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Chapter 1
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When individuals have little knowledge about a causal system and must
make causal inferences based on vague and imperfect information, their
judgments often deviate from the normative prescription of classical
probability. Previously, many researchers have dealt with violations of
normative rules by elaborating causal Bayesian networks through the
inclusion of hidden variables. While these models often provide good
accounts of data, the addition of hidden variables is often post hoc, in-
cluded when a Bayes net fails to capture data. Further, Bayes nets with
multiple hidden variables are often difficult to test. Rather than elabo-
rating a Bayes net with hidden variables, we generalize the probabilistic
rules of these models. The basic idea is that any classic Bayes net can
be generalized to a quantum Bayes net by replacing the probabilities in
the classic model with probability amplitudes in the quantum model.
We discuss several predictions of quantum Bayes nets for human causal
reasoning.

1. Background and motivation

Human causal reasoning has intrigued scholars from a number of different

fields including philosophy, cognitive science, and developmental psychol-

ogy. Traditionally, models of causal reasoning have been based on classical

probability theory. Early models were centered around the notion that peo-

ple reason about causes and effects by observing the covariation between

events [1, 2]. These models are rooted in ideas from Hume [3], who hy-
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pothesized that our sensory system infers causation through the constant

conjunction of events. While covariational models can account for many

phenomena, all models in this class have one distinct problem - the covari-

ation of events does not necessarily imply a causal relationship between

the events. For example, over the past century the number of pirates has

decreased while average global temperatures have increased. While these

two events negatively covary, no one would recommend becoming a pirate

as a solution to global warming.

Cheng and Novick [4, 5] attempted to overcome these issues by incor-

porating domain specific prior knowledge with covariational information in

their power PC theory. In their theory, people infer causal relationships to

understand observed regularities in the occurrence of events. The model

can explain why covariation sometimes implies causation and sometimes it

does not. Despite the many successes of power PC theory, some studies

have demonstrated that people’s judgments often deviate from the model’s

predictions [6, 7].

Perhaps the most successful classical approach to modeling human

causal reasoning is the one based on causal Bayesian networks (or causal

Bayes nets for short). In a causal Bayes net, causal relationships are rep-

resented by Bayes’ calculus and model predictions are typically accepted

as normative [8, 9]. This class of models has been shown to account for

causal inferences driven by observation, intervention-based, and counter-

factual processes [10], which are often difficult to discriminate with other

classical approaches. Causal Bayes nets have also been used to explain how

people learn causal relationships over time [11, 12]. Attempts have even

been made to combine more traditional approaches, such as power PC the-

ory, with causal Bayes nets [11, 13]. More generally, causal Bayes nets have

been applied to classification [14, 15], decision making [16], and structured

knowledge [17].

Despite their many successes in accounting for human causal reasoning,

recent studies have suggested that people’s judgments sometimes deviate

from the normative prescription of causal Bayes nets. In particular, people

commonly violate a condition of causal Bayes nets called the local Markov

property. This property is fundamental to causal Bayes nets and, in part,

defines the probabilisitic rules of the net. The property states that if we

have knowledge about all of the possible causes of some event A, then the

descendants (i.e., the effects) of A may tell us information about A, but

the non-descendants (i.e., noneffects) do not. Recently, several studies have

shown the people often violate the local Markov condition [18–23]. Relat-
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edly, Fernbach et al. [24] found the people often ignore relevant variables

in their causal judgments. In their study, people often ignored alternative

causes in predictive reasoning situations (i.e., reasoning about an effect

given the causes), but not in diagnostic reasoning situations (i.e., reasoning

about the causes given the effects).

One way to overcome the issues mentioned above is to extend a causal

Bayes net through the inclusion of hidden variables. These latent variables

are considered part of the mental reconstruction of a causal system by

an individual, but are never explicitly described in the experiment. Such

approaches often provide good accounts of data [20]; however, they are

difficult to conclusively test because the variables are never mentioned by

the experimenter. Further, hidden variables are typically added to a causal

Bayes net in a post hoc manner, after a basic causal Bayes net fails to

explain behavioral phenomena. As an alternative approach, we propose

generalizing causal Bayes net by altering the probabilistic rules that govern

the net. The basic ideas is to replace the classical probabilities in a causal

Bayes net with quantum ones, thereby producing quantum Bayes nets [25,

26]. In the next sections, we review causal Bayes nets in more detail and

introduce quantum Bayes nets.

2. Causal Bayes nets

A causal Bayes net represents casual relationships between variables

through a directed acyclic graph (DAG), which describes a set of random

variables and their conditional dependencies. For example, suppose you

are driving to work and run into a traffic jam. You might consider two

possible causes for the traffic jam - (1) normal rush hour traffic or (2) an

automobile wreck. In this example, the three variables - traffic jam, rush

hour, and wreck - are each represented as nodes in the DAG (see Figure

1). The edges connecting the nodes represent conditional dependencies. In

Figure 1, there is an edge between rush hour and traffic jam as well as wreck

and traffic jam. If two nodes are not connected by an edge, then they are

conditionally independent. In the example, there is no edge between wreck

and rush hour because they are assumed to be conditionally independent.

The probability of a node having a specific value is determined by a

probability function that uses the values of parent nodes as inputs. These

probabilities are defined in conditional probability tables. Consider the

traffic jam scenario where the three variables have two possible values:

J = traffic jam is present (true/false), R = rush hour traffic is present
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Fig. 1. A causal Bays net of the traffic jam scenario. There are two possible causes of

a traffic jam - rush hour traffic or a wreck. The three binary variables are represented

as a DAG with conditional probability tables.

(true/false), and W = wreck is present (true/false). The causal Bayes

net can address such questions as “What is the probability that there is a

wreck, given that there is traffic jam?” by using the formula for conditional

probability:

p(W = t|J = t) =
p(J = t,W = t)

p(J = t)

=

∑
j∈{t,f} p(J = t,W = t, R = j)∑
i,j∈{t,f} p(J = t,W = i, R = j)

(1)

where the joint probability function p(J = t,W = i, R = j) = p(J =

t|W = i, R = j)p(W = i)p(R = j) because W and R are conditionally

independent. The desired probability p(W = t|J = t) is then calculated

using the conditional probability tables in Figure 1:

p(W = t|J = t) =
(.9× .1× .7) + (.8× .1× .3)

(.9× .1× .7) + (.8× .1× .3) + (.8× .9× .7) + (.5× .9× .3)

≈ .120

(2)
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The probabilities for other questions (e.g., p(W = f |J = f)) follow similar

calculations.

A causal Bayes net obeys the local Markov property, which states that

any node in a Bayes net is conditionally independent of its non-descendants

(i.e., noneffects) given information about its parents (i.e., direct causes).

Consider a causal situation where a variable A causes B and C (repre-

sented by the DAG: B ← A→ C). The local Markov property states that

if you know A, then B provides no new information about the value of C.

As a result, we have p(C|A) = p(C|A,B). Recently, researchers have found

empirical evidence that people’s causal judgments do not always obey the

local Markov property. In particular, Rehder [20] gave participants causal

scenarios with three binary variables (e.g., an economic situation with vari-

ables described as trade deficits, interest rates, and retirement savings) and

asked them to judge the value of an unknown target variable given informa-

tion about either or both of the remaining variables. Rehder’s [20] results

showed that information about non-descendants (i.e., noneffects) influenced

judgments even when the values of direct causes were known, thus demon-

strating a violation of the local Markov property. (We provide more details

about this experiment in a section 4.1.)

Rehder [20] accounted for the observed violations of the local Markov

property by elaborating a basic causal Bayes net with an additional vari-

able that was either a shared mediator, shared disabler, or shared cause.

For example, a common cause structure where A causes B and C can be

augmented in several different ways by the inclusion of a fourth variable

D as illustrated in Figure 2. Even though this approach can provide a

reasonable account of human judgments, it is difficult to conclusively test

because participants are never queried about the latent variable D. As an

alternative to using hidden variables, we propose generalizing causal Bayes

nets to quantum Bayes nets.

3. Quantum Bayes nets

Following Tucci [25, 27] and Moreira et al. [28] our quantum Bayes nets are

constructed by replacing the classical probabilities in the conditional prob-

ability tables of a causal Bayes net with quantum probability amplitudes.

Consider a simple scenario where there are two causally related, binary

(true/false) variables A and B such that A → B. In quantum probability
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Fig. 2. Three ways to elaborate a common cause structure with an new variable D.

theory, these variables are represented by Hermitian operators:

A = atPat + afPaf (3a)

B = btQbt + bfQbf (3b)

where ai and bi are eigenvalues and Pai and Qbi are projectors onto the

corresponding eigen-subspaces. The probability of a specific value, such as

at (the notation at is shorthand for A = t), is given by Born’s rule:

p(A = t) = 〈Patψ|ψ〉 = ||Patψ||2 (4)

where ψ is a unit length state vector representing an individual’s knowledge

about the different variables.

Now, suppose we want to determine the probability that B is false given

that A is true. To answer this question, we first calculate the conditional

state vector ψat and then apply Born’s rule:

p(B = f |A = t) = 〈Qbfψat |ψat〉 = ||Qbfψat ||2. (5)

These quantum conditional probabilities are then used to define the condi-

tional probability tables associated with the net.

Consider the traffic jam scenario again. With a causal Bayes net, we can

answer questions such as “What is the probability that there is a wreck,

given that there is a traffic jam?” by calculating joint probabilities such

as p(J = t,W = i, R = j). These joint probabilities are determined

from the conditional probability tables of the causal Bayes net by writ-

ing p(J = t,W = i, R = j) = p(J = t|W = i, R = j)p(W = i)p(R = j).

In our quantum Bayes net, we take a similar approach. First, let the three

variables traffic jam, wreck, and rush hour be associated with projectors P ,

Q, and S respectively. We define joint probabilities by Born’s rule:

p(J = t,W = i, R = j) = ||Pjtψwi,rj ||2||Qwi
ψ||2||Srjψ||2 (6)
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where the conditional state is given by

ψwi,rj =
SrjQwiψ

||SrjQwi
ψ||

. (7)

If the projectors Q and S do not commute, then the conditional state will

depend on the order in which these two variables are considered so that

ψwi,rj 6= ψrj ,wi
. As a result, p(J = t|W = i, R = j) 6= p(J = t|R = j,W =

i).

Figure 3 shows a quantum Bayes net generalization of the traffic jam

causal Bayes net shown in Figure 1. The probabilities in the causal Bayes

net have been replaced by probability amplitudes in the quantum Bayes

net. These amplitudes can be related to classical probabilities by squaring

the magnitude of the amplitudes. For example, the probability that there

was a wreck is given by

p(W = t) = ||.3162eiθwt||2 = (.3162eiθwt)(.3162eiθwt)

= (.3162eiθwt)(.3162e−iθwt)

= (.3162)2ei(θwt−θwt) = .1

(8)

which is identical to the classical probability in the causal Bayes net. Note

that the term eiθwt is simply the phase of the amplitude.

When calculating the conditional probabilities of the traffic jam given

information about a wreck and rush hour, the order in which the variables

wreck and rush hour are considered is important. In the quantum Bayes

net shown in Figure 3, we assume that wrecks are always considered be-

fore rush hour. Psychologically, this means that an individual thinks about

wrecks and rush hour separately, always starting with wrecks. This is rep-

resented in the figure by the thick border on the wreck node. If we want

to switch the order and have rush hour processed before wrecks, then we

would need to define a different set of conditional probabilities. In other

words, there are two different conditional probability tables describing the

probability of the traffic jam given information about wrecks and rush hour

- one table describing the scenario where wrecks is processed before rush

hour (shown in Figure 3) and another table describing the scenario where

rush hour is considered before wrecks (not shown). The two conditional

probability tables are related to one another in a specific manner. In quan-

tum probability theory, noncommutative events (such as wreck and rush

hour) are related by a unitary transformation, which preserves lengths and

inner products.
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For the traffic jam scenario, we started with a causal Bayes net and

generalized this to a quantum Bayes net by designating a processing order

(wreck before rush hour) and replacing classical probabilities by probability

amplitudes. Note that the decision that wrecks should be processed before

rush hour was arbitrary. We could have easily chosen the reverse order

(rush hour before wrecks). That is, there are at least two different ways to

generalize the causal Bayes net in this example. In general, there will often

be multiple ways to turn a causal Bayes net into a quantum one. That is,

if you start with a well-defined causal Bayes net, there are several ways to

convert it into a quantum one because of the arbitrariness in the order of

events. This is because noncommutative events result in different condi-

tional probability tables for the same causal scenario. Thus, the behavior

of a quantum Bayes net will often be fundamentally different than that of

a causal Bayes net.
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Fig. 3. A quantum Bayes net generalization of the traffic jam scenario. The wreck

node in the DAG has a thick border to indict that it is considered before rush hour. The

tables contain probability amplitudes rather than probabilities. These amplitudes were
determined from the causal Bayes net shown in Figure 1. The term eiθn is the phase of
the amplitude associated with situation n. For example, the probability amplitude for
J = t given that W = t and R = t (first row of the bottom conditional probability table)
has a phase of eiθn where the index is n = jt|wt, rt.
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4. Predictions from quantum Bayes nets

Quantum Bayes nets with noncommutative events generate several inter-

esting predictions regarding human causal judgments. In the following sec-

tions, we discuss these predictions and the supporting empirical evidence.

4.1. Violations of the local Markov condition

The local Markov property states that any node in a DAG is condition-

ally independent of its nondescendants when its parents (direct causes) are

known. For example, in the common effect structure A → C ← B, the

two causes A and B are conditionally independent. That is, if A and B

are binary variables, then p(A = i|B = t) = p(A = i|B = f) for i ∈ {t, f}
and likewise when A and B are swapped. In a quantum Bayes net, if A

and B do not commute, then there is a dependency between these two vari-

ables such that knowing information about B influences our beliefs about

A. This dependency leads to violations of the local Markov condition be-

cause it implies p(A = i|B = t) 6= p(A = i|B = f). By the definition of

conditional probability, p(A = i|B = j) = p(A = i, B = j)/p(B = j). In a

causal Bayes net, we have p(A = i, B = j) = p(A = i)p(B = j) because A

and B are independent. As a result, p(A = i|B = j) = p(A = i) for all i, j.

In a quantum Bayes net, p(A = i, B = j) = ||PaiQbjψ||2, and if A and B

do not commute, then clearly ||PaiQbjψ||2 6= ||Paiψ||2||Qbjψ||2, leading to

violations of the local Markov condition.

Rehder [20] showed that people’s causal judgments often violate the

local Markov condition. In his experiment, participants read information

about two causal scenarios involving an unknown target variable and were

asked to choose the scenario where the target variable was more probable.

For example, in the common effect situation where A → C ← B, partici-

pants had to choose whether the target variable B was more likely to be true

in a scenario where A = t or in a scenario where A = f . A causal Bayes net

predicts that participants’ choice proportions should be equal on average

because p(B = t|A = t) = p(B = t|A = f) by the local Markov prop-

erty. However, Rehder [20] found that people tended to select the causal

scenario where A = t more often than the alternative where A = f . These

results suggest that people judged p(B = t|A = t) > p(B = t|A = f).

Rehder found similar violations of the local Markov property with other

causal structures such as common cause structures (B ← A → C) and

chain structures (A→ B → C).
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4.2. Anti-discounting behavior

Quantum Bayes nets with noncommutative events can also explain anti-

discounting behavior in causal reasoning. The term discounting is used

to describe a situation where one cause casts doubts on another cause.

For example, in the common effect structure A→ C ← B, knowledge of A

could cast doubt on the value of B such that p(B|C,A) < p(B|C). In many

causal situations discounting is normative [29]. To see why this might be

the case, consider the conditional probabilities p(B = t|C = t, A = t) and

p(B = t|C = t). It is normatively correct to judge p(B = t|C = t) > p(B =

t|C = t, A = t) because knowing A = t provides sufficient explanation for

the value of the effect C = t, thus making the other cause B redundant.

When the value of A is unknown, there is a greater chance the effect C was

brought about by B.

Rehder [20] showed that many people display anti-discounting behavior.

In his experiments, people judged an unknown target variable B as highly

likely when an alternative cause A = t was known, leading to judgments

where p(B = t|C = t) < p(B = t|C = t, A = t). Similar to violations of

the local Markov property, quantum Bayes nets explain anti-discounting

behavior by the noncommutativity of A and B. When two events do not

commute, there is a causal dependency between them. Thus knowing the

value of one cause can increase the probability of another cause having a

similar value, resulting in judgments that are opposite to those predicted

by discounting.

4.3. Order effects

If two events are noncommutative, then quantum Bayes nets naturally pre-

dict order effects. In an experiment involving the common effect scenario

A → C ← B, participants might be asked to judge p(C|A,B) where they

are given information about A before B. An order effects occurs when

an individual’s final judgment depends on the order in which the infor-

mation was presented, so that p(C|A,B) 6= p(C|B,A). Causal Bayes nets

have difficulty accounting for order effects because they are based on clas-

sical probability theory and thus obey the commutative property. That

is, p(A,B|C) = p(B,A|C) implies p(C|A,B) = p(C|B,A) by Bayes’ rule.

Classical models can be extended to account for order effects, but this in-

volves introducing extra variables such as O1, the event that A is presented

first, and O2, the event that A is presented second. With these additional

events, then it is possible to have p(C|A,B,O1) 6= p(C|A,B,O2). However,
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without a theory about O1 and O2, this model simply redescribes the em-

pirical result. Moreover, in most studies of order effects, the presentation

order is randomly determined, yielding order information such as O1 and

O2 irrelevant.

Many empirical studies have documented the importance of order in-

formation in human judgments [30]. Order effects have been observed in

a number of different domains ranging from judging the probability of se-

lecting balls from urns [31] to judging the guilt of a defendant in a mock

trial [32, 33]. Trueblood and Busemeyer [34] demonstrated that order ef-

fects also arise in causal reasoning. In their experiment, participants were

asked to make judgments about ten different causal scenarios involving a

single effect and two binary (present / absent) causes. For example, in one

scenario, participants read a description about a college sophomore, Liz,

with a 3.0 GPA and were asked to judge the likelihood that Liz will earn

an A in her social psychology class. In one condition, participants first read

information about how Liz hopes to study social work in graduate school

(the present cause) followed by information that Liz does not make any

changes to her study habits (the absent cause). In a different condition,

participants read the information in the reverse order.

The participants (N = 113) provided likelihood judgments of the effect

(e.g., Liz receiving an A in social psychology) on a 0 to 100 scale at three

different time points: (1) before reading either cause, (2) after reading one

of the causes, and (3) after reading the other cause. Participants judged

the present cause before the absent cause in a random half of the scenarios.

In the other half of the scenarios, the order of the causes was reversed. The

results of the experiment showed a large, significant order effect (p < 0.001)

across all ten scenarios.

5. Conclusions

Arguably, causal Bayes nets have been one of the most successful modeling

approaches to human causal reasoning. These models can account for a

range of findings including casual deductive and inductive reasoning across a

number of different scenarios. Further, causal Bayes nets have been applied

to other domains such as decision-making [16] and classification [14, 15, 35].

Despite their many successes, recent experiments have shown that peo-

ple’s judgments often deviate from the predictions of causal Bayes nets. In

particular, people often violate the local Markov property of causal Bayes

nets. To overcome such issues, researchers have suggested augmenting
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causal Bayes nets with additional variables [20]. These hidden variables

provide increased model flexiblity, allowing causal Bayes nets to accommo-

date a wider range of behavior. However, the addition of such variables is

often post hoc and they are difficult to conclusively test experimentally.

As an alternative, we suggest generalizing causal Bayes nets using quan-

tum probability theory. In our approach, we do not elaborate a causal Bayes

net with additional nodes and edges. Rather, we change the probabilistic

rules used to perform inference. By using quantum probabilities instead of

classical ones, we can allow for variables to be noncommutative. By using

noncommutative events in our quantum Bayes nets, we can account for a

number of different behavioral phenomena including violations of the local

Markov condition, anti-discounting behavior, and order effects.

Quantum probability theory has been successfully applied to a range of

different problems in the cognitive and decision sciences including interfer-

ence effects in perception [36], violations of the sure thing principle [37],

violations of dynamic consistency [38], conjunction and disjunction falla-

cies [39], order effects in survey questions [40], and the interference of cat-

egorization on decision-making [41]. We believe that quantum probability

theory also has great potential to explain human causal reasoning. The

results discussed in this chapter make us optimistic about this approach in

the future.
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