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Abstract 

We show how dynamic (changing) environments can affect 
choice behavior, and highlight the challenges that recent 
models face in explaining the learning and selection of 
heuristic strategies under such conditions, especially when 
decisions are made using only a small subset of the available 
information. We propose an enhanced modeling framework 
that includes a trial-by-trial implementation of a Bayesian 
adaptive toolbox, redefinition of heuristic strategies, and 
incorporation of intricate learning rate mechanisms into a 
strategy learning model. We use data from a new empirical 
study to show how this improves the quality of inference. 

Keywords: Learning; Bayesian graphical models; strategy 
selection; heuristics; adaptive toolbox; Bayesian inference; 
dynamic environments; reinforcement learning 

Introduction 
We investigate the strategy selection problem in multiple 
cue probability learning (MCPL) tasks by applying 
Bayesian inferential approaches to the question of how 
strategy selection and learning can be investigated. 
Scheibehenne, Rieskamp, & Wagenmakers (2013) 
introduced a Bayesian adaptive toolbox where the 
probability of using each strategy is inferred across all trials 
rather than on a trial-by-trial basis.  

We implement a similar toolbox approach on a trial-by-
trial basis, and augment this with a hierarchical learning 
mechanism (strategy selection and learning (SSL), 
Rieskamp & Otto, 2006) that governs the shift in use of 
strategies over trials. This allows us to capture adaptive 
behavior under dynamic environmental conditions where 
people demonstrate substantial learning effects. Next, we 
show how the standard definition of heuristic strategies is 
ineffective in accounting for behavior in the unique class of 
experimental paradigms we have selected. To tackle this, we 
propose that such standard heuristic strategies be redefined 
at the level of their elementary building blocks (Gigerenzer 
and Gaissmaier, 2011) and incorporate Bayesian inference 
based belief updating1 into the learning mechanism. Finally, 
we adapt the SSL model to incorporate more elaborate 
learning rate mechanisms such as variable learning rates, 
item-specific learning, random-effects, volatility dependent 
learning, and counterfactual learning.  

We first describe a new empirical study that we use to 
subsequently show how our model can provide greater 
insight into adaptive behavior. Our study focuses on a 

                                                           
1 The learning mechanism is not changed to Bayesian learning, 

just the process by which the modeler determines what strategy is 
to be reinforced is mechanized as a Bayesian inference process 

forced choice paradigm where the environmental conditions 
can change over the course of trials, and where it is possible 
for participants to acquire only a partial subset of the cue 
information available. 

Experiment 
We use a MCPL paradigm where participants had to make 
repeated forced choices between one of three options on the 
basis of a set of underlying cues. This paradigm was similar 
to that used by Bröder & Schiffer (2006) with changes in the 
conditions and relationships between cues and options. 

Methods 
34 University of California, Irvine undergraduates 
participated in the experiment for course credit. The cover 
story for the choice task was a hypothetical stock market 
game, in which participants had to choose between three 
financial stock options, based on four possible binary cue 
attributes that included past profit growth, sales growth, and 
recommendations from two independent advisors. The cue 
values were instantiated as High / Low for the two financial 
indicators, and as Buy / Sell for the two advisory cues. 
Participants could acquire any of the twelve (four attributes 
x three options) cue values in any order, at a cost of 5% of 
the total gross reward obtained for that trial, for each cue 
acquired. Once a participant selected a cue attribute, it 
remained visible throughout the trial. Each participant made 
choices for 120 trials split into four blocks of 30 trials each. 
Each block was associated with either a compensatory (C-
Block) or non-compensatory (N-Block) environment, which 
differed in the relationship between the cue values (c1 to c4, 
encoded as +1 or -1) and the associated reward outcomes 
(R), such that gross rewards ranged from –150 to +150: 
R(C) = 40c1 + 37c2 + 34c3 + 31c4 + noise(-8, 8) 
R(N) = 78c1 + 7c2 - 21c3 - 36c4 + noise(-8, 8) 

The objective of the task was to maximize the rewards 
remaining after any cue acquisition related costs. In our 
task, a take-the-best (TTB) strategy always provided a 
higher net payoff in N-blocks and a weighted average 
(WADD) strategy in C-blocks. The actual cue weights, 
order of importance or validity of the weights, or the type of 
environment for each block was not known to the 
participants (this was to be learned as part of the decision 
process), but they were told that the underlying environment 
and relationships between cues and options could change 
between blocks, but remained constant within a block. The 
start and end of each block was clearly indicated. The cue 
weights included negative values (this design was 
implemented to nudge participants towards a more 



deliberative cognitive effort as opposed to focusing on the 
salience of the positive valued cues), and while the cue 
weights and order were not disclosed, participants were told 
that it was possible for cues to be negatively related to the 
options (brief examples of how this could be justified within 
the paradigm were included). After each trial, feedback was 
provided on the reward associated with all the three options.  

The block size was designed to be small (30 trials each) to 
manipulate the possible effects of routinization of decision 
strategies (see Bröder & Schiffer, 2006; Bröder et al, 2013). 
The experiment consisted of a factorial design with four 
conditions (2 conditions starting either with a C-Block or N-
Block x 2 conditions where the routine was manipulated by 
either alternating or placing similar blocks consecutively). 
Thus, the four blocks under the four conditions could be 
represented as CNCN, CCNN, NCNC and NNCC. We 
wanted to measure the interaction between routine length 
and starting conditions, manifested as the extent of 
maladaptive routinization, initial bias and response to 
different levels of volatility that the changing environment 
represented, assess the potential inadequacies of existing 
models to explain underlying behavior, and demonstrate 
how these models could be suitably improved. 

Results 
Table 1 shows the result of Bayesian t-tests2 for pairwise 
differences in the number of cues acquired, and the 
performance (standardized reward scores3), between 
conditions. This shows a hierarchy of performance levels, 
with significant evidence for higher performance in the 
CCNN condition, no significant difference between the two 
alternating conditions (CNCN and NCNC) as the t-test 
comparing these yields a BF in favor of the null, and 
reasonably strong evidence for a lower performance in the 
NNCC condition. The mean performance score reflects this 
trend (CCNN 0.86, CNCN & NCNC 0.78 and NNCC 0.73). 

A Bayesian ANOVA test (Table 2) reveals that the 
routine type alone (consecutive vs alternating blocks) is not 
a significant factor, and the best model that explains the 
variance is based on the starting condition (C vs N) and a 
strong interaction between the starting condition and the 
routine type. Analyzing the coefficients for the factors under 
this model reveal an interesting relationship where the 
routine types have an asymmetric impact depending on the 
starting condition. Consecutive routines interacting with 

                                                           
2 Results are summarized as the log(Bayes factor) in favor of a 

difference vs the null (zero difference), based on a JZS t-test, and 
the standardized mean difference (Delta) which shows the effect 
size. A log(BF) with absolute value < 1 can be considered 
inconclusive. Log(BF) > 1 indicates evidence in favor of the 
difference, and log(BF) < -1 in favor of the null. Larger log(BF) 
values imply greater evidence of a difference. Very large 
differences are highlighted in bold.  

 
3 We measured effective performance by normalizing rewards 

from 0 to 1 based on the maximum and minimum possible gross 
rewards on each trial. 

starting C have a coefficient of +0.03, and -0.03 when 
interacting with starting N; alternative routines are exactly 
the other way around. Starting conditions alone have a 
coefficient of +0.03 (C) and -0.03 (N), reflecting initial bias.  
 

Table 1: Pairwise Bayesian t-test between conditions 
 

 
Table 2: Bayesian ANOVA test for factors contributing to 

the standardized performance score  
 

 
We also test for differences within and between block 

types (see Table 3). There is strong evidence for within 
block improvement in performance between the first (HB1) 
and second (HB2) half of each block. This is true for both 
environmental conditions, but the effect size and 
significance is much higher in N-blocks vs C-blocks.  

 
Table 3: Bayesian t-test (within & between blocks) 

 

 
The overall performance of N-blocks and C-blocks 

however is not different (significance test yields a BF in 
favor of the null; overall accuracy for C is 82.3% and for N 
is 82.9% and standardized performance score for C is 0.80 
and N is 0.78). Rather, a half-block comparison between C 
and N blocks shows that first half performance in C-blocks 
is marginally better than in N-blocks (log(BF)=2.2 in favor 

                                                           
4 ‘Routine:Starting’ indicates the interaction effect between 

routine and starting conditions 

Difference 
Performance Cue Acquisition 

Log(BF) Delta Log(BF) Delta 
CNCN vs CCNN 15.8 -0.26 10.6 -0.22 
CNCN vs NCNC -3 na 2.8 -0.15 
CNCN vs NNCC 3.2 0.16 13.8 -0.26 
CCNN vs NCNC 15.3 0.27 -2.2 na 
CCNN vs NNCC 43.8 0.43 -2.7 na 
NCNC vs NNCC 2.2 0.15 -1.1 na 

Model vs Baseline (Intercept only) Log(BF) 
Routine (Consecutive vs Alternate) -2.1 
Routine + Routine:Starting4 15.1 
Routine + Starting 16.2 
Routine:Starting4 17.4 
Starting Condition (N vs C) 18.2 
Routine + Starting + Routine:Starting4 33.5 
Starting + Routine:Starting4 36.1 

Difference 
Performance Cue Acquisition 

Log(BF) delta Log(BF) Delta 
HB2 vs HB1 (C) 39 0.15 3.2 -0.11 
HB2 vs HB1 (N) 193 0.32 74.6 -0.41 
C vs N (overall) -1.2 na 51.1 0.23 
C vs N (HB1) 2.2 0.10 1.3 0.09 
C vs N (HB2) -3.2 na 72.0 0.39 
C2 vs C1 (all) 9.1 0.16 0.16 -0.08 
N2 vs N1 (all) 57 0.35 44.3 -0.31 



of a difference). This leads to the conclusion that 
performance starts at a lower level in N-blocks, perhaps 
reflecting an initial bias, but seems adaptive enough to reach 
overall C-block levels. This adaptivity is also reflected in 
the cue acquisition levels, (average cue acquisition is C 
33%, N 28%), where a t-test is not really conclusive for the 
first half of C and N blocks, but shows a very significant 
(log(BF) = 72) and strong effect size for higher cue 
acquisition levels in the second half for C-blocks vs N-
blocks, a significant (log(BF) = 74.6) and strong reduction 
in cue acquisition between the first and second half within 
N-blocks, and a significant increase in performance between 
the first and second encountered blocks of the same type, 
with a stronger effect for N-blocks. Our modeling efforts 
attempt to capture this behavior via inference on the 
underlying latent heuristic strategies utilized by participants, 
how these strategies change with changing environmental 
types, and the differences between conditions. 

Modeling Challenges and Enhancements 

What to reinforce? A Bayesian solution 
Most learning algorithms update beliefs about a set of items 
under consideration. If the locus of learning is a choice 
option, learning can be explicitly modeled since the selected 
choice option is always known. When the locus of learning 
is a latent process (in our case, a heuristic or strategy that 
cannot be directly observed), the modeling process needs to 
infer which latent item was utilized and hence needs to be 
reinforced or updated by the learning algorithm on each 
trial. Existing approaches to identify such latent strategies 
include response matching (strategy prediction matches the 
actual response observed; see Rieskamp, 2008) or an 
additional criterion of minimum cue acquisition (minimum 
cues required to implement the strategy have to be acquired; 
see Rieskamp & Otto, 2006).  

In paradigms, like ours, which allow partial information 
utilization and where the cue acquisition density is very low, 
response matching alone is unrealistic, since the number of 
cues acquired are rarely adequate (e.g. in our study, average 
cue acquisition levels were 31%, with over 50% of cues 
being acquired on only about 12% of the trials) to 
implement standard heuristic strategies (e.g. TTB, WADD, 
tallying, and so on). Including a criterion for minimum cue 
acquisition makes most of the updates ineffective, since 
none of the strategies would be updated on a large number 
of trials (e.g. in our study, updates on 90% of the trials 
become ineffective since they do not meet the cue 
acquisition criteria for any commonly defined strategy). To 
counter these issues we propose a possible solution, 
partially redefining what is considered a ‘strategy’, as part 
of an adaptive toolbox of strategies. The existing SSL model 
calculates the probability of using each strategy (si) on each 
trial (t) based on the underlying value assigned to each 
strategy, called q-values (p(si,t) = Q(si,t) / Σj Q(sj,t)). The q-
values are updated based on the observed choice (co) and 
associated reward (Q(si,t)  = Q(si,t-1) + I(si,t-1)*r(co,t-1)), 

where I(si,t) is an indicator function based on response 
matching or response matching and minimum cue 
acquisition, that indicates whether a strategy was used on a 
particular trial. The initial q-values depend on an initial 
association parameter (K), initial strategy preference (β) and 
the maximum possible reward on any trial (Q(si,1) = βi * K 
* Rmax). We propose modifying the q-value calculation for 
each strategy to Q(si,t) = Q(si,t-1) + p(si,t|co,u) * r(c,t-1), 
where we define p(si,t|co,u) as the Bayesian posterior 
probability of the participant having utilized a specific 
strategy (si) on trial (t), based on the observed choice (co) 
and the pattern of cues acquired (u):  
p(si,t|co,u)  =  p(co,t|u,si) p(u,t|si) p(si,t) 

 p(co,t|u) p (u,t)  
Here, p(si,t) is the prior probability of utilizing a strategy 

(si)  on trial (t) as predicted by the cognitive model. The 
remaining probabilities, p(u,t|si), the probability of acquiring 
the specific cue pattern given the application of a specific 
strategy, and p(co,t|u,si), the probability of making a specific 
choice given the particular strategy being used and the cue 
pattern acquired, need to be specified. We propose that these 
probabilities be defined as the information search and 
decision rule building blocks of the heuristic strategy.  

Redefining heuristic strategies 
Similar to traditionally defined strategies (TS), p(co|u,s) is 
simply a decision rule that combines all the cue information 
in exactly the same way, but taking into account only the 
cue values that have actually been acquired on each trial. If 
the decision rule applied to the partially observed cues can 
discriminate between all options, this probability is either 0 
or 1 for each option (c), otherwise it is distributed across the 
non-discriminable options. We call these strategies 
observed-cue strategies (OS), to differentiate the level at 
which the decision rule is applied. On the other hand, 
defining p(u|s) at the level of a heuristic strategy is quite 
different from the traditional cue search rules. We propose 
that the cognitive act of cue acquisition can be envisaged as 
a sampling process, and the heuristic defines the probability 
distribution of cue acquisition patterns from which the 
individual is sampling. To implement this, we categorize 
each possible pattern into one of a number of ordered subset 
categories on the basis of identified classifiers. The extreme 
categories define a pair of complementary approaches to cue 
acquisition, and the ordered categories are defined to 
represent a log-odds ratio between the two complementary 
approaches (i.e. extreme categories include cue acquisition 
patterns that have extreme log-odds ratios and those in the 
middle reflect patterns that are equally likely under the two 
acquisition approaches). The log-odds for each ordered 
category are derived from the classifiers by calculating an 
index score for each category. For our study, we categorized 
all possible (4096) cue acquisition patterns by using a 
simple classification scheme with three classifiers: (1) the 
number of unique cue attributes where at least one cue value 
was selected (higher value indicates a compensatory 
approach), (2) the cue acquisition density within this subset 



of attributes (lower indicated a greater propensity to 
compare cues across attributes, thus compatible with a 
compensatory approach), and (3) an assumption of 
sensitivity to costs (this redistributed the probabilities for 
each approach towards patterns with lower cue acquisition 
density). Using these classifiers we could obtain a formulaic 
characterization of different cue acquisition patterns 
yielding a score of 0 to 1 for each5, which was then scaled to 
reflect the log-odds, and transformed to a probability using 
the inverse logit function. We could thus define a pair of 
heuristic approaches (approximated as compensatory and 
non-compensatory) with complementary probability 
distributions over all possible cue patterns, defining two sets 
of ‘p(u|s)’. While further details of this mechanism are 
beyond the scope of this paper, we highlight that the 
classifiers used were not exhaustive, but an illustrative 
instantiation of a working model for our toolbox.  

Modeling Learning Rates  
Previous implementations of SSL usually assume a constant 
learning rate across all trials, often parameterized as an 
initial association level (but see Gluth, Rieskamp, & Buchel, 
2014 for a fixed learning rate implementation). However, 
learning rates might be influence by a number of different 
factors. Thus, we explore four different learning rate 
mechanisms: (1) variable, (2) entropy-based learning rates, 
(3) random effects, and (4) counterfactual learning. 
 
Variable Learning Rates (SSL-V): Studies have shown 
that flexible and variable learning rates within RL based 
mechanisms can improve predictions and also produce 
results comparable to Bayesian learning (Payzan-
LeNestoury & Bossaertsz, 2014; Speekenbrink, & 
Konstantinidis, 2014). We re-parameterize the SSL model 
to include a flexible learning rate that can depend on the 
environmental condition (i.e. change between experimental 
blocks) and can also be strategy-dependent. The latter 
formulation can be interpreted as responses to different 
levels of ‘surprise’ to the same reward outcome that 
different strategies generate. The learning rate for each 
block type (b) and strategy (si), L(si,b), is modeled using a 
hierarchical prior, and the initial association parameter (K) 
is no longer required. The revised q-value calculation is 
Q(si,t) = Q(si,t-1) + p(si,t|co,u) * r(co,t-1) * L(si,b). 
 
Entropy-based Learning Rates (SSL-E): Allowing the 
learning rate to vary between blocks and strategies still 
enforces a fixed learning rate within blocks. Assessment of 
environmental volatility and detection of environmental 
changes have been implicated in the modulation of learning 
rates (Pearson & Platt 2013; Behrens et al, 2007). We 

                                                           
5 For instance, selecting all 3 cue values corresponding to the 

three options from a single attribute, representing a non-
compensatory approach, resulted in a raw score of 0.08, whereas 
selecting 3 cue values, each from a unique attribute-option pair, 
thus representing a compensatory approach, resulted in a raw score 
of 0.75. 

propose that the conflict between probabilities of using 
different strategies generated by the cognitive model can be 
interpreted as a possible proxy measure of the volatility. We 
implement a version of the model that modulates the 
learning rate on a trial-by-trial basis based on a moving 
average of recent entropy. Higher entropy reflects greater 
uncertainty in the environment and hence increases learning 
rates. Entropy (for ‘n’ strategies in a toolbox) is calculated 
based on the strategy probabilities generated by the model:  

Entropy(t,n)= - (1/loge n)*Σi=1:n{p(si,t)*loge(p(si,t)} 

Random effects (SSL-R): Since learning rate may be 
subject to individual (participant) effects, item effects 
(individual strategies, type of environment – compensatory 
or non-compensatory) as well as the experimental 
conditions, we propose a model where these 4 main effects 
are broken down as random effects and combine additively 
on a probit scale (see Rouder & Lu, 2005 for Bayesian 
modeling of crossed random effects). We develop a version 
of our model assuming independent random effects, and 
each of these (L_ind, L_strat, L_env, L_cond) are modeled 
hierarchically with a scaled normal prior and a 
hyperparameter for the effect standard deviation. The 
posterior distribution of the standard deviation indicates the 
level of heterogeneity arising from each effect. 

L_probit = L_mean + L_ind + L_strat + L_env + L_cond 
Lr(si,b) = Scaling Factor * Φ (L_probit) 

Counterfactual Learning (SSL-C): Counterfactual 
learning of choice options is commonly studied, however 
incorporating it into a task paradigm with low cue 
acquisition density and a latent locus of learning can get 
tricky, as counterfactual implications of traditionally defined 
compensatory strategies when actual behavior is non-
compensatory cannot be easily evaluated. We can however 
implement counterfactual learning successfully using our 
approach to defining heuristics based on observed cues, as 
below, where Iij is an indicator function that reflects whether 
a particular strategy predicts choice ‘cj’, given the observed 
cues, and CF is a free parameter [0, 1] indicating the relative 
strength of counterfactual learning.  

Q(si,t) = Q(si,t-1) + Σj { Iij * r(cj,t-1) * L(si) *  
          [p(si,t|cj,u)+(1-p(si,t|cj,u))* CF] } 

Bayesian inference framework 
The learning model is implemented in a Bayesian inference 
framework that allows hierarchical estimation of the 
parameters. The calculated strategy probabilities are 
converted to choice probabilities for each choice option ‘j’, 
and include an application error rate (AER), ϵi, defined 
independently for each strategy ‘i’.  
p(cj) = Σi { p(cj|si)(1- ϵi) + (1-p(cj|si)) ϵi / (N -1) } 

Here, N is the number of different choice options. The 
AER captures variability in the decision rule but cannot 
account for variability in the cue acquisition process. To 
ensure that the sum of posterior probabilities inferred in the 



Bayesian inference for belief updating sum to one over all 
strategies, we propose the inclusion of a guessing strategy, 
which defines an equal probability distribution over all 
choices and cue acquisition patterns, and is reinforced with 
a probability 1 –Σi p(si,t|co,u). This allows the model to 
capture variability in cue acquisition behavior that cannot be 
reasonably explained by any of the strategies. 

Modeling Results 
Table 4 summarizes the comparative performance of models 
including a static toolbox and an unchanged SSL model 
based on traditional strategies (TS), response matching and 
minimum cue acquisition (CA), and our proposed model 
based on observed strategies (OS), Bayesian updating (BU) 
and four models with alternate learning rate structures (SSL-
V, SSL-E, SSL-R, SSL-C). All models were built including 
a compensatory (CS), non-compensatory (NS) and guessing 
strategy. We use the human data from the described 
experiment to generate a posterior distribution of the 
parameter values and a posterior predictive distribution of 
the data. The posterior predictive distribution reveals the 
distribution over all possible data points that the model 
predicts based on the inferred posterior distribution of the 
parameters after having seen the data. All of the following 
analysis is thus based on Bayesian inference on the observed 
human data using the above described cognitive models. 
Our framework (OS / BU / modified learning rates) provide 
higher accuracy (Acc) of the posterior predictive (thus, the 
best account of the observed human data), improved (lower) 
deviance information criteria (DIC), and better qualitative 
insights compared to existing approaches (Static / TS / CA) 
as we demonstrate in the subsequent commentary. 
 

Table 4: Model Comparison 
 

Learning 
Rate 

Strategy 
type / 

Update 
Acc DIC 

Insight 
b/w 

conds 

Insight 
b/w 

blocks 
Static TS - 72% 4379 Limited No 
SSL TS CA 72% 4413 Limited No 
Static OS - 77% 3277 Limited No 
SSL-V OS BU 80% 2786 Yes Yes 
SSL-E OS BU 80% 2950 Yes Yes 
SSL-R6 OS BU 80% 2915 Yes Yes 
SSL-C OS BU 82% 2745 Yes Yes 
 

The static (no learning) toolbox model using traditional 
strategies (TS) predicted an 85% use of CS and practically 
no usage of NS. Incorporating an SSL mechanism using 
response matching and minimum cue acquisition (CA) 
worsened the DIC even further, primarily because cue 

                                                           
6 Bayesian inference was carried out using MCMC sampling. 

MCMC chain convergence was good (R<1.1) across parameters 
for all models considered, except SSL-R, where a few individual 
parameters showed poor convergence (R>1.1). We restrict analysis 
primarily to the models where convergence was not an issue. 

acquisition was unable to account for any of the standard 
strategies on most trials, and 90% of the updates were 
ineffective. This is reflected in the lack of coherence 
between the high probability (> 80%) of CS predicted by 
this model and CS being updated by the learning model for 
only 0.5% of the trials. Differences between conditions are 
explained via minor differences in the probability of 
guessing, with no insight into differences between blocks. 

Next, we assessed the static toolbox without learning 
using the observed-cue decision rules (OS) and found that 
this outperformed the previous models considered in terms 
of accuracy and DIC. This also provided more realistic 
application error (AER) rates (NS dropped from 28% to 
10%, CS fell from 9% to 0.5%), and a more balanced view 
of the average strategy usage (55% CS, 35% NS). It also 
infers that condition NNCC has the lowest usage of CS 
(possibly implying some form of routinization) and the 
highest guessing rate (22%), with the CCNN and NCNC 
both having similar high rates of CS and lowest rate of 
guessing (2-3%), and CNCN lying in between these. 

Implementing our revised learning model (SSL-V) 
provided inference on average strategy usage similar to the 
static mode, but improved accuracy and DIC even further. 
Inferences from the entropy (SSL-E), counterfactual (SSL-
C), and measurement of individual differences and random 
effects (SSL-R) models provided similar estimates, although 
only SSL-C model improved fit compared to the SSL-V 
model. In all of these models, the ineffective updates 
reduced from 90% to only about 15%, which contributes 
significantly to the improved performance of the models. 
The updates for individual (NS and CS) strategies are now 
also coherent, being in the range of the strategy use 
predicted by the model (unlike the CA implementation).  

Most importantly, these models now provided a dynamic 
account of how strategy use shifted on a trial-to-trial basis, 
within and between blocks, and between conditions. All the 
OS-based SSL adaptations provide a similar insight into the 
dynamics of strategy use across blocks. Figure 1 shows the 
strategy usage inferred on a trial-by-trial level from one of 
these models. In the CNCN condition, usage of CS strategy 
is well-tuned to the advent of C-blocks, but there is a 
considerable amount of guessing in the N-blocks. While the 
participants seem to be picking up on the differences in the 
alternating blocks, finding the right NS seems to be harder. 

In the CCNN condition, participants seem to recognize 
the change in the first N block which is quite volatile in 
terms of use of strategies, but interestingly, they revert back 
to the previously routinized CS strategy within this block 
itself, and implement it even more strongly in the last N-
block. Once again, this shows change detection at the advent 
of the N-block, and a similar difficulty in finding the right 
NS. But it seems that the higher routinization of CS makes 
participants revert back to CS rather than adopt a guessing 
strategy, which is rarely used in this condition, hence 
leading to the best overall performance. In the contrasting 
NNCC condition, participants again start with an initial 
preference for CS, but this not seem to be strongly 



reinforced and is replaced with a higher usage of a guessing 
strategy, until the advent of the first C-block. In the NCNC 
condition however, participants do not revert to guessing in 
the first block and their use of a CS strategy is positively 
reinforced, resulting a stable preference across blocks. 
Comparing performance in N1 between NNCC and NCNC 
conditions reveals that the better reinforcement of CS in 
NCNC is a result of the cue patterns selected, resulting in 
the best option being selected 80% of the time, vs 65% in 
NNCC. Relating this to our redefined strategies, future 
analysis could consider comparing these conditions with 
different distributions from which cue patterns are sampled. 

 
Figure 1: SSL-V model: Mean probabilities of strategy 

use across trials (B1 to B4 are four blocks of 30 trials each) 
 
Also interesting were the learning rates inferred by these 

models. The SSL in its original form was modeled using the 
initial association parameter, which can be interpreted as the 
inverse of the learning rate (but not exactly equivalent). 
Implementing SSL using only response matching (RM) 
inferred a low initial association of 20 (previous studies 
have yielded best fit parameters in the range of 50-100), 
whereas a more realistic implementation incorporating 
minimum cue acquisition as well inferred an extremely high 
value of 1047, thus inferring almost no learning (since 90% 
of the trials were ineffective learning updates). 
Implementing our revised models using a re-parameterized 
learning rate yielded an average learning rate of 1.3 (SSL-
V), 0.4 (SSL-C), 0.5 (SSL-E), and 2.1 (SSL-R). The 
counterfactual model (SSL-C) includes a larger breadth of 
learning, and the entropy model (SSL-E) typically predicts 
frontloading of the learning rate, which gradually drops and 
settles to lower levels as entropy is resolved. SSL-C also 
infers that the extent of counterfactual learning (inferred 
parameter CF) is lower in the NNCC (0.36) condition as 
compared to the remaining conditions (average 0.49).  

Interestingly, while the SSL-V model shows a higher 
learning rate for CS as compared to NS, segregating these 
effects as random effects in the SSL-R model reveals a more 
intricate pattern.  It reveals that N-blocks and NS strategies 
contribute to higher learning rate effects than C-blocks and 
CS strategies respectively, and also that maximal 
heterogeneity is observed in individual participant and 

strategy type effects. This ties in nicely with the empirical 
observations on differences in adaptivity within N-blocks 
being higher than for C-blocks. It also explains the higher 
volatility of probabilities of strategies within N-blocks. 

Conclusion 
We implemented an experimental design to identify 
behavioral patterns in a paradigm where the environmental 
conditions change and the information costs push 
participants towards partial information acquisition. We 
demonstrated how otherwise successful models may be 
rendered inadequate, and successfully built a computational 
framework to reconstruct a Bayesian adaptive toolbox, 
improving our ability to account for observed behavior.  
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