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Abstract

In the real world, decision making processes must be able to integrate non-stationary

information that changes systematically while the decision is in progress. Although

theories of decision making have traditionally been applied to paradigms with stationary

information, non-stationary stimuli are now of increasing theoretical interest. We

developed the piecewise linear ballistic accumulator (PLBA) model to explain how

decision processes are updated when a stimulus changes. The PLBA is efficient to

simulate, enabling it to be fit to participant choice and response-time distribution data in

a hierarchal modelling framework using a non-parametric approximate Bayesian

algorithm. We applied the PLBA to a random-dot motion paradigm in which participants

viewed a cloud of moving dots, where the motion switched directions midway through

some trials, and were asked to determine the direction of motion. Behavioral results

revealed a strong delay effect: after presentation of the initial motion direction there is a

substantial time delay before the changed motion information is integrated into the

decision process. Consistent with behavioral results, PLBA fits confirmed the presence of

a long delay between presentation and integration of new stimulus information, but did

not support increased response caution in reaction to the change. We also found the

decision process was not veridical, as symmetric stimulus change had an asymmetric effect

on the rate of evidence accumulation. Our results show that in this paradigm the

perceptual decision process was slow to react to, and underestimated, new contrary

motion information. These results support the more general utility of the PLBA model as

a flexible framework for investigating decisions about changing information.

Keywords: evidence accumulation models, non-stationary stimuli, random-dot motion,

hierarchal Bayesian inference
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A new framework for modeling decisions about changing

information: The Piecewise Linear Ballistic Accumulator

model

Introduction

The ability of individuals to update their decision process in the face of dynamically

changing information is important in everyday decision-making. For example, consider the

simple act of changing lanes on a busy highway. At first, the lane looks clear, but then a

car swoops in from the other side. In order to avoid a collision, you must be able to

analyse the new information and change your course of action. Although common and

clearly of practical importance, such “non-stationary” decisions, where contrary pieces of

information are sequentially experienced, are challenging to investigate, both empirically

and theoretically.

In this paper we investigate the effect of switching perceptual evidence from

favouring one choice to another during the course of the deliberation process, with the aim

of developing a tractable and flexible framework to model such situations. Initial

conventional analyses revealed a surprising sluggishness or delay in the way the decision

process reacts to the changed perceptual (motion) information. We then developed a

cognitive model to explain how evidence for each choice is accumulated in order to gain

detailed insights into the causes of this delay. The model allows us to compare several

explanations of the observed delay. One possibility is that, in reaction to the conflict

caused by the change, participants delay their response by requiring a higher standard of

evidence. Alternatively there may be a delay before the new information changes the

input to the decision process. We also examined whether the input to the decision process

is veridical, that is, whether it represents the true magnitude of the change. Before
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describing the model and reporting the experimental findings in detail we first provide a

brief background on evidence accumulation models and decisions based on non-stationary

or conflicting inputs.

Evidence accumulation and non-stationary decision processes

Although Ratcliff (1980) discussed the importance of changing information over

three decades ago, most quantitative models of decision making have focused on

“stationary” decisions, where a choice is made on the basis of fixed, unchanging

information, or on information that changes randomly around a fixed central tendency

(Ratcliff, 1978; Busemeyer & Townsend, 1993; Shadlen & Newsome, 1996; Gold &

Shadlen, 2001; Smith & Ratcliff, 2004). Much of this work has supported the idea that

decisions are based on evidence for different alternatives that is accumulated over time. A

decision is made as soon as a threshold amount of accumulated evidence in favor of one of

the choices is obtained. The use of stationary stimuli, and the assumption that they cause

a constant rate of evidence accumulation, has made it possible to derive relatively easily

computed model predictions for choices as well as the full distribution of response time

(RT) for each choice. This setup has enabled models such as the drift-diffusion model

(DDM) – Ratcliff’s elaboration (Ratcliff, 1978; Ratcliff & McKoon, 2008) of the simple

diffusion model (Edwards, 1965) – and the linear ballistic accumulator (LBA) model

(Brown & Heathcote, 2008) – a simplification of the Leaky Competitive Accumulator

(Usher & McClelland, 2001) and Ballistic Accumulator (Brown & Heathcote, 2005a)

models – to be tested against detailed patterns of behavior across a wide range of

paradigms with stationary stimuli. Accounting for such detailed findings, including the

exact shape of RT distributions and the relative speed of correct and incorrect responses,

has become a benchmark for models that claim to provide a general account of choice RT.

The impact of non-linear and non-stationary inputs on decision-making has
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traditionally received less attention, but recently there has been increasing interest from a

number of perspectives. One aspect concerns the effect of fluctuations on fast time scales

(e.g., Insabato, Dempere-Marco, Pannunzi, Deco, & Romo, 2014; Tsetsos, Usher, &

McClelland, 2011; Brunton, Botvinick, & Brody, 2013), but our focus here is on the

domain of slower time-scale changes. Early work in this domain examined temporal-order

discrimination, where discriminative information is available only briefly, and therefore

must be subsequently held in a decaying visual short-term memory (Heath, 1981). A

variant of the simple diffusion model, the “tandem random walk”, proposed that such

discriminations could be modelled using a piecewise linear approximation, where an initial

period with an estimated non-zero mean accumulation rate is followed by a period with a

zero mean rate. More broadly, piecewise-linear approximations are used across the

sciences to make the analysis of non-linear change tractable (e.g., Euler’s method,

Atkinson, 1989). As we discuss in detail below, we apply this approach to a stimulus that

changes during an ongoing decision by proposing a piecewise linear ballistic accumulator

(PLBA) model that has two – potentially different – pairs of estimated accumulation rates

rather than just one.

More recent studies have used stimuli that change on a slow time scale in two broad

ways: (1) to test assumptions made by evidence-accumulation models and (2) as of

interest in their own right. Assumptions have been tested by manipulating when

discriminative information occurs over the time course of stimulus presentation in the

random dot motion (RDM) discrimination task (Ball & Sekuler, 1982; Britten, Shadlen,

Newsome, & Movshon, 1992, 1993). In this task – which we also use in the present

experiment – participants view a cloud of dots, some of which move randomly and some of

which move coherently, and are asked to choose the dominant direction of motion. In Huk

and Shadlen (2005), brief motions pulses were used to identify a neural substrate for

accumulation in the lateral intraparietal area of monkeys, differentiating cells whose firing
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rate followed the pulse versus those that did not (see also Gold & Shadlen, 2007). In

another recent example, Winkel, Keuken, Van Maanen, Wagenmakers, and Forstmann

(2014) used non-stationary RDM stimuli to test the urgency gating model (Cisek, Puskas,

& El-Murr, 2009), which attempts to replace the idea of evidence accumulation with an

urgency factor that represents a linearly increasing time pressure to respond. Over the

course of a two-second stimulus, a brief pulse of early evidence was followed by no

evidence, the same evidence, or contradictory evidence for the remainder of the stimulus.

Mean RT and error rates decreased with increases in the overall consistency of evidence.

This pattern was captured by fits of a simple diffusion model with rates directly reflecting

the stimulus, whereas the urgency-gating model failed because it predicted no change.

Non-stationary stimuli have also been used to investigate a key difference within the

class of evidence-accumulation models: whether the accumulation process (as distinct

from the evidence that drives it) is non-linear. One form of nonlinearity, which is almost

universally adopted, occurs when accumulation ceases after a threshold amount of

information is accumulated, so later arriving information has no influence. Several

evidence accumulation models, including decision field theory (Busemeyer & Townsend,

1993; Busemeyer & Diederich, 2002), the leaky competitive accumulator model (Usher &

McClelland, 2001), and the ballistic accumulator (Brown & Heathcote, 2005a), also

assume accumulation can be nonlinear throughout its time course. Nonlinearity occurs

due to loss of previously accumulated information (leakage), which causes a recency effect

(i.e., late arriving information has more influence than earlier information). In the leaky

competitive accumulator and ballistic accumulator models nonlinearity also occurs due to

competition caused by lateral inhibition. Competition can cause a primacy effect (i.e., a

greater influence of early information), because it allows old information to suppress the

accumulation of new information. Although not as easily applied as the diffusion and LBA

– because the nonlinearity makes them less mathematically tractable – these models have
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also been shown to provide a good account of many detailed behavioural benchmarks with

stationary stimuli.

In Kiani, Hanks, and Shadlen (2008) the timing of brief motion pulses was

manipulated in RDM displays and a primacy effect was interpreted as consistent with

linear accumulation to a threshold. That is, later pulses were assumed to arrive after the

threshold had been reached, and so had no influence on decisions. This work was revisited

by Tsetsos, Gao, McClelland, and Usher (2012); they replicated the primacy effect, but

also found it to weaken or even change to a recency effect when there was less time

pressure on responding. One interpretation of the weakening of the primacy effect is that

participants set a higher threshold as time pressure reduced, so that a greater number of

later arriving pulses could influence the decision. Tsetsos et al. (2012) interpreted the

results as consistent with a change in the balance of leakage and competition in the leaky

competitive accumulator model, in particular, a reduction of competition as time pressure

decreased.

Usher and McClelland (2001) also invoked the idea of a labile balance between

leakage and competition to explain strong individual differences in the magnitude of

primacy vs. recency effects. They used a sequence of 16 briefly-presented stimuli at a rate

of 60 stimuli/second. On critical trials, half of the stimuli favored one response and half

the other. The stimuli were randomly ordered except for a short cluster of one type at the

end, and so a predominance of the other earlier in the sequence. One third of participants

showed a preference for the end cluster (recency), one third against it (primacy) and one

third were neutral (consistent with linear accumulation). The latter participants displayed

the highest accuracy in trials where one type of stimulus predominated, which is

consistent with the fact that linear accumulation makes the most efficient use of the

available information. Brown and Heathcote (2005b) found that practice was associated

with increasingly efficient (linear) accumulation, with an initial tendency towards recency
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effects associated with priming by a brief (30ms) pulse disappearing over the course of two

hours of practice. This occurred even when the prime was metacontrast masked, so

participants were not able to detect it; hence, the decrease in recency was unlikely to be

due to a strategic reduction in the evidence threshold.

In the work just summarised, the focus was on non-linear effects in the accumulation

process. It is also possible that the process of encoding sensory information has non-linear

effects on the magnitude and timing of the inputs to the decision process. In the PLBA

model, we use a piecewise-linear approximation, potentially with a delay, to account for

the combined effects of stimulus change on the encoding and decision processes. In

particular, we investigate whether a change in motion that is objectively symmetric (i.e.,

equal in absolute magnitude) has a veridical effect on the rate of evidence accumulation in

the decision process (i.e., produces two rates that are equal in absolute magnitude), and

whether any change in rate is immediate or delayed. If a veridical representation of the

stimuli drives the decision process, such as was assumed by Winkel et al. (2014), one

might expect that rates of evidence accumulation would exhibit the same symmetry as the

objective information. Some delay, although perhaps only relatively minor, might be

expected due to the time required to perform stimulus encoding.

In contrast, a longer delay and asymmetry in the form of a slower rate in response to

the change, might be attributed to competition mechanisms in the decision process (e.g.,

Usher & McClelland, 2001; Brown & Heathcote, 2005a) – which has been used to explain

primacy effects – or to hysteresis in the stimulus encoding process – which has been used

to explain motion aftereffects (Hiris & Blake, 1992; Anstis, Verstraten, & Mather, 1998).

It is also possible that higher-level phenomena, such as anchoring (Hogarth & Einhorn,

1992; McKenzie, Lee, & Chen, 2002), might also cause an asymmetry in encoding. For all

of these possibilities, the piecewise-linear assumption made in the PLBA enables a

computationally tractable yet comprehensive model (i.e., one that can account for RT
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distributions and choice probabilities) that can approximate potentially smoothly varying

nonlinear effects in both encoding processes and in decision processes.

Stimuli with multiple conflicting attributes

Intrinsic interest in how the decision process deals with non-stationary inputs, and

discrete switches of incoming information in particular, is reflected in several recent

studies examining decisions about multi-attribute stimuli. In these cases, the cause of the

change was endogenous, either through attention switching (Diederich, 1997; Diederich &

Busemeyer, 1999), or eye movements (Krajbich, Armel, & Rangel, 2010; Krajbich &

Rangel, 2011), between conflicting attributes. These investigations suggested that looking

at or attending to a particular choice alternative or attribute switches the rate at which

evidence is accumulated. In Diederich and Busemeyer (2006) and Diederich (2008), this

idea was extended to account for the effects of differential payoffs between choices, where

accumulation was first based on the payoff information and then on the stimulus.

In both the eye-movement and payoff work, the simple diffusion model (Edwards,

1965) with non-stationary rates was fit to the data, but only at the level of choice

probabilities and mean RT. More fine-grained tests were difficult because these

non-stationary versions of the simple diffusion model are less mathematically tractable.

The simple diffusion model is also known to fail benchmarks such as the relative speed of

correct and error RT, which was the reason behind inclusions of extra features such as

normal trial-to-trial variability in the mean accumulation rate and uniform variability in

the starting point of evidence accumulation in the full DDM model (Ratcliff & Rouder,

1998). The LBA model shares these assumptions about trial-to-trial variability, but

assumes any effects of diffusive (i.e., moment-to-moment) noise can be neglected, making

it particularly tractable.

Conflict effects in the Simon (Simon & Rundell, 1967) and Flanker (Erikesn &
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Eriksen, 1974) paradigms can also be seen as being due to non-stationarity caused by

endogenous factors affecting the processing of multi-attribute stimuli. In the Simon effect

a choice-irrelevant stimulus location attribute (e.g., positioning on the left vs. right of the

screen) hurts performance when it is incompatible with the response associated with the

stimulus’s choice-relevant attribute (e.g., a button press by the left vs. right hand for red

vs. green stimuli respectively). Dual-route theories of the Simon effect (e.g., Jong, Liang,

& Lauber, 1994) propose that the irrelevant position information is processed by a fast

direct route, so when it is incompatible it causes initial evidence favouring the incorrect

response before the later arrival of evidence favoring the correct choice from the relevant

attribute. In the Flanker effect, a large display of irrelevant conflicting information flanks

a smaller central display of relevant information (e.g., indicate the direction of the central

arrow head in a display such as “<<><<”). White, Ratcliff, and Starns (2011) and

Hübner, Steinhauser, and Lehle (2010) modeled this task using a DDM fed by a

non-stationary evidence source. White et al. examined a range of alternative models

where the non-stationarity was caused by factors such as a discrete switch in attention

from all stimuli to the central stimulus or (in the best-supported model) a gradually

increasing relative weight given to the central stimulus.

Recent accounts of conflict tasks have emphasised the role of control processes that

minimize the impact of interfering information. Botvinick, Braver, Barch, Carter, and

Cohen (2001) proposed an influential theory whereby cognitive control was triggered by

the simultaneous presence of conflicting reading and color naming information in the

Stroop task. In the the Simon task, Ridderinkhof (2002) proposed a more temporally

oriented theory, where conflicting information from the fast route is suppressed by a

control process, but only after a delay, so its effect becomes evident as a decrease in the

size of the interference effect only for slower responses.

Although we are not aware of the link being made before, a natural extension of
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these ideas is that the conflict caused by a change in a single stimulus attribute over the

course of a decision might also trigger similar control mechanisms. Triggering may require

awareness of the conflict or it might rely on an automatic mechanism. More automatic

mechanisms would likely be mediated by effects on the rate of evidence accumulation.

However, a suppression mechanism like that proposed by Botvinick et al. (2001) and

Ridderinkhof (2002) may be less plausible in this context as there is not an irrelevant

attribute that can be targeted separately from the relevant attribute.

Alternatively, as changes in threshold are usually assumed to be strategic, an

increase in the evidence threshold in response to detection of conflict might plausibly

mediate conscious control. However, threshold changes are often assumed to be slow.

Hence, there may not be sufficient time after a change is detected to effect any substantial

adjustment of the threshold, and at the very least any change might be expected to be

delayed relative to the time at which the stimulus changes. In any case, in order to

examine the issue of conscious mediation, at the end of the experiment we tested

participants’ ability to detect change trials and examined the relationship between

individual differences in this ability and performance in the primary motion-direction

classification task.

Measuring and modelling the effects of a discrete exogenous change

The goal of the present work is to provide a modelling framework within which to

investigate how individuals adapt to a discrete exogenous change of information about a

single attribute that occurs during the course of the decision process. Many of the

investigations just reviewed used complex experimental designs where there were short

exogenous changes, or where there were multiple endogenously generated changes. These

characteristics make it difficult to probe the time course of the decision process and

examine the influence of individual pieces of information. We use a simpler experimental
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setting to get a more detailed view of the underlying decision process; an RDM task where

the direction of dot motion changed only once during the trial. For example, 15% of the

dots might be moving coherently to the right at the beginning of the trial, but this

switches to 15% moving coherently to the left halfway through the trial. In principle the

framework we develop could account for other situations, such as changes in the

magnitude rather than direction of movement, but we focus on direction change as it

provides a strong manipulation.

Using our direction-determination task, we examine four questions. The first two

questions address whether external changes in information result in commensurate

changes in the decision process:

1) How quickly is new information integrated into the decision process?

2) Is the encoding of new information veridical?

The third and fourth questions addresses whether participants are aware of the change

and react by altering their decision processing:

3) Does a participant’s accuracy at detecting the change relate to its effect?

4) Do participants react to the change by changing their level of caution?

The initial period before the switch was calibrated to take around half of the

average accumulation period for each individual decision maker, and the stimulus after the

change remained on screen until a response was made. This setup, which made the two

types of stimuli visible for extended periods of time, facilitated good estimation of the

effects of each period of constant coherent motion. Given random variation in RT, there

will be some fast trials where the response will only be influenced by the initial direction.

Evidence-accumulation model-based analyses naturally take into account such variation.

However, we also complemented our model-based analysis with conventional analysis,

which divided trials into those with responses made before and after the switch. The

subset of responses made after the change could at least in principle be a function of the
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new information, although this might not be the case if there is a delay before the new

information affects the decision process. Responses made after the switch were further

divided based on their speed in order to check for delay effects, and to examine the

quantitative influence of the increasing amount of information from the direction change.

In contrast to previous studies that attempted to minimise participants’ awareness

of changes in the stimulus (e.g., Brown & Heathcote, 2005b; Usher & McClelland, 2001),

our paradigm uses a change that is likely to be noticeable, although we did not explicitly

inform participants about the presence of changes on some trials. This raises the question

as to whether participants might strategically decide to react differently on change trials

compared to trials with stationary stimuli. For example, on noticing a change they may

become cautious, raising their evidence threshold. Alternatively, they may attempt to

minimise the effect of the conflicting information by lowering their threshold. An extra

test at the end of the experiment allowed us to assess whether participants’ had the ability

to detect changes. If they can detect the change and use it to react differently to change

trials, one might expect individual differences in change-detection ability to correlate with

performance on change trials. A more general model-based test of reactivity is provided

by allowing for a different threshold on change and stationary trials. Because change

detection and any subsequent threshold adjustment is likely time consuming, we also

allowed for the threshold change to be delayed relative to the stimulus change.

Although direct analysis of choice and response time data can yield valuable

insights, it is not by itself sufficient to fully address the proposed questions. To do so we

utilise the PLBA model, which is schematically illustrated in Figure 1. In particular, our

questions were addressed using model selection and latent parameter estimation based on

the fits of different parameterisations (“variants”) of the PLBA model. The variants are

all special cases of the most general form of the PLBA model, which we now describe.

Brown and Heathcote’s (2008) LBA model is a special case of the PLBA model, and
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like the LBA, in the PLBA there is one accumulator per response, which begin with

evidence levels independently sampled from uniform distributions on the interval [0, A]. In

general, A may vary between accumulators and experimental conditions, but here we

estimated only a single value. This estimate was around 1 in all models, and so we do not

discuss it further.

The evidence in each accumulator begins to change linearly with a constant rate at

some time after the stimulus first appears (see Figure 1, “encoding delay”). At some time

after the change in the stimulus (see Figure 1, “rate delay”) the rate changes, and linear

accumulation continues at the new rate. At any point, the process can terminate because

the evidence exceeds an accumulator’s threshold.

The response, corresponding to the first accumulator to reach its threshold (i.e.,

that wins the race among accumulators), is then made after some further delay (see

Figure 1, “response-production delay”). The encoding and response-production delays are

estimated as a single parameter ter. In general, ter may vary between accumulators and

experimental conditions, but here we estimated only a single value. This estimate was

around 0.12s in all models, and so we do not discuss it further.

Linear rates of change (i.e., “drift rates”) are independently sampled from normal

distributions. To identify the model, we make the normalising assumption that the

standard deviation of the normal distribution is a fixed value, σ = 1, although this is

stronger than is strictly necessary for identifiability (Donkin, Brown, & Heathcote, 2009).

We discuss differences in the rate means across accumulators before and after the stimulus

changes when defining specific model variants.

The threshold, b, cannot be less than A (so a response cannot be made until

accumulation begins), and in general b can vary between accumulators and experimental

conditions. A difference between accumulators in b causes response bias, with a lesser

threshold increasing the chance of the corresponding response. Here we assume that
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responding is unbiased, so both accumulators have the same threshold, but allow for the

possibility that the threshold can change at some time after the stimulus changes. This

time is denoted as the “threshold delay” in Figure 1, which illustrates a case in which the

threshold increases.

We propose a series of nested variants of the PLBA model that could account for

how decision processes adapt to changed information. In the simplest variant we assume

that the change in motion direction has no influence on decision processes. That is,

decisions are entirely based on the early information and neither rates nor thresholds

change during the decision process. As a consequence this variant is equivalent to the

standard LBA model. Further variants, which are described in more detail after reporting

the results of the experiment, take advantage of various aspects of the the extra flexibility

that differentiates the PLBA from the LBA in order to determine which aspect(s) best

account for the data.

Many researchers using non-stationary versions of the diffusion model, where drift

rates are allowed to change during the trial, only fit choice probabilities and mean RTs,

rather than the full distribution of RTs. However fitting statistics of RT distributions

(such as the mean or quantiles) can lead to drastically different parameter estimates than

fits to the full distribution (Turner & Sederberg, 2014). We used a hierarchal Bayesian

algorithm to fit each PLBA variant to all participants’ data simultaneously, providing an

account of the choices made and the full distribution of response times at both the

individual and population levels. Bayesian methods usually rely on the availability of an

expression for the likelihood of each data point (i.e., choice and associated RT). A

likelihood is available for the standard LBA in terms of relatively quickly computed

functions like normal densities and cumulative densities (Brown & Heathcote, 2008). This

is not the case for the PLBA, and although it is possible to compute the PLBA likelihood

by numerical integration (see Appendix A), we found this to be too slow, at least using
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standard methods. Instead we rely on a variant Holmes (2015) of an “Approximate

Bayesian Computation” (ABC) algorithm originally developed in Turner and Sederberg

(2014), which requires only simulation of choices and RTs from the model. Details of its

implementation are described in Appendix B and in Holmes (2015). Here, we provide a

brief overview.

Numerous ABC algorithms have been developed to deal with models lacking an

easily computed likelihood. Many rely on summary statistics to represent critical

properties of the model and data being considered. However, this approach suffers from a

number of issues, the most important of which is the requirement that a sufficiency

condition on the summary statistics must be met, which is rarely possible to confirm. We

instead use a combination of simulation and non-parametric density estimation to provide

an approximation to the underlying likelihood that is similar to, but more

computationally efficient, than the method proposed by Turner and Sederberg (2014).

This is coupled to a Markov-Chain Monte Carlo (MCMC) procedure to estimate the

model’s posterior, with some additions to the MCMC algorithm to efficiently deal with

the effects of simulation error (i.e., variation from one simulation sample to the next) in

the likelihood approximation.

Even with all of the efficiencies of this method, fitting was very computationally

demanding. The key to making fitting viable is that it is highly efficient to simulate

ballistic models, and the PLBA model in particular. This is because, to evaluate the

choice and associated RT for a trial requires, for each accumulator, only a single sample

from the uniform distribution, two samples from the normal distribution, and then some

simple linear calculations based on these samples and threshold and delay parameters. In

contrast, models with moment-to-moment variability in accumulation rates, such as the

DDM, require fine-grained Euler methods using a separate normal sample for at least each

10 milliseconds of decision time (Brown, Ratcliff, & Smith, 2006). Similarly fine-grained
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approximation methods for solving differential equations are required for non-linear

models like the Ballistic Accumulator model (Brown & Heathcote, 2005b), and both types

of approximation are required for the Leaky Competitive Accumulator model (Usher &

McClelland, 2001). The procedures used with the PLBA could be applied to these other

models, but would require orders of magnitude more computational time.

In the following, we first describe our experiment and describe the results of

analyses that do not rely on modeling. We then describe the variants of the PLBA that

we tested, their hierarchal instantiation, and our model-based results.

Experiment

The experiment was constituted of two types of tasks: a primary RDM direction

determination task, which occurred over the first 18 blocks of the experiment, and a

secondary switch (e.g. change of stimulus) detection task, which occurred in the last two

blocks of trials. The RDM task required participants to decide whether a cloud of dots

appears to move to the left or right. There were two types of trials which were randomly

mixed together: stationary trials, where the direction of motion remained constant (e.g.,

right for the full duration of the trial), and switch trials where the direction of motion

reversed within the trial (i.e., right followed by left or vice versa). On switch trials, the

change in direction occurred at a predetermined “switch time”, which was adapted during

the experiment based on previous RTs in order to accommodate changes due to factors

like practice and fatigue. After the completion of the primary task, two additional

switch-detection blocks tested whether participants could detect changes in dot motion.

Material and methods

Participants. In total, 47 University of California Irvine students (40 female, 44

right handed) completed the study for course credit. All participants gave informed

consent to participate. Three participants were excluded from the data analyses due to a
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computer error. An additional 13 participants were excluded because of low accuracy after

three initial practice blocks (i.e., less than 70% correct on the stationary trials in blocks

4-18). These participants were most likely not engaged throughout the task.2

Procedure. Stimuli were clouds composed of 40 white dots contained within a

150-pixel diameter area on a black background. Each dot consisted of a 9 pixel rectangle

with edges smoothed through anti-aliasing to appear circular. The dot positions were

updated at 15 frames per second. A subset of dots moved in a coherent direction while the

remaining appeared in locations that were randomly selected on each frame. The coherent

set of dots moved at a rate of 90 pixels per second from their original location until

reaching the edge of the 150-pixel diameter area. On the next frame they were

repositioned at a randomly chosen location and moved as before on subsequent frames.

At the beginning of the experiment, participants were instructed that they would

see a group of moving dots and were asked to decide if the dots are mostly moving to the

left or the right. They were told “you will enter your choices by pressing the ‘z’ key if you

think the dots are mainly moving to the left and the ‘/’ key if you think the dots are

mainly moving to the right.” Participants were asked to place the index finger of their left

hand of the ‘z’ key and the index finger of their right hand on the ‘/’ key throughout the

experiment. They were also told that they would complete many blocks of trials, that

some trials would be harder than others and that they would sometimes receive feedback

about their responses. Participants were asked to respond to the best of their ability as

quickly as possible, but were not told that the dots could possibly switch directions during

some trials.

At the beginning of each trial, they viewed a fixation cross for 250ms, then there

was a blank screen for 250ms, followed by the stimulus. Participants had up to 2s to view

the stimulus and give a response or the trial terminated by itself and a non-response was

recorded. Otherwise, the trial terminated immediately after a response was made. The
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fixation cross for the next trial appeared immediately after the termination of the previous

trial.

The experiment took approximately half an hour to complete, during which

participants completed 20 blocks of trials. The first block contained 20 practice trials

where 50% of the dots moved coherently and participants received feedback. This feedback

delayed trial termination, and consisted of either “correct” or “wrong” displayed for 500

ms, followed by a blank screen for 250ms. In blocks 2-18, participants did not receive

feedback. The second block contained 20 additional practice trials where 25% of the dots

moved coherently. In the third block, participants completed 72 trials, which were

composed of 24 trials each at the 20%, 15%, and 10% coherence levels. At the conclusion

of the third block, one of the three coherence levels was selected for the remainder of the

experiment using the following algorithm to account for individual differences in motion

detection ability so that performance was away from floor and ceiling:

1) If the participant’s accuracy was exactly 75% for a specific coherence level, then

this coherence level was selected. If more than one coherence level achieved 75% accuracy,

then the lowest coherence level was selected.

2) If no coherence level achieved accuracy of exactly 75%, then the coherence level

with accuracy higher and closest to 75% was selected. If there was a tie between coherence

levels, then the lowest one was selected.

3) If none of the coherence levels achieved 75% accuracy, then the largest coherence

level (i.e., 20%) was selected.

Blocks 4-18 each contained 72 trials with the coherence level selected at the end of

block 3. Half of the trials in each block were switch trials, where the dot motion switched

directions during the trial (e.g., left followed by right). The other half of the trials were

stationary, where the dot motion did not change. The two trial types were randomly

ordered. On switch trials, the change in direction occurred at the switch time, which was
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based on previous RTs in the experiment. In block 4, switch time was set to the median

RT of block 3 minus 150ms to account for response-production time. In block 5, switch

time was set to the median RT of blocks 3 and 4 minus 150ms. In block 6, switch time

was set to the median RT of blocks 3,4, and 5 minus 150ms. For blocks 7-18, switch time

was set similarly to block 6 by using response times from the previous three blocks.

Blocks 19 and 20 tested whether participants could detect changes in dot motion.

During these blocks, they were instructed to only respond if the dot motion changed

directions. They were told to withhold responses if the dot motion was constant. Block 19

contained 16 practice trials with feedback. At the end of each trial, participants saw a

message “correct” or “wrong” displayed for 500ms. Block 20 contained 72 trials with no

feedback. In both blocks, half of the trials were switch trials and the other half were

stationary, randomly ordered. The switch time for these blocks was determined in the

same manner as blocks 6-18, and the coherence level was the same as blocks 4-18.

Results

Participants were evenly distributed among the three coherence levels: 10 with 10%

coherence, 11 with 15% coherence, and 10 with 20% coherence. Trials with very short RTs

(less than 250ms) were removed from all further analyses. On average less than 5% of

trials were removed using this criterion.

We analysed accuracy on stationary and switch trials in the primary

direction-determination task (i.e., blocks 4-18) by dividing the stationary trials into two

categories - those with RTs before the switch time for switch trials in the same block, and

those with RTs after the switch time. This allowed us to directly compare responses

before and after the switch time for stationary and switch trials. These four trial types

were further divided into quartiles (q1-q4) based on RTs.

Figure 2a compares the proportion of correct responses before the switch time for
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stationary and switch trials across RT quartiles. The correct response was defined relative

to the first direction of motion on switch trials. A 4 (quartile) x 2 (trial type) analysis of

variance yielded a main effect for quartile, F(3, 240) = 31.36, p < .001, showing an

increase in accuracy with RT. The main effect of trial type was non-significant, F(1, 240)

= 0.009, p = 0.93, showing no difference in accuracy for stationary and switch trials before

the switch time. The interaction of quartile and trial type was also non-significant, F(3,

240) = 0.26, p = 0.86. A Tukey test showed, at p < .05, that the proportion of correct

responses for both stationary and switch trials was significantly lower for q1 (stationary

trials: M = 0.68, SD = 0.02; switch trials: M = 0.67, SD = 0.2) than for q2 (stationary

trials: M = 0.80, SD = 0.02; switch trials: M = 0.82, SD = 0.2), q3 (stationary trials: M

= 0.86, SD = 0.02; switch trials: M = 0.86, SD = 0.2), and q4 (stationary trials: M =

0.89, SD = 0.02; switch trials: M = 0.88, SD = 0.2). The differences between q2, q3, and

q4 were not significant. Thus, even though accuracy did improve with RT, this

improvement only occurred between the first and second quartiles of RT.

Figure 2b compares the proportion of correct responses after switch time for

stationary and switch trials across RT quartiles. For these switch trials we defined a

correct response relative to the new direction of motion. For example, in a trial where the

dots first moved to the left and then the right, the correct response after the switch time is

right. A 4 (quartile) x 2 (trial type) analysis of variance yielded a main effect for quartile,

F(3, 240) = 23.0, p < .001. The main effect for trial type was significant, F(1, 240) =

2230.1, p < .001, with much higher accuracy for stationary trials than switch trials after

the switch time. The interaction effect was also significant, F(3, 240) = 69.68, p < .001.

The relationship between accuracy and RT quartiles after the switch time differs

between stationary and switch trials. A post hoc Tukey test showed, at p < .05, that the

proportion of correct responses for switch trials was significantly higher for q4 (M = 0.49,

SD = 0.02) than for q1 (M = 0.21, SD = 0.02), q2 (M = 0.19, SD = 0.02), and q3 (M =
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0.22, SD = 0.02). The remaining quartile comparisons for switch trials were not

significant, indicating that the effect of the change in motion direction on accuracy was

substantially delayed.

Unlike switch trials, accuracy decreased with increased RT for stationary trials after

the switch time. A Tukey test showed that the proportion of correct responses for

stationary trials was significantly higher for q2 (M = 0.82, SD = 0.02) and q3 (M = 0.80,

SD = 0.02) than q4 (M = 0.73, SD = 0.02). This indicates the presence of slow errors,

which often occur in difficult tasks (Luce, 1986; Ratcliff & Rouder, 1998). The remaining

quartile comparisons for stationary trials were not significant.

Figure 2c compares the proportion of correct responses after the switch time for

switch trials to the proportion of error responses after the switch time for stationary trials.

This allows us to examine whether correct responses after the switch time for switch trials

were above chance accuracy. A 4 (quartile) x 2 (trial type) analysis of variance yielded a

main effect for quartile, F(3, 240) = 69.78, p < .001. The main effect for trial type was

significant, F(1, 240) = 32.00, p < .001, indicating there was a difference between correct

responses for switch trials and error responses for stationary trials. The interaction effect

was also significant, F(3, 240) = 23.00, p < .001.

A post hoc Tukey test showed, at p < .05, that the proportion of correct responses

for switch trials in q4 (M = 0.49, SD = 0.02) was significantly higher than the proportion

of error responses for stationary trials in q4 (M = 0.27, SD = 0.02). Corresponding

comparisons for q1-q3 were not significant. This suggests that decisions made after the

switch time for switch trials for RT quartiles q1-q3 are most likely based on the perceptual

evidence presented before the switch time. However, decisions with long RTs (i.e., those in

q4) appear to be influenced by the perceptual evidence presented after the switch time.

We also analysed mean RTs for correct responses and for incorrect responses from

trials before and after the switch time. There was no significant difference in mean RTs
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for correct choices on stationary and switch trials before the switch time, t(30)= 0.23, p =

0.82. Likewise, there was no significant difference in mean RTs for incorrect choices on

stationary and switch trials before the switch time, t(30)= 0.38, p = 0.71. However, after

the switch time, mean RTs for correct choices on switch trials were significantly longer

than mean RTs for correct choices on stationary trials (t(30) = 8.32, p < 0.001). In

contrast, mean RTs for incorrect choices on switch trials were significantly shorter than

mean RTs for incorrect choices on stationary trials after the switch time, t(30) = 6.98, p

< 0.001. These differences in mean RTs after the switch time result from a high error rate

on switch trials in q1-q3, which decreases in q4.

The average hit rate in the change-detection task (i.e., block 20) was 65%,

significantly higher than chance, t(30) = 5.42, p < 0.0001, suggesting that participants

could detect switches in direction, at least on some trials. Hits occurred on average 826

ms after the switch in motion direction. The average false alarm rate was also high at

42%. Similar to hits, false alarms occurred on average 850 ms after the switch time. The

correlation between detection hit rates and accuracy on switch direction-determination

trials (i.e., blocks 4-18) was weak and far from significant, r=0.18, p = 0.34. This suggests

that ability to detect change did not affect responding on switch trials. The correlation

between detection hit rates and direction-determination accuracy on stationary trials was

larger, r = 0.36, p = 0.05.

Discussion

The results show that changes in dot motion can influence choice behavior, but this

influence is slow to manifest itself. Only responses with long RTs (i.e., those in the fourth

quartile of responses made after the switch time) are impacted by the changed

information. Responses with shorter RTs are mainly based on the perceptual information

presented early in the trial. Further, although participants can detect changes in dot
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motion, this ability does not appear to be related to performance on switch trials of the

direction-determination task.

The results of our analyses so far address our first question – indicating that the

effect of the change is quite delayed – and our third question – indicating that being able

to detect the change does not appear to modulate the effect of the change. However, they

cannot address our second and fourth questions. In order to address all four questions, we

now report the results of our model-based analysis after first describing the eight model

variants that we fit.

PLBA Modeling

We consider a sequence of eight models that differ in both the manner in which the

evidence accumulation process is updated and whether response thresholds are adjusted

upon the change of stimuli. The simplest “null” (i.e., standard LBA) model assumes the

change of information has no affect on the accumulation process and that neither the drift

rates nor the response threshold change after the switch in motion direction. The

behavioral results reported so far suggest this is not the case; however, we include the

simplest model as a baseline allowing us to confirm that more complex models can

robustly detect the influence of the changed information. We also examine an extension of

the null model where drift rates are allowed to change in response to the change of

information, but the distributional properties of the drift rates do not change.

The remaining six models (see Table 1) all assume that drift rates change at some

point after the stimulus changes. Three of these models (1s, 2s and 3s) assume this change

is symmetric. That is, rates after the change have the same absolute magnitude as the

rates before the change. The other three models (1f, 2f and 3f) freely estimate rates before

and after the change. A comparison between these two classes of models answers the

question, is the accumulation process veridical? Our stimuli changed symmetrically, so
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that after the switch, the direction of motion is flipped but with the same coherence. If

the accumulation process is veridical, we would expect the change in the underlying drift

rates to be symmetric as well.

Differences within each of the sets of three models are a result of manipulating the

presence or absence of two factors: a delay in the onset of the drift rate change and a

difference in the evidence threshold between stationary and switch trials. In the first

variant (1s and 1f) a delayed rate change is possible, but there is no threshold change. In

the second variant (2s and 2f) a delayed threshold difference is possible, but there is no

delay in the rate change. The final variant (3s and 3f) can have a delayed rate change, as

in the first variant, and can also have a threshold change, but without a delay. We chose

not to include the threshold delay in the third variant, as in the second variant, because

the threshold delay was always estimated so long that the threshold change had a

negligible effect on performance, and this was also the case when we allowed both delayed

rate and threshold changes.3 By forcing no threshold delay in the third variant, we were

able to ensure that estimates of the changed threshold were influenced by the data.

Before describing each variant in detail, we define some terminology. The terms

“correct” and “incorrect” (with respect to the response made to a stimulus) or “matched”

and “mis-matched” (with respect to the relationship between stimulus and accumulator,

i.e., a left stimulus matches the left-response accumulator and mismatches the

right-response accumulator) are somewhat ambiguous in switch trials. Hence, we identify

choice “C1” with the correct response relative to the pre-switch stimulus direction (i.e.,

the pre-switch correct choice) and choice “C2” to be the alternative (i.e., the post-switch

correct choice). For example, in a trial that presents left followed by right motion, the

pre-switch correct choice (C1) would refer to left and the post-switch correct choice (C2)

to right. Similarly, a stationary trial with persistent motion to the left, the pre-switch

correct choice (C1) would refer to left and the alternative choice (C2) to right. We further
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aggregate over symmetric trial types, which is typical for modelling RDM tasks. So for

stationary trials we aggregate results for left and right motion stimuli, and for switch

trials we aggregate results for left-then-right and right-then-left motion stimuli. Hence,

the pre-switch correct choice (C1, and a sub-script “1” for associated parameters) always

refers to the initial direction and the post-switch correct choice (C2, and sub-script “2” for

associated parameters) to the other direction. Note that in figures, black indicates results

associated with the choice pre-switch correct choice (C1) and grey with post-switch

correct choice (C2).

Model 0. In order to determine if the change of information influences evidence

evidence accumulation or thresholds, we first assume a null model where the change

influences neither. Consider first the accumulation process on a stationary trial. In this

framework, accumulation is characterised by a start point x0 for each accumulator, an

evidence threshold (b1), accumulation rates v1, v2 for pre-switch correct (C1) and

alternative (C2) choices respectively, and the non-decision time for stimulus encoding and

response production, ter. The start point and drift rates are assumed to vary among trials

and across participants, and to be distributed according to:

x0 = U(0, A), v1 ∼ N(µv1, σ), v2 ∼ N(µv2, σ), (1)

where U and N refer to uniform and normal distributions respectively. Since all conditions

but the switch time remain constant across trials, the threshold (b) and non-decision time

(ter) are assumed to remain constant across trials, but vary among participants. The

accumulation process for each participant (indexed p = 1...P ) is described by a vector of

five parameters θp = (bp1, A
p, µpv1, µ

p
v2, t

p
er). In all future model variants, we will assume the

pre-switch evidence accumulation process is governed by this process. In this null model,

we will further assume that the change of information does not influence the evidence
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accumulation processes, so that these parameters fully define Model 0.

Model 00. We also test an extension of the null model where it is assumed that a

change of evidence accumulation rates (w1, w2) occurs after the change, but the new

information does not influence accumulation so that those rates are drawn from the same

distributions

w1 ∼ N(µv1, σ), w2 ∼ N(µv2, σ), (2)

This model will be labeled “Model 00”. It is possible that trials with slow RTs will be

associated with a lower pre-switch drift, and also a lower accumulated difference between

the two alternatives, making the choice more prone to a reversal in the post-switch period

where the new drifts are sampled, and providing a parsimonious explanation of the

accuracy difference between stationary and switch trials for the slowest quartile of RTs.

We used Model 00 to test this possibility.

Models 1s and 1f. In these and all subsequent model variants, we assume that the

presentation of new information leads to a change in the accumulation process. In all

cases – based on the observation that the new information does influence choice

probabilities – we assume that the change of information leads to a change in the evidence

accumulation rate so that after the change of information, v1 → w1 (for the pre-switch

correct accumulator) and v2 → w2 (for the post-switch correct accumulator). This change

can take one of two forms, symmetric or free. In the symmetric case, it is assumed that

the drift rates for the choice pre-switch correct (C1) and post-switch correct (C2)

accumulators before and after the change are drawn from the same distributions as before

the change:

v1, w2 ∼ N(µv1, σ), v2, w1 ∼ N(µv2, σ). (3)
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Note, this is not a simple flipping of the drift rates, as although the pairs of rates are

drawn from the same distribution, the individual values that are sampled vary randomly

and independently. However the symmetry does reflect the symmetry of the presented

stimuli. Alternatively, the switch can be free, so that pre and post change drift rates are

unrelated, so:

w1 ∼ N(µw1, σ), w2 ∼ N(µw2, σ). (4)

We will reference models with either the postfix “s” or “f” to indicate the type of drift

rate change assumed. So, for example, Model 1s refers to a variant of Model 1 with a

symmetric change of drift rates.

In Model 1, we assume there is a delay between the presentation and integration of

new information, and include a delay parameter (trate), so that if the change of

information occurs at t0 experimentally, the change in drift rates occurs at t0 + trate. In

the symmetric case, each participant is characterized by a vector of six parameters

θp = (bp1, A
p, µpv1, µ

p
v2, t

p
er, t

p
rate). In the free case, each participant is described by a vector

of eight parameters θp = (bp1, A
p, µpv1, µ

p
v2, µ

p
w1, µ

p
w2, t

p
er, t

p
rate).

Models 2s and 2f. As with Model 1, we again assume that a change of stimulus leads

to a change of drift rates, again with both symmetric and free variants. In contrast to

Model 1, however, in Model 2 we assume the change in rates occurs instantaneously.

Model 2 also differs from Model 1 in that it allows the evidence threshold to differ before

and after the change. Rather than assuming this change occurs instantaneously, we

account for the possibility that there is some delay in this adjustment, and include a delay

parameter tthresh. So, if the stimulus changes at time t0, the response threshold is b1 for

t < t0 + tthresh and b2 for t > t0 + tthresh. In the symmetric case, each participant is

characterized by a vector of seven parameters θp = (bp1, b
p
2, A

p, µpv1, µ
p
v2, t

p
er, t

p
thresh). In the

free case, each participant is described by a vector of nine parameters
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θp = (bp1, b
p
2, A

p, µpv1, µ
p
v2, µ

p
w1, µ

p
w2, t

p
er, t

p
thresh).

Models 3s and 3f. Model 3, includes both the delayed rate effect, as well as a

threshold change, but without a delay. In the symmetric case, each participant is

characterized by a vector of seven parameters θp = (bp1, b
p
2, A

p, µpv1, µ
p
v2, t

p
er, t

p
rate). In the

free case, each participant is described by a vector of nine parameters

θp = (bp1, b
p
2, A

p, µpv1, µ
p
v2, µ

p
w1, µ

p
w2, t

p
er, t

p
rate). Thus, Models 2 and 3 have the same number

of parameters.

Hierarchal model extension

We extend each of these individual level variants to a hierarchal model in order to

compare models at the population level. We specify the following priors for the individual

level parameters

bp1, b
p
2 ∼ TN(µb, σb, 0,∞), (5a)

Ap ∼ TN(µA, σA, 0,∞) · χ[0,bs], (5b)

µpv1,v2,w1,w2 ∼ N(µV 1,V 2,W1,W2, σV 1,V 2,W1,W2), (5c)

tprate ∼ TN(µrate, σrate, 0,∞), (5d)

tpthresh ∼ TN(µthresh, σthresh, 0,∞), (5e)

tper ∼ TN(µer, σer, 0,∞), (5f)

where TN(a, b, c, d) refers to the normal distribution with mean a and standard deviation

b truncated to the interval [c, d]. Note that we do allow drift rates to be negative to

account for the possible feedforward suppression of one alternative by the other, and so do

not truncate drift rate distributions. Further, we incorporate the condition Ap < bp

explicitly in the prior; χ[a,b] denotes the indicator function that is 1 on the interval [a, b]

and 0 elsewhere.
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We further specify the following mildly informative priors for the hyper mean and

standard deviation parameters

µb1,b2,A ∼ TN(1, 0.5, 0,∞), σb1,b2,A ∼ Γ(1, 1), (6a)

µV 1,V 2,W1,W2 ∼ N(3, 1.5), σV 1,V 2,V 3,V 4 ∼ Γ(1, 1), (6b)

µrate,thresh ∼ TN(0.6, 0.3, 0, 3), σrate,thresh ∼ Γ(1, 0.5), (6c)

µer ∼ TN(0.25, 0.25, 0,∞), σer ∼ Γ(1, 0.5). (6d)

These priors are nearly the same as those in the Turner, Sederberg, Brown, and

Steyvers (2013), but with a few adjustments to more accurately reflect the approximate

size of various parameters. Note that the upper bound of the truncated normal for µrate

was chosen for numerical reasons. As discussed in the results, estimates of the parameter

tthresh were beyond maximum response times, creating numerical inefficiencies. This

truncation keeps the value of this parameter from growth without bound, but is

significantly larger than any plausible estimate.

The foregoing describes the hierarchal model for the free switch model with a fixed

threshold. For the simpler symmetric switch model, the priors and hyper-priors for w1,2

are unused and for the simplest LBA model, the priors for trate and tthresh are also

unused. In cases where multiple boundaries are considered, b1,2 are assigned the same

priors but the additional constraint that b2 > b1 is applied. Conceptually, participants

might also reduce the threshold, but that did not appear to be the case here, and

enforcing this constraint produced better behaved estimation.

Model Selection Results

Table 1 shows the Deviance Information Criterion (DIC) (Spiegelhalter, Best,

Carlin, & Van Der Linde, 2002) values for each of the eight models fit to the data. Models
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with lower DIC values are preferred, and an advantage of 10 or more indicates a strong

advantage. The first thing we note is that the non-switch model (Model 0) performs the

worst of all models. That is, even though it has an advantage in simplicity over the other

models, with only five parameters per participant, that advantage is lost because of its

poor fit. This strongly suggests the change of information in the direction determination

task is having an effect on the evidence-accumulation process. Model 00 also performs

quite poorly, suggesting that taking a new rate sample post-switch from the pre-switch

rate distributions cannot account for our data.

It is also clear that for each of the three model types with either a drift rate delay, a

delayed threshold change, or both, the free switch version is strongly preferred, with DIC

advantages that range from 15 to 35. This clearly indicates that the change of drift rates

is not symmetric. We discuss this finding further below in reference to Figure 3, which

demonstrates that – in agreement with the DIC results – when freely estimated,

population posterior drift rate estimates displayed a marked asymmetry.

Table 1 also clearly shows that the delayed drift rate change alone provides a

substantially better account of the the data than does a delayed change in the response

threshold alone. This is evident in a substantially better DIC for Model 1 (drift-delay

alone) than Model 2 (threshold-delay alone), regardless of whether drift rates are assumed

symmetric (an advantage of 50) or not (an advantage of 40). Adding an immediate

threshold change to the drift-delay model (i.e., Model 1 vs. Model 3) produces a relatively

modest improvement in DIC. When drift rates are assumed symmetric the improvement is

larger (14), but this may just be overfitting in an attempt to compensate for the overall

much worse fit under the symmetric assumption. When drift rates are allowed to be

asymmetric the improvement is small (4), and as we discuss next, posterior parameter

estimates indicate that the magnitude of the threshold change was very small.
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Parameters Estimates

Figure 3 shows the posterior hyper-mean estimate distributions for two model

variants that both allow asymmetric drift rates but only one other effect of the switch:

either a delay in the rate change (Model 1f, left column) or a delayed change in the

threshold (Model 2f, right column). The central tendencies of these distributions provide

an estimate of the population mean value for each parameter, and their spread represents

uncertainty about these values. We first focus on the two pairs of drift-rate estimates for

each model shown in rows two and three of Figure 3.

For both switch trials before the switch and the entire time course of stationary

trials, the second row shows the rates for the accumulators (µV 1 and µV 2). Because these

parameters are constrained by all of the stationary trial data as well as switch trials where

responses occur before the switch, their distributions are tightly peaked, indicating

relatively little estimation uncertainty. Accuracy in responding is determined to a large

degree by the differential between the rates, as the accumulator corresponding to the

correct choice (i.e., µV 1) is more likely to win the race as its rate increases relative to the

accumulator corresponding to the incorrect choice (i.e, µV 2). At the aggregated-model

level this differential can be measured by the difference between the average posterior

mean estimates, µ̄V 1 − µ̄V 2. As Figure 3 shows, this measure is virtually identical for both

models, with a value of 1.3.

Distributions for the drift rates (µW1 and µW2 in the third row) after the change of

motion however indicate substantive differences between the two models. Uncertainty in

these estimates is somewhat greater as they are constrained by less data, only those

switch trials where responses occur after the change. The locations of these distributions

however differ markedly between the two models. For Model 1f, results indicate a

substantial increase in the difference of accumulation rates after the change of motion.

This rate asymmetry suggests that the accumulation process is not veridical since a



The Piecewise Linear Ballistic Accumulator 33

symmetric change of stimulus leads to a non-symmetric change in the underlying

accumulation process. In Model 2f, we see a substantial compression of the two drift rates

after the switch so that drift rates for the two alternatives are nearly the same. This

however is an artefact of removing the rate delay, or rather setting it to 0.

This compression of drift rates in the absence of a rate delay is consistent with data

in Figure 2c. That data indicates there is a time delay between presentation and

incorporation of the new information. By removing the rate delay, the model is being

forced to estimate the post switch drift rates based on an average of early and late post

change responses. Because early post change responses are most likely based on the initial

pre-change stimulus information, they are essentially washing each other out. Consider a

left-then-right motion switch trial with a switch occurring at time t0 where an intrinsic

rate delay of trate is present. If we force the rate delay to be 0 in the model, then the post

change drift rates must accommodate choices made during the intrinsic rate delay trate

(which will favor the pre-change stimulus direction) and choices made after the intrinsic

delay (which will favor the post-change stimulus direction). Since each motion direction is

preferred for some period of time, the post switch drift rates appear to be nearly the

same. This strongly suggests that not only is the change of drift rates vital in accounting

for the data, but so is a sufficiently long rate delay.

The post switch threshold and threshold delay estimation in Figure 3b also provide

insights. For both model variants, there is more uncertainty in threshold than rate

estimates, but for Model 2’s changed-threshold estimate (µb2) this uncertainty becomes

extreme, with a close to flat distribution between 2.5 and 4. Further examination of the

threshold delay (µthresh) reveals estimates that crowd at the upper bound of the prior (3s)

and which are always greater than 2.5s. Recalling that all trials are terminated after 2s,

this indicates the model is fitting both the threshold delay and the post switch threshold

parameters as nuisance parameters that do not impact the fit. The threshold delay
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(tthresh) is so long that the threshold cannot change before the trial terminates. As a

result, the data cannot impact estimation of µb2, resulting in a more uniformly distributed

posterior. This suggests that a change of threshold does not provide a good accounting of

the data.

In contrast to Model 2f’s µthresh parameter, estimates of Model 1f’s µrate parameter

is well away from the prior bounds and relatively peaked (note the very different scales for

the two delay panels in Figure 3). On average the estimated delay in the integration of

new information is greater than 0.4s. This delay is the source of the lag effect evident in

Figure 2c). Furthermore, the posterior hyper standard deviation σrate had a mean value of

only 0.076s, indicating that there is a relatively low level of participant variability in the

rate delay.

Interestingly, when a delayed rate change is combined with an immediate threshold

change where tthresh = 0 (Model 3f, parameter estimates not shown), the rate differential

agrees most closely with the purely delayed rate model (1.2 before and 2 after). Further,

the distributions of µb1 and µb2 are estimated as almost identical, with a very small

increase in the mean of 2.5 for µb1 and a mean of 2.6 for µb2. Thus, when a threshold

increase was forced to occur, the magnitude of that increase was estimated as relatively

negligible.

In summary, when a change of threshold is allowed to occur, the data forces the

delay in that change to be so long that it occurs after the trial terminates so that in effect,

it never occurs. When the change of threshold is forced to occur, the data constrains the

new threshold to be nearly identical to the threshold prior to the change of motion. Taken

together, these results support selection of Model 1f as best reflecting the data. Further

analyses focus on this model; we first consider the quality of its fit to data, and then

examine individual differences in its parameter estimates, and their relationship to

individual differences in performance.
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Quality of fit

Figure 4 provides a visual assessment of the quality of the fit by Model 1f. For each

participant, we computed the posterior mean value for the individual level parameters and

examined the quality of fit for each participant. In panel a, we aggregate data and model

predictions for all participants over blocks 4-18. Each black (respectively grey) data point

represents the predicted and actual probability of choosing the pre-switch correct choice

(C1) (respectively the post-switch correct choice, C2) for an individual block and

participant, so there are 31× 15 data points for each color (31 participants and 15 blocks).

Note the actual probabilities for each block are computed over only 72 trials, so a

significant degree of randomness is expected for each observation. Nonetheless, we see a

clear correlation (r = 0.63) between predicted and actual choice probabilities (no p-value

reported due to the large number of data points rendering it moot).

Figures 4 b-d show actual (histograms) and predicted (lines) response time

distributions for three separate participants. This data is again aggregated over blocks

4-18 with black (respectively grey) indicating response times for the pre-switch correct

choice (C1) (respectively the post-switch correct choice, C2). In order to make a direct

comparison between model predictions and data, for each participant we numerically

recreated the experiment with the posterior mean parameters. That is, 15 blocks were

simulated using the precise recorded switch times for each participant (with 1000 instead

of 72 trials to reduce randomness). Simulated response time data was then similarly

aggregated over the 15 blocks and scaled appropriately for plotting. These results show a

diversity of response time distributions, each of which is well accounted for by this model.

In particular, panel c shows a bimodal response distribution for choice C2 where the first

peak corresponds to incorrect responses prior to the switch and the second peak to correct

responses after the switch. Although we only present data for these three participants, we

visually assessed the fit for all participants and found similar agreement for 30 of the 31.
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The remaining participant exhibited nearly uniform posterior distributions for post

switch, individual level parameters, indicating poor fit.

Figures 4e and 4f show a comparison of quartile accuracy between the data and

model predictions for stationary and switch trials respectively. For 4e, quartile accuracy

was computed (for each participant individually) from the full RT distribution for all

stationary trials, irrespective of the experimental block. Box plots show the distribution of

accuracy over participants. For 4f, quartiles were computed from the RT distribution

containing switch trials where responses occur after the change of information (similar to

Figure 2c). To generate model predictions, the mean of the posterior distribution was

computed for each participant. These parameters were then used to run a synthetic

version of the experiment and generate a synthetic data set. Quartile accuracy for both

stationary and switch trials was then computed for these synthetic data and plotted along

side participant accuracy data. Results indicate that the model accounts well for the

general trends in the data. There is a small uptick in accuracy on stationary trials from q1

to q2 that the model does not capture. It does however capture the trend toward reduced

accuracy from q2-q4 on stationary trials and the substantial increase in accuracy from

q3-q4 on switch trials.

We next asked how various parameters correlate with one other. At the participant

level, there are a number of strong correlations. This is illustrated in Figure 5 for one

participant. Such strong correlations are common in evidence accumulation models,

including the LBA (Turner et al., 2013), since their dynamics are only partially

constrained by behavioural data (e.g., accumulation trajectories are only observed through

their effect at their end point). This is a common modelling problem in many contexts

where sparse or insufficient observations are used to estimate parameters of complex

models. Due to the inability to precisely determine parameters of these models (either

using Bayesian or frequentists methods), they are often referred to as “sloppy models”
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(Gutenkunst et al., 2007; Apgar, Witmer, White, & Tidor, 2010).

Despite these correlations, the post switch drift rates appear to be virtually

uncorrelated with all other system parameters, indicating they are specific in the sense

that their values correspond to post switch rates of accumulation and are not strongly

influenced by other factors. This is not surprising given the structure of the model and the

structure of the data used to parameterise it. Perhaps more surprisingly, results (not

presented) indicate there is very little correlation between hyper mean parameters; the

only correlation above 0.2 was between µA and µb. This indicates there are no structural

correlations at the population level.

Individual Differences

In order to examine the relationship between individual differences in performance

on the task and rate asymmetry, we defined a measure of the difference in average rate

differentials before and after the rate change for each participant:

Dp = (µ̄pw2 − µ̄
p
w1)− (µ̄pv1 − µ̄

p
v2), (7)

where individual level parameters are used in this definition. A positive value of this

asymmetry measure indicates that after the rate change there is an increased differential

rate (i.e., an increased ability to discriminate the motion direction). As shown in the first

row of Table 2, we found a strong positive correlation between the asymmetry measure and

accuracy on the stationary trials of the direction determination task. That is, participants

whose performance in the stationary case was superior displayed a greater asymmetry, in

the form of an increase in their ability to discriminate the changed direction of motion.

Interestingly, however, the asymmetry measure was not significantly correlated with

the ability to detect the stimulus change in block 20, as shown in the second row of Table

2. We also correlated each participant’s posterior mean for the rate delay with
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performance on the switch detection task and found no relation (second row of Table 2),

which reflects the relatively low level of subject-level variability in this delay.

Further, we correlated the asymmetry measure and the posterior mean of the rate

delay with mean RTs on stationary and switch trials of the direction determination task.

For the mean post switch RT, only the trials where responses occur after the change of

motion were included. For those trials, rather than considering the RT itself, the total

elapsed time after the switch (e.g. RT - switch time) is used. As shown in Table 2, mean

RTs for both stationary and switch trials were clearly correlated with the asymmetry

measure (left column), but not the rate delay (right column). In sum, the rate asymmetry

is strongly related to performance measures (response times and accuracy), while the rate

delay appears to be independent of these measures.

Figure 6 plots the estimated distribution of individual differences in the rate delay

and asymmetry measures. The histograms take into account both variability among

participants and uncertainty about the value of the measures for each participant. There

is clear evidence for a strong rate delay that is quite consistent over participants. In

contrast there is much stronger individual variation in the asymmetry. The majority of

participants are predicted to have a positive asymmetry, with some evidence of a separate

mode for participants with very high asymmetry. However, it is also possible that a

minority of participants will display no asymmetry or even a slightly negative asymmetry,

as 16% of the mass of the histogram on the right of Figure 6 is less than zero.

General Discussion

In the course of our day to day lives, we encounter numerous situations that require

decisions based on sequentially encountered pieces of conflicting information. Our goal in

the present work was to develop a new quantitative framework appropriate for modelling

such situations, the Piecewise Linear Ballistic Accumulator (PLBA), and to apply it to a
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particular situation in order to understand how participants adapt to new information.

The particular situation we chose to use involved a random dot motion (RDM) task,

where the direction of dot motion changed once within a trial, from left to right or visa

versa. Our broader aim was to show that the PLBA model provides psychological insights

into decision making with non-stationary stimuli that are not otherwise available, and

hence to encourage its wider application.

We built the PLBA model by elaborating Brown and Heathcote’s (2008) LBA

model of decisions based on stationary stimuli. The LBA has been shown to accommodate

a range of benchmark binary choice phenomena, including predicting fast and slow errors

and the shape of speed-accuracy tradeoff curves (Brown & Heathcote, 2008). It has also

been successful at accounting for neural data (Forstmann et al., 2008, 2010) and data from

complex decision paradigms involving more than one response (Hawkins et al., 2013),

decisions with more than two choices (e.g., Brown & Heathcote, 2008; van Maanen et al.,

2012) including choices based on multi-attribute stimuli (Trueblood, Brown, & Heathcote,

2014). The LBA’s mathematical and computational tractability has underpinned its

widespread application, and it is these characteristics that made it practical to elaborate in

order to address situations where decisions are based on non-stationary stimuli. A second

essential ingredient was recent developments in Probability Density Approximation (PDA)

based Approximate Bayesian Computation (Turner & Sederberg, 2014; Holmes, 2015) and

methods for sampling from models with correlated posteriors (Turner et al., 2013).

In order to understand how the decision process is updated after a change of

information, we constructed a series of hierarchal PLBA models of increasing complexity,

each of which makes a different assumption on the decision update process, and used

Bayesian methods to fit each of these models to data from the RDM

direction-determination task. The models allowed examination of five potential

mechanisms (and combinations thereof) that could be at work when decisions are made
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about changing information : immediate or delayed changes in the rate of evidence

accumulation, immediate or delayed changes in evidence thresholds, and carryover effects

causing a non-veridical representation of the changed information. Analysis based on

model selection and examination of posterior parameter estimates supported a model with

two of these features.

First, there was a surprisingly substantial delay, of the order of 0.45s before the

change of stimulus direction affected the rate of evidence accumulation. The presence of a

large delay explained raw choice proportion results that the new information only affected

choices in the longest quartile of responses occurring after the stimulus switched. A second

finding – one that is perhaps even more surprising and certainly not something that could

be inferred based on the raw data alone – was that ability to discriminate motion

direction improved after the changed information reached the decision process. The ability

of the PLBA model to make a correct choice depends on how much greater the rate is for

the accumulator that matches the stimulus than for the alternative accumulator. Our

stimuli were symmetric (i.e., motion is equal in magnitude but opposite in direction before

and after the change), so that if the rates are veridical, then discrimination should be

symmetric. However we found that when the rates eventually change, the difference in

rates between the matching and mismatching accumulators is much larger than before the

change. It is possible is that the larger rate after the change is an attempt to compensate

for the delay, but there was relatively little variation in the delay or correlation between

the delay and the increased rate over participants (r = 0.011, p = 0.95), so any potential

compensatory mechanism is not sensitive to individual differences.

It is possible that the rate delay and improved discrimination could be the spurious

result of fitting the (misspecified) PLBA model to a DDM data generating process similar

to those proposed by White et al. (2011) and Hübner et al. (2010). To examine this

possibility we simulated data from a DDM where the drift rate switched from negative to
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positive (but with equal absolute magnitude) half way through the decision. When we fit

the PLBA to this simulated data, there was only a negligible rate delay (less than 10% of

the mean decision time), and slightly reduced (rather than improved) discrimination after

the switch. Although we did not investigate all possible combinations of DDM

parameters4 it seems unlikely that this sort of model misspecification could explain either

the substantial delay, or the asymmetry, that we inferred from fits of the PLBA to our

data.

When thought of in terms of the primacy and recency constructs that have framed

conceptualisations of non-stationary decision making in the past (e.g., Usher &

McClelland, 2001; Brown & Heathcote, 2005b), the delay and asymmetry findings appear

contradictory. Delay is most consistent with a competitive mechanism, whereby

accumulated evidence in the decision process suppresses new contradictory information, so

it takes an extended period of time before that information has an impact (Tsetsos et al.,

2012). However, the direction of the rate asymmetry is more consistent with a recency

effect where later arriving information has a stronger impact. One possible resolution is

offered by a middle level of competition; Tsetsos et al. showed that in a region between

linear accumulation and very strong competition the rich and flexible dynamics of LCA

can exhibit a change from a primacy to recency pattern over the transition from faster to

slower response-time trials (see their Figure 5).

Our aim here is not to resolve such issues, but rather to demonstrate the useful and

revealing nature of a PLBA based analysis. However, it is tempting to speculate, and

useful to do so in order to underline the inherit limitations in our approach, or indeed any

approach that models only the decision process. As we previously noted, rate effects can

have two sources, from the dynamics of the processes that encode stimuli and from the

dynamics of the decision process itself. Using this distinction, one potential resolution to

our findings is that the delay results from competition in the decision process, whereas the
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rate asymmetry emerges from the dynamics of stimulus encoding.

The latter speculation is based on the finding that the increased rate difference in

the changed rates (see Figure 3) was mainly due to a marked depression in the rate

associated with the mismatching accumulator (on average from 2.1 before the change to

1.3 after the change), with only a small increase in the rate for the matching accumulator

(on average 3.4 before the change to 3.7 after the change). This depression might be due

to a depletion of neurotransmitters in cells tuned to represent the initial motion direction

(Carpenter & Grossberg, 1990), so that their activity in response to the changed motion is

depressed relative to the activity of cells tuned to the new motion direction. Such

suppression is consistent with the motion aftereffect, where prolonged adaptation to

motion in one direction leads to the appearance of motion in the opposite direction

(Anstis et al., 1998).

A depletion mechanism might also be included in an elaboration of the dynamics of

nonlinear decision models such as those of Usher and McClelland (2001) or Brown and

Heathcote (2005b). Similarly, a delay might emerge from competitive dynamics between

cell populations tuned to different motion directions. Further experimentation – for

example exploring whether the effects we observed occur with other types of stimuli,

perhaps randomly mixing different stimulus types so that an invariant decision process

can be assumed – will be required to disentangle these possibilities. The point we wish to

emphasise here is that PLBA modelling provides a method of asking such questions and

can contribute to answering them, thus providing a deeper understanding of how decisions

are made about non-stationary stimuli. That is, we advocate the use of the PLBA in the

same spirit as the LBA, tractable approximation that can be applied to model

non-stationary processing – much as Euler methods can provide a useful way to model

non-linear dynamics.

The stimuli which we used in our experiment produced a change that could be
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discriminated by participants, but this did not seem to lead to any reactivity to the

change in the form of an adjustment in the parameters of their decision processes, in

particular the evidence threshold. However, the change was not particularly easy to

discriminate, so it is possible that reactivity may occur with more noticeable changes, or

perhaps with decisions made over longer time scales where there is more time to adjust

thresholds. The general form of the PLBA model illustrated in Figure 1 can be used to

explore such possibilities.

A potential criticism of the PLBA model is that it is very flexible. Figure 4

demonstrates this flexibility by showing the model’s ability to fit negatively skewed and

bimodal RT distributions. Jones and Dzhafarov (2014) recently raised the issue of

flexibility with respect to LBA and DDM models that do not make definite assumptions

about the form of variability in their parameters from trial to trial. Heathcote,

Wagenmakers, and Brown (2014) showed that when the conventional distributional

assumptions are made for the LBA that it is not able to fit negatively skewed distributions

and the same is true for bimodal distributions unless a mixture of processes is present

(e.g.,Cassey, Heathcote, & Brown, 2014). Given the greater flexibility of the PLBA, we

recommend it be assessed with model-selection methods that can provide appropriate

penalties for over-fitting. Our use of DIC here goes some way to fulfilling this criterion,

although it is less than ideal given it is known to asymptotically prefer overly complex

models. However, even if a better criterion, such as Bayes Factors, were used, we think

converging evidence from considerations like the plausibility and coherence of posterior

parameter estimates are also desirable.

Conclusions

In sum, the PLBA can be used to explore process-level hypotheses for how

non-stationary information influences the decision process. Using eight variants of the
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PLBA, we tested hypotheses about how drifts and thresholds might change in response to

external changes of information. Our results revealed that changes in drift rates rather

than changes in threshold provide the best explanation for how people adapt and integrate

new perceptual information. Future research could explore the generality of these findings

in both perceptual and high-level decision-making. We believe that the PLBA in

combination with efficient approximate Bayesian methods provide an excellent way to

address such questions.
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Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of

selective attention. Psychological Review , 117 , 759–784.

Huk, A. C., & Shadlen, M. N. (2005). Neural activity in macaque parietal cortex reflects

temporal integration of visual motion signals during perceptual decision making.

The Journal of neuroscience, 25 (45), 10420–10436.

Insabato, A., Dempere-Marco, L., Pannunzi, M., Deco, G., & Romo, R. (2014). The

influence of spatiotemporal structure of noisy stimuli in decision making. PLoS

computational biology , 10 (4), e1003492.

Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability and mutual translatability of major

modeling schemes for choice reaction time. Psychological review , 121 (1), 1.



The Piecewise Linear Ballistic Accumulator 49

Jong, R. D., Liang, C. C., & Lauber, E. (1994). Conditional and unconditional

automaticity: a dual-process model of effects of spatial stimulus-response

correspondence. Journal of Experimental Psychology: Human Perception and

Performance, 20 , 731–750.

Kiani, R., Hanks, T. D., & Shadlen, M. N. (2008). Bounded integration in parietal cortex

underlies decisions even when viewing duration is dictated by the environment. The

Journal of Neuroscience, 28 (12), 3017–3029.

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and

comparison of value in simple choice. Nature neuroscience, 13 (10), 1292–1298.

Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the

relationship between visual fixations and choice in value-based decisions. Proceedings

of the National Academy of Sciences, 108 (33), 13852–13857.

Luce, R. D. (1986). Response times: Their role in inferring elementary mental

organization3. New York, NY: Oxford University Press.

McKenzie, C. R. M., Lee, S. M., & Chen, K. K. (2002). When negative evidence increases

confidence: Change in belief after hearing two sides of a dispute. Journal of

Behavioral Decision Making , 15 , 1–18.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review , 85 , 59-108.

Ratcliff, R. (1980). A note on modeling accumulation of information when the rate of

accumulation changes over time. Journal of Mathematical Psychology , 21 (2),

178-184.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for

two-choice decision tasks. Neural Computation, 20 (4), 873–922.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions.

Psychological Science, 9 (5), 347–356.

Ridderinkhof, R. (2002). Micro- and macro-adjustments of task set: activation and



The Piecewise Linear Ballistic Accumulator 50

suppression in conflict tasks. Psychological Research, 66 , 312–323.

Shadlen, M. N., & Newsome, W. T. (1996). Motion perception: Seeing and deciding.

Proceedings of the National Academy of Sciences, 93 (2), 628–633.

Silverman, B. W. (1982). Algorithm as 176: Kernel density estimation using the fast

fourier transform. Journal of the Royal Statistical Society. Series C (Applied

Statistics), 31 (1), pp. 93-99.

Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26).

CRC press.

Simon, J. R., & Rundell, A. P. (1967). Auditory s–r compatibility: The effect of an

irrelevant cue on information processing. Journal of Applied Psychology , 51 ,

300–304.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions.

Trends in neurosciences, 27 (3), 161–168.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 64 (4), 583–639.

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11 (4),

341–359.

Ter Braak, C. J. (2006). A markov chain monte carlo version of the genetic algorithm

differential evolution: easy bayesian computing for real parameter spaces. Statistics

and Computing , 16 (3), 239–249.

Trueblood, J. S., Brown, S. D., & Heathcote, A. (2014). The multi-attribute linear

ballistic accumulator model of context effects in multi-alternative choice.

Psychological Review , 121 , 179-205.

Tsetsos, K., Gao, J., McClelland, J. L., & Usher, M. (2012). Using time-varying evidence



The Piecewise Linear Ballistic Accumulator 51

to test models of decision dynamics: Bounded diffusion vs. the leaky competing

accumulator model. Frontiers in Neuroscience, 6 .

Tsetsos, K., Usher, M., & McClelland, J. L. (2011). Testing multi-alternative decision

models with non-stationary evidence. Frontiers in neuroscience, 5 .

Turner, B. M., & Sederberg, P. B. (2014). A generalized, likelihood-free method for

posterior estimation. Psychonomic bulletin & review , 21 , 227-250.

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for

efficiently sampling from distributions with correlated dimensions. Psychological

methods, 18 (3), 368-384.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky,

competing accumulator model. Psychological Review , 108 (3), 550-592.

van Maanen, L., Grasman, R. P., Forstmann, B. U., Keuken, M. C., Brown, S. D., &

Wagenmakers, E.-J. (2012). Similarity and number of alternatives in the random-dot

motion paradigm. Attention, Perception, & Psychophysics, 74 (4), 739–753.

White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task:

Discrete versus gradual attentional selection. Cognitive Psychology , 63 (4), 210–238.

Winkel, J., Keuken, M. C., Van Maanen, L., Wagenmakers, E.-J., & Forstmann, B. U.

(2014). Early evidence affects later decisions: Why evidence accumulation is

required to explain response time data. Psychon Bull Rev , 21 , 777–784.



The Piecewise Linear Ballistic Accumulator 52

Appendix A

PLBA Pseudo-analytic Likelihood

While we have not used it here for computational reasons, it is possible to compute

a pseudo analytic likelihood function for the PLBA model with a fixed threshold (Model

1f). The basic assumption of Model 1f is that after a change of information, evidence

accumulation rates adjust. Mathematically, this is modelled by assuming that post switch

drift rates are drawn from new normal distributions. In order to compute this density

function, we proceed in much the same way as in the computation of the standard LBA

density function (Brown & Heathcote, 2005a). Let Fi(T ) be the cumulative density

function (CDF) for the time at which an individual accumulator i terminates at the fixed

threshold. If the change of accumulation rate occurs at time t0, then the state of the

accumulator is

xi(T ) =


x0 + viT, T < t0

x0 + vit0 + wi(T − t0), T > t0,

(8)

where vi, wi are the pre and post switch drift rates for that accumulator, each drawn from

an associated normal distribution.

At this point it is useful to break the time domain into two pieces, T < t0 and

T > t0. If T < t0, then the second accumulation rate never gets used and the quantity

Fi(T ) is determined by the standard LBA formula

Fi(T ) = K1(T |A, b, µv, σ) (9)
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where

K1(t|A,B, µ, σ) = 1 +
B −A− µt

A
Φ

(
B −A− µt

σt

)
+
µt−B
A

Φ

(
B − µt
σt

)
(10)

+
σt

A
φ

(
B −A− µt

σt

)
− σt

A
φ

(
B − µt
σt

)
, (11)

is the usual LBA kernel. Here, it is assumed that vi ∼ N(µvi, σ) and that x0 ∼ U(0, A).

For T > t0, things are more complicated. In this case

Fi(T ) =

∫ ∞
0

P (xi(T ) > b|vi)φ(vi|µvi, σ) dvi, (12)

=

∫ (b−A)/t0

0
P1 φ(vi|µvi, σ) dvi +

∫ b/t0

(b−A)/t0

P2 φ(vi|µvi, σ) dvi +

∫ ∞
b/t0

P3 φ(vi|µvi, σ) dvi.

Here φ is the PDF for the normal distribution. This integral has been broken into three

pieces since the quantity P has different forms denoted by P1,2,3 in these different regions.

After some technical calculation that follows Brown and Heathcote (2005a), it is direct to

show that

P1 = K1(T − t0|A, b− vit0, µwi, σ), (13)

P2 = K2(T − t0|A, b− vit0, µwi, σ), (14)

P3 = 1, (15)

where K1 is the standard LBA kernel and K2 is a variant of it

K2(t|A,B, µ, σ) = 1 +
B −A− µt

A
Φ

(
−µ
σ

)
+
µt−B
A

Φ

(
B − µt
σt

)
(16)

+
σt

A
φ

(
−µ
σ

)
− σt

A
φ

(
B − µt
σt

)
.

Note that we are referring to these as “kernels” as they are acting as integration kernels in
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this description of Fi(T ). Additionally, it is of note that the third integral in this

expression can be simplified so that

∫ ∞
b/t0

P3 φ(v|µv, σ) = 1− Φ

(
b

t0
, µv, σ

)
= 1− Φ

(
b− µvt0
σt0

)
. (17)

In this form, the first integral is very similar to a convolution of the LBA kernel

(K1) against the normal distribution. The second integral has a similar form but with a

slightly different kernel. In this expression, the functions K1,2 are well defined and the

necessary integrals in Equ. (12) can be readily computed with standard integral routines.

Once expressions for the PLBA CDF’s are obtained (e.g. F1, F2), the associated PDF’s

can be computed as fi = F ′i . Subsequently, the defective distributions describing the

choice probabilities can be computed as

gi(Tk) := fi(Tk)
∏
j 6=i

(1− Fj(Tk)). (18)

The caveat to using this solution is that it requires numerically computing the

integrals in Equ. (12). While this is not technically difficult, our investigations indicate

that evaluating the density function in this way is orders of magnitude slower than using

the probability density approximation used in this paper, making it impractical to use in a

Bayesian parameter estimation context. Numerical computation of derivatives is also

required when evaluating fi, however this appears to be less problematic than integral

evaluation.
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Appendix B

Estimation Methods

Hierarchal Bayesian Parameter Estimation

For each model, we make the assumption that trials are identical and independent

so that for each participant

L(RT,RC|θp) =

N∏
j=1

L(T p
j , C

p
j |θ

p), (19)

where T p
j , C

p
j are the response time and choice for trial j and participant p. Experimental

blocks 1-3 and 19-20 serve alternative purposes and so only data from blocks 4-18 are used

for the fitting process. The data for each participant is thus comprised of N = 15× 72

response time and choice doublets.

For Model 0, where no switch is included, this likelihood can be analytically

evaluated (Brown & Heathcote, 2008) since the drift rates do not change. All model

variants treat stationary trials identically to the LBA and so the likelihood of those trials

can also be analytically evaluated. However, while the PLBA does emit an analytic

representation for the likelihood L(T p
j , C

p
j |θp), it is computationally problematic to

compute. We instead use a more computationally efficient variant of a recently developed

non-parametric approximate Bayesian computation method (Turner & Sederberg, 2014)

to estimate the likelihood of switch trials and fit the full hierarchal model.

Likelihood approximation. Consider Model 1f where the rate switch occurs at fixed

time t0. The goal is to compute L(T − ter, C|b, A, µv1, µv2, µw1, µw2, t0 + trate) where

T − ter is the decision time, C the choice, and t0 + trate is the time at which the

participant processes the switch. For simplicity and brevity of notation, sub and super

scripts have been omitted. The basic procedure for approximating this likelihood is to 1)
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draw a large number of samples (Ns) from the joint choice and response time distribution

and 2) use kernel density estimation (Silverman, 1986) to approximate the likelihood from

these samples.

To draw the samples for a fixed set of parameters, it is sufficient to run Ns pairs of

accumulators, and for each set, record the choice and response time. This will produce a

set of samples denoted {τk, ck}Ns
k=1. A kernel density estimate (Silverman, 1986) is then

used to approximate the likelihood from this sample. Briefly, the general formulation for a

kernel density estimate is

L(T̃ , C|b, A, µv1, µv2, µw1, µw2, t0 + trate) ≈
1

Ns

Ns∑
k=1

wh(T̃ − τk)δC(ck), (20)

where δC is the Kronecker delta function that is 1 when ck = C and 0 otherwise, wh is a

scaled weighting function

wh(t) =
1

h
w

(
t

h

)
, (21)

and w is a smooth function that is symmetric about t = 0 that integrates to 1. There are

numerous options for the specific choice of the weighting function w and bandwidth

parameter h, both of which affect the accuracy of this approximation. The Epanechnikov

kernel (Epanechnikov, 1969) is known to have certain optimal properties (Silverman,

1986). However the Gaussian kernel provides a number of practical benefits, and so we use

it here.

This direct method of computing the kernel density estimate proves to be

computationally cumbersome. We thus instead use an augmentation of it that uses tools

from signal processing to indirectly compute the density estimate much more efficiently

(Silverman, 1982; Holmes, 2015). There are a number of rules of thumb for choosing the

weighting parameter h (Silverman, 1986). These, however, typically rely on the

assumption that data is nearly normal, which is not the case here (see Figure 4c for
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example). We find that with the uniform kernel, the parameters Ns = 10, 000 and

h = 50ms are sufficient to approximate the likelihood. For further details regarding this

method and its properties, see (Holmes, 2015).

Using this procedure, for a given set of parameters, the likelihood of each

observation and in turn the bulk likelihood of the parameter set can be computed. Note,

however, that each switch time represents a separate experimental condition that will

augment the likelihood function. Since each block has a separate switch time, this

likelihood estimation must be performed for each block separately. This procedure thus

requires drawing Ns = 10, 000 samples for each of the 15 blocks, for each of the 31

participants. This translates to 4.65 million samples that must be drawn to compute the

full likelihood for all participants, for each MCMC chain iteration. Computational

efficiency is thus a necessity. We do not detail all the implementation details of this

procedure, but note that the likelihood computation is highly parallel. We take advantage

of MatLab’s built in parallel computing suite to distribute this workload over multiple

cores on a desktop to improve efficiency.

Markov Chain Monte Carlo specifics. Following Turner et al. (2013), we fit each of

the three hierarchal models in a Bayesian framework using a Differential Evolution

Markov Chain Monte Carlo (DE-MCMC) procedure. The purpose of using this procedure

rather than a more typical MCMC is the known high degree of correlation between

parameters in these LBA type models (Turner et al., 2013) that lead to high rejection

rates and poor efficiency. We briefly describe the implementation details specific to this

context and refer the reader to Ter Braak (2006), Turner et al. (2013), and Storn and

Price (1997) for a more complete discussion.

The basic idea of the DE-MCMC is to make proposals for chain updates informed

by the correlation structure of the existing chains. Let θni represent the current state
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(iteration i) of chain n. The DE-MCMC proposal is chosen according to

θ∗ = θni + γ(θli − θmi ) + ε, (22)

where l,m 6= n, γ controls the proposal jump size, and ε is a randomized symmetry

breaking parameter needed to avoid degeneracies. The critical quantities that must be

chosen for this procedure are 1) the number of chains (Nc) to be used, 2) a tuning

parameter γ, and 3) the distribution of ε. Following Ter Braak (2006), we take

γ = 2.38/
√

2d where d is the dimension of the parameter space being updated,

ε ∼ U(−0.001, 0.001) where U indicates the uniform distribution, and Nc is three times

the maximum parameter block size, which we discuss next.

Model 1f is comprised of 31× 8 = 248 individual level parameters and 16 hyper

parameters. For each chain update, these are broken into smaller groups. The hyper

parameters are separated into eight groups according to (µb, σb), (µA, σA), (µV 1, σV 1),

(µV 2, σV 2), (µW1, σW1), (µW2, σW2), (µer, σer), (µrate, σrate). For each chain, each of these

blocks is iteratively updated conditioned on the appropriate data as follows:

1. Update (µnb,i, σ
n
b,i) conditioned on {bp,ni−1}Pp=1,

2. Update (µnA,i, σ
n
A,i) conditioned on {Ap,n

i,−1}Pp=1,

3. Update (µnV 1,i, σ
n
V 1,i) conditioned on {µp,nv1,i−1}Pp=1,

4. Update (µnW1,i, σ
n
W1,i) conditioned on {µp,nw1,i−1}Pp=1,

5. Update (µnV 2,i, σ
n
V 2,i) conditioned on {µp,nv2,i−1}Pp=1,

6. Update (µnW2,i, σ
n
W2,i) conditioned on {µp,nw2,i−1}Pp=1,

7. Update (µnrate,i, σ
n
rate,i) conditioned on {tp,nrate,i−1}Pp=1,

8. Update (µner,i, σ
n
er,i) conditioned on {tp,ner,i−1}Pp=1,

9a. For each p = 1...P , update (bp,ni , Ap,n
i , µp,nv1,i, µ

p,n
v2,i, t

p,n
er,i) conditioned on the choice

and response time data for participant p,
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9b. For each p = 1...P , update (µp,nw1,i, µ
p,n
w2,i, t

p,n
rate,i) conditioned on the choice and

response time data for participant p.

Note that each set of individual level parameters is broken into two groups to reduce the

dimensionality of the parameter update and improve performance. These groupings were

chosen so that pre (resp. post) switch parameters are updated concurrently, since we

expect the correlations between the pre and post switch groups to be weaker than those

within the groups. For the symmetric version of the model, steps 4, 6 are removed and

steps 9a, 9b are condensed into a single update:

7. For each p = 1...P , update (bp,ni , Ap,n
i , µp,nv1,i, µ

p,n
v2,i, t

p,n
er,i, t

p,n
rate,i) conditioned on the

choice and response time data for participant p.

A similar simplification is made for Model 0. For threshold change models, we use a similar

rational in handling the participant level parameter updates. Specifically, the post switch

threshold and its associated delay are updated with the post switch parameter block.

The largest grouping of parameters in Model 1 is 6 (for the symmetric version). We

thus used Nc = 18 chains for models. Each chain was run for 2500 iterations. After the

initial 250 iterations, any outlier chain more than 2 standard deviations from the mean of

all chains is reset to the mean. An additional burn-in period of 250 iterations was run (for

a total burn-in of 500 iterations) after which all chain data was recorded. Chain mixing

was assessed by eye and appears to be sufficient, see Figure B1. This algorithm is coded

completely in MATLAB (MathWorks) and the total fit time for the models ranged from ∼

30min to 6 hours on a Mac Pro desktop.

Although a detailed investigation of this methodology and its properties is beyond

the scope of this exposition (see (Holmes, 2015) for further discussion), we do note that

the efficacy of this approximate algorithm was been verified in two ways. First, we verified

that it performs well on parameter recovery for synthetic data. Second, we separated the

data for all the stationary trials in this experiment and fit the model with both the
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non-parametric kernel density based algorithm as well as an identical MCMC procedure

using the analytic likelihood for the LBA model, and found the posteriors to be nearly

indistinguishable.
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Footnotes

1authors contributed equally

2We initially attempted to fit excluded subjects, but found their post switch drift

rate posteriors were flat, nearly uniform distributions. We suspect these subjects were

inattentive and not being influenced by the change in motion on a sufficient number of

trials to fit these parameters. This was supported by a strong correlation between

accuracy on the RDM direction-determination task and differential drift rate, as well as by

the fact that these participants exhibited a longer rate delay (trate ∼ 500ms).

3We do not report detailed results for this variant, which corresponds to the full

model illustrated in Figure 1, because it was quite unstable, indicating that it was

over-parameterised for our data.

4We assumed a drift rate of -0.2 that switched to 0.2 (both with a 0.1 between-trial

standard deviation and moment-to-moment noise with standard deviation 0.1) with an

unbiased start point and a threshold a = 0.1. The switch occurred at 0.1s and the mean

decision time was 0.2s. We investigated cases where there was no start-point noise and

where it had a uniform distribution with a width of 0.04
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Table 1
Comparison of Models. DIC comparison of eight variants of the piecewise LBA model.
In the case of Models 1-3, the modifiers s and f indicate the type of drift rate switch included
(i.e., symmetric or free). In some models, we also allowed for a delay in the change of drift
rates and an increase in the threshold (with a potential delay). For each model, a check mark
indicates which feature is included in that model. For all model variants, the computed DIC
value is provided.

Model Number Rate Delay Threshold Increase Threshold Delay DIC

0 × × × 1007
00 × × × 971

1s X × × 951
2s × X X 1001
3s X X × 937

1f X × × 926
2f × X X 966
3f X X × 922
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Table 2
Correlations between performance and effects. Here we compute correlations between
four measures of participant performance on the task with the rate delay and differential
effects. The four measures of performance we consider are the accuracy on stationary
trials, the hit rate on switch detection trials, the mean response time on stationary trials,
and the mean response time on switch trials. Correlations and p-values (in parentheses) are
presented. Significant correlation are indicated in bold.

Dp Mean trate
Stationary Accuracy 0.52 (0.003) −0.21 (0.25)
Detection Hit Rate 0.17 (0.36) 0.15 (0.42)

Mean Stationary RT 0.48 (0.007) −0.03 (0.87)
Mean Post Switch RT 0.43 (0.015) −0.027 (0.88)
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Figure Captions

Figure 1. Piecewise Linear Ballistic Accumulator (PLBA) Model Schematic:

Evidence for two choice alternatives (i.e., pre-switch correct choice, C1, and the

post-switch correct choice, C2, left and right, respectively) accumulate in time starting at

randomly and independently sampled initial evidence levels. At the time denoted

“Stimulus Change” the experimental stimulus changes, leading to a change in

accumulation drift rates after a delay (“Rate Delay”), and a change in threshold after a

separate delay (“Threshold Delay”). In the trial depicted, the post-switch correct choice

(C2 or right) is made (i.e., a correct response corresponding to the changed motion

direction).

Figure 2. Behavioral Results: a) For each participant, the proportion of correct

responses for stationary (filled circles and boxes) and switch (unfilled circles and boxes)

trials before the switch time. Trials were divided based on RT quartiles - q1 (red), q2

(light blue), q3 (dark blue), and q4 (black) and average accuracy within each quantile

plotted as a function of average RT within each quantile. The insert shows the median,

upper, and lower quartiles of accuracy scores over participants for each RT quartile. b)

For each participant, the proportion of correct responses after the switch time for

stationary and switch trials by RT quartiles. Note that “correct” was defined relative to

the second direction of motion for switch trials c) The median, upper, and lower quartiles

of the proportion of correct responses over participants for switch trials and error

responses for stationary trials. * p < .05 (Tukey test).

Figure 3. Hyper mean posterior: Posterior distributions for the hyper mean

parameters for Model 1f (Panel a) and Model 2f (Panel b). For each panel, the posterior

for the relevant hyper mean is presented (e.g., threshold parameters in the first row). The

drift rate distributions before and after the switch are shown in the middle panels.
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Horizontal bars indicate the differential drift rate between the accumulators for the

pre-switch correct (C1) and post-switch correct (C2) choices, and the mean value of this

differential is quoted in the respective title line.

Figure 4. Quality of Fit for Model Variant 1f Fit: . Panel a) For each participant,

the choice probabilities are compute for each of the 15 blocks (4-18) in the direction

determination task. Also, the mean of the individual level parameters for each participant

are drawn from the posterior, and the predicted choice probabilities are separately

computed for each of the 15 blocks, with the switch times taken from the experimental

data for that individual participant. The computed and actual choice probabilities are

plotted against each other with black (respectively grey) representing the probability of

choosing the pre-switch correct choice (C1) (respectively post-switch correct choice, C2).

Panels b-d) Comparison of experimental and computed response time distributions for

three separate participants. For each participant, data over all 15 blocks is aggregated.

Black and grey respectively show the response time distributions for choices C1 and C2

respectively. See “Quality of model fit” for further details on the aggregation. Panel e)

Comparison of participant quartile accuracy with model predictions on stationary trials.

Here, quartiles are computed from the full RT distribution for each participant for only

stationary trials. Panel f) Comparison of participant quartile accuracy and model

predictions on switch trials. Here, quartiles are derived from switch trials where responses

occur after the change of information.

Figure 5. Individual participant parameter correlations: Correlations between

lower level parameters for Model 1f, for an individual participant. The lower triangle

depicts correlations between the chain values for the given parameters, the diagonals show

the posterior in histogram form, and the upper triangle provides the numeric correlations.
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Figure 6. Population distribution estimates: The histograms are based on 100,000

samples, where for each sample a random participant then a random parameter vector

from that participant’s posterior was chosen and the rate delay (left panel) and rate

asymmetry (right panel) measures obtained.

Figure B1. Visual assessment of samples: Values of 9 randomly selected chains for the

stated parameter in Model 1f. These results indicate good chain mixing at both the

individual and hyper parameter levels. The participant presented was chosen at random.
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