
getts et al., 2009) could account for violations of symmetry in
similarity judgments if, for example, removing elements from a
representation can be assumed to be easier (carry a lower infor-
mation cost) than adding elements (Hahn et al., 2009). Thus, when
comparing an informationally simpler object with a more com-
plex one, we should obtain Sim (Complex, Simple) > Sim(Simple,
Complex). The model also appears consistent with violations of the
triangle inequality, if, for example, one assumes that in e.g. the
case of Russia and Cuba the common political system facilitates the
‘transformation’ of one object to the other. Thus, the representa-
tional distortion model potentially encompasses both basic simi-
larity and analogical similarity results (see also, Hodgetts & Hahn,
2012).

Where we note shortcomings of the above models, we do not
imply criticism, as we examined their application in non-native
empirical domains. We simply wish to argue that developing
a model encompassing both basic similarity and analogical
similarity, as we have attempted to dowith the QPmodel, is a non-
trivial task.

6. Concluding comments

It is uncontroversial to state that it is desirable to extend specific
cognitive models as much as possible. Such extensions inform
our understanding of commonalities regarding the underlying
cognitive processes, across perhaps seemingly disparate aspects
of behavior. They also enable us to understand boundaries in the
applicability of particular formalisms and hence the motivation
for domain-specific mechanisms or principles. It was in this spirit
that we set out to explore whether Pothos et al.’s (2013) QP
model of basic similarity could be extended to analogical similarity.
We took this to be an interesting challenge, especially because
geometric models of basic similarity (such as the QP model) have
been thought to be incapable of accommodating structure in
similarity judgments (cf. Goldstone & Son, 2005). As things stand,
the QP model of basic/analogical similarity we reported can cover
certain aspects of decision making (as in Busemeyer et al., 2011),
basic similarity (Pothos et al., 2013), and analogical similarity (the
present paper).

We think that the QP model of basic/analogical similarity is, at
the very least, a promising candidate for further consideration in
the analogical similarity literature. Its formal properties are con-
sistent with expectation, e.g., in relation to the relative impact of
MIPs and MOPs. The computational analysis we carried out, based
on the results fromExperiment 1 of Hodgetts et al. (2009), revealed
a decent performance from the QP model, in relation to some
standard models of analogical similarity. This was an encouraging
preliminary result and recommends further similar computational
examinations. e.g., against alternative datasets.Moreover,we iden-
tified an interesting novel prediction from the QP model. In stan-
dard QP theory, representations are defined over complex, not real,
vector spaces. In analogical similarity, employing complex vectors
for roles can lead to interference effects between the contributions
for MIPs and MOPs. In other words, the QP model predicts (fairly
naturally) that there will be some cases when MOPs will conflict
withMIPs and so reduce overall similarity (Goldstone, 1994b states
such an implication fromhis SIAMmodel too). Developing this pre-
diction in a more specific way is an ambitious objective, though it
may be possible to borrow insights from other QP modeling work,
for when interference is expected (e.g., Busemeyer & Bruza, 2012).

In this work we focused on the key challenge for models of
analogical similarity of representing structure in a way that it
is consistent with MIPs and MOPs, in a certain way. Another
key challenge is discovering the appropriate mappings between
two objects in the first place (e.g., Goldstone, 1994b and Tay-
lor & Hummel, 2009). This is an aspect of the QP model of ba-
sic/analogical similarity that still needs to be developed. Perhaps
some mechanism based on alignment of features (which could
be easily implemented in the QP model) may provide a suitable
way forward. Somewhat relatedly, we have not considered possi-
ble cognitive limitations as the rank of relevant tensors increases
(whichwould happen if the compared objects increase in complex-
ity; cf. Simon, 1955). This has beennoted in an alternative approach
to analogical similarity (and memory) based on Smolensky et al.’s
(2014) ideas (Wiles et al., 1994). An interesting difference between
the quantum tensor product approach and traditional ones is that,
in the former, the overall required dimensionality can be moder-
ated through the use of incompatible representations. For example,
with three binary features, classically we need 23 dimensions. In a
quantum model, if the features are incompatible, the needed di-
mensionality could be as low as two (Pothos & Busemeyer, 2013;
Trueblood & Busemeyer, 2011; cf. Emruli, Gayler, & Sandin, 2013).
Exploring more carefully the specific computational resources im-
plied by differentmodeling approaches is an important priority for
further work.

In sum,we think that theQPmodel of basic/analogical similarity
is a promising model of analogical similarity. This encourages us
in thinking that the QP principles may provide a firm foundation
for understanding aspects of cognition including decision making,
basic similarity, and analogical similarity.
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