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Abstract
This paper examines the empirical evidence for interference effects in
perceptual experiments. It also reviews the competing interpretation of
the effects with respect to traditional cognitive models and new quantum
cognition models. The conclusion is that better experiments with more
conditions are needed to provide stronger empirical tests of the competing
models.

Recently researchers have reported evidence for ‘quantum like’ interference
effects in perception, and this evidence is then used to justify the development
of ‘quantum wave like’ representations of the experimental results (Khrennikov,
2010). What is an interference effect, what is the empirical evidence for these
effects, what is the best explanation for these effects, and what direction should
we take next? We intend to answer these four questions in this paper.

1 What is an interference effect?

Suppose we have two different perceptual judgment tasks: one labeled task A
and the response to this task is measured by J different levels of a response
variable (e.g. J = 2 binary forced choice); another is task B with K levels of
a response measure (e.g. K = 7 point confidence rating). Participants are
randomly assigned to two groups: one group of participants (group B) recieves
only task B, but the other group (group AB) receives task A followed imme-
diately by task B. (Other variations are of course possible, such as presenting
both tasks in different counterbalanced orders, but let us focus on this simple
design).

From this experiment we obtain proportions which are estimates of the re-
sponse probabilities, which includes (a) the probability of choosing level k from
the response to task B from group B-alone symobized as pg(Rp = k), (b) the
probability of first responding with level j from task A, denoted pap(Ra = j),
and (c) the probability of responding with level & from task B given that the per-
son responded with level j on the earlier task A, denoted pap(Rp = k|Ra = j).
From the latter two probability distributions we can compute the total proba-
bility for response to task B as
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K
TP(Rg=k) =Y pap(Ra=j) pas(Rp =k|Ra=j).
j=1

The interference effect for level k of the response to task B (produced by re-
sponding to task A) equals by definition

IntB(k) :pB(RB = k) — TP(RB = k‘)

Note that 1, pp(Rp = k) =1 =1 TP(Rp = k) so that 3", Intp(k) =
0. Interference effects frequently occur in particle physical experiments, such
as the findings from the famous two slit experiment. These interference effects
obtained with single particles prompted the creation of the ‘particle - wave’
theory of quantum mechanics.

First we simply ask — do these interfence effects occur in human perceptual
studies? If they do, there may be many easy explanations such as learning
effects and practice and boredom effects, ect. So below we examine two studies
in which these simple reasons to not seem to exist. The experiments reported
below using only J = 2 and K = 2 levels (e.g. a binary choice is made for each
task). In this case we can obtain only one interference effect (the other is the
negative of the first).

2 What is the evidence for interference effects?

2.1 Studies by Conte et al.

Interference effects were first found found in a series of three experiments on
perceptual judgment tasks with ambiguous figures (Conte et al., 2009).! Each
study included approximately 100 students randomly divided into two groups:
In group A-Alone, each person was given 3 seconds to make a single binary choice
concerning an ambiguous figure B (4 indicates one alternative, — indicates the
other alternative); in group BA, each person was given 3 seconds to make a
single binary choice for an ambiguous figure B followed 800 msec later by a 3
second presentation requesting another single binary choice for figure A. In the
first experiment, stimulus A was two horizontal lines of equal length placed in
a context creating an illusion that one line was longer than another; stimulus B
was two non overlapping circles of equal radius placed in a context creating an
illusion that one circle was larger than another; the task was to decide whether
the objects were equal or not. In the second experiment, stimulus A was a
Rubin type ambiguous figure, and stimulus B was a completely different Rubin
type ambiguous figure; and the task was to choose one of the two possible
interpretations of the ambiguous figure. The third experiment used a Stroop
task with animals of different sizes (e.g., big mouse, small lion) and the task

I Actually four experiments were conducted but the second and third only differed by
changing the roles of the stimuli assigned to A and B, the results were very similar, and so I
collapsed data across these two experiments.
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was to choose the larger object. The results are shown in Table 1 below. As can
be seen in this table, all three groups produced significant interference effects
(using a z test for the difference). Surprisingly the direction changed across
experiments.

Table 1: Results from Elio Conte Experiments
p(B+) p(A+|B+) p(B-) p(A+|B-) TP(A+) p(A+) z

0.5556 0.6000 0.4444 0.3750 0.5000  0.6667  2.0287
0.6207 0.7776 0.3793 0.5425 0.6884  0.5517 -2.1448
0.3529 0.1667 0.6471 0.6364 0.4706  0.6471 2.0722

N = number of observations per group

2.2 Studies by Wang, Busemeyer, Townsend

Townsend (Townsend, Silva, Spencer-Smith, & Wenger, 2000) introduced a new
paradigm to study the interactions between categorization and decision making,
which we discovered is highly suitable for investigating interference effects. On
each trial, participants were shown pictures of faces, which varied along two
dimensions (face width and lip thickness). Two different distribution of faces
were used: on average a ‘narrow’ face distribution had a narrow width and thick
lips; on average a ‘wide’ face distribution had a wide width and thin lips. The
participants were asked to categorize the faces as belonging to either a ‘good’
guy or ‘bad’ guy group, and/or they were asked to decide whether to take a
‘attack’ or ‘withdraw’ action. The participants were informed that ‘narrow’
faces had a .60 to come from the ‘bad guy’ population, and ‘wide’ faces had
a .60 chance to come from the ‘good guy’ population. The particants were
usually rewarded for attacking ‘bad guys’ and they were usually rewarded for
withdrawing from ‘good guys.” The primary manipulation was produced by
using the following four test conditions, presented across a series of trials, to
each participant. In the C-then-D condition, participants made a categorization
followed by an action decision; in the D-Alone condition, participants only made
an action decision.

The categorization-decision paradigm provides a simple test of the law of
total probability. In particular, this paradigm allows one to compare the prob-
ability of taking an ‘attack’ action obtained from the D-Alone condition with
the total probability computed from the C-then-D condition. Townsend et al.
(2000) reported chi square tests at the .05 significance level. They found that
with narrow faces, 38 out of 138 participants produced statistically significant
deviations; with wide faces, 34 out of 138 did so. These numbers are much
higher than what is expected by chance alone (using a significance level at .05
the expected number is only (.05)(138) = 6.9).

Townsend et al. did not report the direction of the interference effects, and
only reported the chi square magnitudes. To determine the direction of the
interference effects, Wang (Busemeyer, Wang, & Lambert-Mogiliansky, 2009)
conducted a replication of the Townsend study using 26 participants, but each
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participant provided 51 observations for the C-D condition for a total of 26 x51 =
1326 observations, and each person produced 17 observations for the D-alone
condition producing 17 x 26 = 442 total observations. The results are shown in
Table 2.

Table 2: Category-decision making task results

Type Face p(G) p(A|G) p(B) p(AlB) TP p(4) t P
Wide 84 35 16 52 .37 .39 5733 5716
Narrow .17 A1 83 63 59 .69 254 018

The column labeled p(G) shows the probability of categorizing the face as a
‘good guy,” the column labeled p(A|G) shows the probability of attacking given
that the face was categorized as a ‘good guy,” the column p(A|B) shows the
probability of ‘attacking’ given that the face was categorized as a ‘bad guy,’
the column TP shows the total probability, and the column p(A) shows the
probability of ‘attack’ when this decision was made alone. The results for both
faces produce some deviation between TP and p(A) but the most pronounced
deviation occurred for the narrow faces. Surprisingly, interfernce effect was
statistically significant for the narrow faces, but not for the wide faces (using a
paired t-test).

3 What are explanations for these effects?

Interference effects are simply empirical results that need a scientific explana-
tion. One cannot immediately jump to the conclusion that they are evidence for
quantum mechanisms, nor can one jump to the conclusion that they are easily
explained without quantum theory. Psychologists often like to explain results
using intuitive conceptual ideas such as ‘interference effects simply result from
the first question producing a context that affects the second question.” Maybe
this serves as a description of the results, but intuitive explanations such as this
can be formulated mathematically as either a classic or a quantum model, and
so they do not discriminate between these two theoretical competitors. The
scientific way to determine whether the data follow quantum or classical proba-
bility rules is derive formal predictions from each theory and then compare the
predictions with the data. Let us focus on teh categorization - decision making
task and consider a few standard models for this task.

Townsend et al. originally proposed a Markov model for the task: the person
starts in a state determined by the face. Then there is a probability of transiting
to the ‘good guy’ category and another probability p(B|F) = 1 — p(G|F) of
transiting to the category ‘bad guy.” On the one hand, if the state transits
to ‘good guy’ then there is a probability p(A|G) of attacking, and probability
p(W|G) of withdrawing. On the other hand, if the state transits to the ‘bad guy’
category, then there is a probability p(A|B) of attacking and another probability
p(W|B) of withdrawing. This model satisfies the law of total probability (which
is essentially the Chapman - Kolmogorov equation for Markov processes)

P(AIF) = p(G|F) - p(A|G) + p(B|F) - p(A| B)

136



and so it cannot explain the interference effect.

Another classic psychology model is the multidimensional signal detection
model used in general recognition theory (Ashby & Townsend, 1986). According
to this theory, on each trial, the presentation of a face produces a perceptual im-
age, which is represented as a point within a two multidimensional (face width,
lip thickness) perceptual space. Furthermore, each point in the perceptual space
is assigned to a ‘good’ guy (denoted G) or ‘bad’ guy (denoted B) category re-
sponse label; and at the same time, each point is also assigned a ‘withdraw’
(denoted W) or ‘attack’ (denoted A) action. Let G&W represent the set of
points in the space that are assigned to the ‘good’ guy category and the ’with-
draw’ action; and analogous definitions apply to form the sets G&A, B&W, and
B&A. Thus the probability of categorizing the face as a ‘good guy’ and tak-
ing a ‘withdraw’ action, denoted p(G&W), equals the probability of sampling
a face that belongs to the G&W set of points; the other three probabilities,
p(G&A), p(B&W), and p(B&A), are determined in an analogous manner. But
once again, the marginal probability of taking a ’defensive’ action is determined
by the law of total probability:

p(A) = p(G&A) + p(B&A) = p(G) - p(A|G) + p(B) - p(A|B).

What is a quantum model for this task? A simple one is the following: the
person starts in a state |F') determined by the face. Then there is an amplitude
(G|F) of transiting to the ‘good guy’ category and another amplitude (B|F),
HGIF)? + |(B|F)|> = 1, transiting to the ‘bad guy’ category. One the one
hand, if the state transits to the ‘good guy’ then there is an amplitude (A|G)
of transiting to the ‘attack’ action and another amplitude (W|G), |(A|G)|?
{W|G)|> = 1, of transiting to the ‘withdraw.” On the other hand, if the state
transits to the ‘bad guy’ category, then there is an amplitude (A|B) of transiting
to the ‘attack’ action and another amplitude (W|B), |(A|B)]> + (W|B)|* =1,
of transiting to the ‘withdraw.” According to quantum probability theory, the
total probability for attack (after first resolving the category) is computed the
same as before

TP = [{AG)]* - [(GIF)* + [(AIB)” - [(BIF)I”.
But the probability to attack (leaving the category unresolved) equals

p(AIF) = [(AIF)* = [(Al11F)[*

AIG)(G| + |B)(B|F)[*

AIG)(G|F) + (AIB)(B|F)|*
AIG)* (GIE) + [(AIB)* [(BIF)[*
+2- [(A|G)(GIF)(A|B)(B|F)]| - cos(6)

(
(
(
(

This model satisfies the law of total amplitude and it violates the law of total
probability. The last term is called the interference term which is used to explain
interference effects.
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Let us see how this works for the narrow face condition in which we observed
the largest interference effect. Suppose we set (A|G) = /.4 - e* (™) and then
(W|G) = v.6 = (A|B) and we set (G|F) = v/.17 and then (B|F) = /.83, then
we almost exactly reproduce all the results for the narrow face in Table 2.

We have not proven that the quantum model is right, or even that the
quantum model is better than all Markov models or all signal detection models.
We could construct other higher dimensional Markov models to fit these results.
We could also allow response boundaries to change across tasks in the signal
detection models. Also this particular simple quantum model does not fit the
wide face data quite as well as the narrow face data. The best we can do with
the data so far is say that two of the most popular traditional models for this
task (both based on classic probability theory) fail to explain the results. The
simple quantum model can fit the narrow face data well but it fits the wide
face data less well and so we could conclude that this simple quantum model is
better than the simple Markov model or the signal detection model.

4 What next?

New research needs to be conducted that generates many more conditions for
testing the competing models more rigorously. So far we can only post hoc fit
parameters to the observed data and see if the fit is reasonable. What we need
to do is make new apriori predictions for new conditions based on parameters
estimated from previous conditions. For example, in the categorization - decision
making task, we could manipulate the payoffs for attacking or withdrawing to
generate many more conditions and the use these new conditions to perform
stronger tests. Without these stronger apriori tests of the quantum or classic
models, we are simply redescribing data with model parameters.
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