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Abstract. Quantum decision models have been recently proposed to ac-
count for findings that have resisted explanation by traditional decision
theories. This paper compares quantum versus Markov models of decision
making for explaining a puzzling empirical finding from human decision
making called dynamic inconsistency — that is the failure of decision
makers to carry out their planned decisions. A large data set that em-
pirically investigated dynamic inconsistency was used to quantitatively
evaluate the quantum and Markov models. In this application, the quan-
tum model reduces to the Markov model when one of the parameters is
set to zero. The parameters of the quantum model were estimated using
Hierarchical Bayesian estimation. The distribution of the key quantum
parameter was clearly located in the quantum regime and far below zero
as predicted by the Markov model. These results provide further support
for quantum models as compared to the traditional models of decision
making.

1 Introduction

Several new quantum models of decision making have been introduced to account
for decision making paradoxes that have resisted explanations by “classical”
type of decision theories (Busemeyer, Wang, Lambert-Mogiliansky [3]; Lambert-
Mogiliansky, Zamir, Zwirn [5]; Khrennikov and Haven [4]; Pothos & Busemeyer
[6]; Yukalov & Sornette [8]). Perhaps quantum models succeed where classic
models fail simply because quantum models are more complex and have greater
model fitting flexibility (after all they are based on complex numbers). The
purpose of this paper is to examine this issue by comparing a classic type of
Markov model with a quantum model using Hierarchical Bayesian parameter
estimation methods [2]. The model comparison is based on a large experiment
designed to examine dynamic inconsistency in choices among two stage gambles
[1]. Dynamic consistency is a principle of decision making required for backward
induction when applied to decision trees. Dynamic consistency requires that a
planned course of action for a future decision is implemented as planned when
that decision is finally realized. Barkan and Busemeyer [I] observed systematic
violations of dynamic consistency, and they used a random utility version of
prospect theory to account for these findings. But more recently, Yukalov and
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Sornette argued that quantum theory can also account for these findings [9].
Therefore, in this paper, two different types of models are proposed to explain
these findings: a Markov model and a quantum decision model [6].

The paper is organized as follows. First we review the Barkan and Busemeyer
[1] experimental methods and results. Second, we describe the two models that
are being compared. Third, we present fits to the mean data for each model
to get a rough idea about how well each model accounts for the findings (but
this is not our main concern). Fourth, we present the results of the Hierarchi-
cal Bayesian parameter (which is our main concern). Finally, we draw some
preliminary conclusions from this model comparison analysis.

2 Barkan and Busemeyer (2003)

A two stage gambling paradigm was used to study dynamic consistency, which
was a modification of the paradigm used by Tversky and Shafir [7] to study the
disjunction effect. A total of 100 people participated and each person played the
17 gambles involving real money shown in Table 1 twice except for the first one.
Each gamble had an equal chance of producing a win or a loss. The columns
labeled ‘win’ and ‘loss’ indicate the money that could be won or lost for each
gamble (one unit was worth one cent). For each gamble in Table 1, the person
was forced to play the first round, and then contingent on the outcome of the
first round, they were given a choice whether or not to play the second round
with the same gamble. On each trial the person was first asked to make a plan
for the second play contingent on each possible outcome of the first play. In
other words, during the planning stage they were asked two questions: “if you
win the first play, do you plan to play the second gamble? and “if you lose
the first play, do you plan to play the second gamble?” Following the plan, the
outcome of the first gamble was revealed, and then the person was given a final
choice: decide again whether or not to play the second gamble after observing
the first play outcome. To incentivize both plan and final choices, the computer
randomly selected either the planned choice or the final choice to determine
the real monetary payoff for each trial. The final payment for the trial was then
shown to the person at the end of each trial. Participants were paid by randomly
selecting four problems from the entire set, randomly selecting either their plan
or final choice, and randomly selecting an outcome for each gamble to determine
the actual payment.

Table 1 displays the results obtained after averaging across the two repli-
cations for each person, and after averaging across all 100 participants. The
probability of planning to take the gamble is shown under the column labeled
“Plan.” There was little or no difference between the probabilities of taking
the gamble, contingent on each planned outcome of the first gamble, and so the
results shown here are averaged across the two hypothetical outcomes during the
plan. See Barkan and Busemeyer [I] for the complete results listed separately
for each contingent outcome. The probability of taking the gamble during the
final stage is shown under the column labeled “Final.” The columns under the
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label “Gamble” display the amount to win and lose for each gamble. Changes in
probabilities down the rows of the Table show the effect of the gamble payoffs
on the probability of taking the gamble. The difference between the planned and
final columns indicates a dynamic inconsistency effect. Notice that following a
win (the first 4 columns), the probability of taking the gamble at the final stage
was always smaller than the probability of taking the gamble at the planning
stage. In other words, participants changed their minds and became more risk
averse after experiencing a win as compared to planning for a win. Notice that
following a loss (the last 4 columns), the probability of taking the gamble at the
final stage was always greater than the probability of taking the gamble at the
planning stage. In other words, participants changed their minds and became
more risk seeking after experiencing a loss as compared to planning for a loss.

Table 1. Barkan and Busemeyer (2003) Experiment

Gamble Win First Play Gamble Lose First Play
Win Loss Plan Final Win Loss Plan  Final
200 220 0.46 0.34 80 100 0.36 0.44
180 200 0.45 0.35 100 120 0.47 0.63
200 200 0.59 0.51 100 100 0.63 0.64
120 100 0.70 0.62 200 180 0.57 0.69
140 100 0.62 0.54 160 140 0.68 0.69
200 140 0.63 0.53 200 160 0.67 0.72
200 120 0.74 0.68 160 100 0.65 0.73
200 100 0.79 0.70 180 100 0.68 0.80
200 100 .85 .82

3 Decision Models

3.1 Quantum Decision Model

The quantum model used to account for the dynamic inconsistency effect is
the same model that was previously developed by Pothos and Busemeyer [6]
to account for the disjunction effect. The essential idea is that the decision
maker uses a consistent utility function for plans and final decisions and always
incorporates the outcomes from the first stage into the decision for the second
stage. The planned decision differs from the final decision, because the plan is
based on a superposition over possible first stage outcomes that will be faced
during the final stage.

The two stage game involves a set of four mutually exclusive and exhaus-
tive outcomes {WT,WR, LT, LR} where for example WT symbolizes the event
‘win the first stage’ and ‘take the second stage gamble,” and LR represents
the event ‘lose the first stage’ and ‘reject the second stage gamble.” These
four events correspond to four mutually exclusive and exhaustive basis states
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{IWT),|[WR),|LT),|LR)}. The four basis states are represented in the quan-
tum model as four orthonormal basis vectors that span a four dimensional vec-
tor space. The state of the decision maker is a superposition over these four
orthonormal basis states.

|V) = Ywr - [WT) +pwr - |WR) +¢pr - |LT) + g - |LR), (1)
) |1 =1.

The initial state is represented by a 4 x 1 matrix 1; containing elements ;;
1 = W,L and j = T, R which is the amplitude distribution over the four basis
states. Initially, during the planning stage, an equal distribution is assumed so
that ¢; has elements ¢);; = 1/2 for all four entries. The state following experience
of a win is updated to ¢y which has 1/4/2 in the first two entries and zeros in
the second two. The state following experience of a loss is updated to ¥ which
has 1/v/2 in the last two entries and zeros in the first two entries. Note that

(’(/J;r/[, -z/JL) =0, and also we can write ¥; = \}QQ/JW + \}ZQ/JL.
Evaluation of the payoffs causes the initial state iy to be "rotated” by a

unitary operator U into the final states used to make a choice about taking or
rejecting the second stage gamble:

r=U" 9y
Yp=U- 9 (2)
U =exp <—i- 721' - (Hy —|—H2))
where
hw 1
\/1J{1L§V \/1#%” 0 0 10 10
—hw 0 0
2 2 — 0-101
Hy = Vithd, 14k, by L , Hy = " B . (3
0 0 e i V2 [1 0 —10
v 01 01

0 0 V1+hE /1402
The upper left corner of H; is defined by the payoffs given a win; and the
bottom right corner of H; is defined by the payoffs given a loss (this is described
in more detail below). The matrix H aligns beliefs and actions by amplifying the
potentials for states WT, LR and and attenuating potentials for states WR, LT.
The parameter v is a free parameter that allows changes in beliefs during the
decision process.

The utilities for taking the gamble or not are mapped into the parameters hy,
and hr in Hq, and the latter must be scaled between —1 to +1. To accomplish
this, the parameter hy used to define H; is defined as

2
l14+eDPw L (4)
Dy = u(G|Win) — a%,
u(GIWin) = (.50) - (xw + 2w)® + (.50) - (xw — ), if (xw — ) >0
w(G|Win) = (.50) - (xw + zw)® — (.50) - b |(xw — )|, if (zw —2L) <0

hw =

—~
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where xy represents the amount won on gamble GG. The parameter hy, used to
define H; is defined as

2
hy = -
L™ 14 e De

D, = u(G|Loss) — (—=b- %)
u(G|Loss) = (.50) - (xw — x)® — (.50) - b (xp + xp)?,if (xw — ) >0
u(G|Loss) = —(.50) - b |(zw — x1)|" — (.50) - b (zp +2)%if (zw —21) <O

()

where x, represents the amount lost on gamble G. Parameters a and b are risk
aversion and loss aversion parameters respectively. The projection matrix

TO 10
M{OT},TM. (©)
is used to map states into the response for taking the gamble on the second
stage. The probability of planning to take the second stage gamble equals

p(T|Plan) = ||M - U - 1. (7)

The probability of taking the second stage game following the experience of a
win equals

p(T|Win) =M -U - pw|[*. (®)
The probability of taking the second stage game following the experience of a
loss equals

p(T|Loss) = ||M - U - yr|. (9)
If v # 0 then we find that the quantum model produces interference that helps
account for the observed dynamic inconsistency effects:

1M U - 4q]|?

MU - (w + )| (10)

1
=, IM-U-tpw + MU - |

1 1

o MU dwl P - IM U -
1

o Wy U M) (MU -y
1

+2~(w2~U~M)~(M~U~wW).

In sum, this quantum model has only three parameters: a and b are used to
determine the utilities; the third is the parameter v for changing beliefs to align
with actions. These three parameters were fit to the 33 data points in Table 1
(each gamble played twice expect for the first), and the best fitting parameters
(minimizing sum of squared error) are a = .7101, b = 2.5424, and v = —4.4034.
The risk aversion parameter is a bit below one as expected, and the loss param-
eter b exceeds one, as it should be. The model produced an R? = .8234 and an
adjusted R? = .8120 (the adjusted R-square includes a penalty that depends on
the number of model parameters fit to the data).
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3.2 Markov Decision Model

The Markov model is a special case of the quantum model when the key param-
eter, v, is set to zero. In this case (v = 0) there are no interference effects:

_ . T o Ul()
U—exp(—z-2-H1>—{OUJ, (11)

1 |T-U
M U -y = \/2{ 0 1],
1 0
(Wl -U - M) - (M -U -yr) = 0.

So if we force v = 0, then the quantum model no longer produces 'quantum like’
interference effects. Instead, the choice probability for the plan is an equal weight
average of the two choice probabilities produced after either winning or losing
the first stage: p(T'|plan) = (.50) - p(T|Win) + (.50) - p(T'|loss), where p(T'|Win)
is defined by Equation B with v = 0 and p(T'|loss) is defined by Equation
with v = 0. This model was fit to the results in Table 1 by using only two
parameters a and b for the quantum model (with v = 0), and it produced an
R? = 7854 and an adjusted R? = .7787 which still falls below the adjusted R?
for the three parameter quantum model, and so the 7 parameter is making a
useful contribution in this application.

In summary, comparing the two key models on the basis of fitting the means,
we find that the quantum model with v # 0 produces an increase in adjusted
R-square over the Markov model when the two models are fit to the means.
However, the next section provides a Hierarchical Bayesian estimation of the
key quantum parameter to determine whether or not its posterior distribution
lies near zero or within a quantum regime.

4 Hierarchical Bayesian Model Comparison

4.1 Log Likelihood for Each Person

The Bayesian model estimation was computed using the 33 choice trials ob-
served from each person. On each trial, a gamble was presented and the per-
son made both a plan for an outcome and a final choice after observing that
same outcome. For person i on trial ¢ we observe a data pattern X; (t) =
7T (t) ,27R (), 2T (t) ,2RR ()] defined by z;; (t) = 1 if event (4,j) occurs
and otherwise zero, where T'T is the event “planned to take gamble and finally
did take the gamble,” T'R is the event “planned to take gamble but changed
and finally rejected gamble.” RT is the event “planned to reject the gamble but
changed and finally did take the gamble” and RR is the event “planned to reject
gamble and finally did reject the gamble.” The data for the 33 trials from a sin-
gle person is represented by the 33 tuple X; = [X; (1), ..., X; (33)] . Finally, the
data for all 100 participants is defined by the 4 x 100 tuple X = [X7, ..., Xn=100] -
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Two allow for possible dependencies between a pair of choices within a single
trial, an additional memory recall parameter was included in each model. For
both models, it was assumed that there is some probability m, 0 < m < 1 that
the person simply recalls and repeats the planned choice for the final choice, and
there is some probability 1 — m that the person forgets or ignores the planned
choice when making the final choice. After including this memory parameter,
the prediction for each event becomes

prr = p(T|plan) - (m -1+ (1 —m) - p(T| final)) (12)
prr = p(T|plan) - (1 —m) - p(R|final)

prr = p(R|plan) - (1 —m) - p(T|final)

prr = p(R|plan) - (m -1+ (1 —m) - p(R|final))

Using these definitions for each model, the log likelihood function for the 33
trials from a single person can be expressed as

InL (X, ijk -In (pjx) (13)

In L (X ZlnL

The predictions p;; used in the formulas shown above depend on the four
model parameters 6; = [a;, b;, m;,;] for person i. Therefore, the likelihood of
the data for person i given the model parameters is then equal to L (X;]0;) =
exp (In L (X;)).

4.2 Grid Analysis of Log Likelihood Function

Each model has four parameters 6; = (a,b,m,~y), a risk aversion parameter, a
loss aversion parameter, a memory parameter, and a choice model parameter.
The first three parameters were common across both models and they only
differ with respect to the fourth parameter. We used a fine grid of 21 points per
parameter.

€ [.400, 45, ..., .85,.90, .95, ..., 1.35, 1.40] (14)
€ [.50, .60, . 1.40,1.50,1.60,...2.40,2.50], (15)
€ [.00, .05, ..., .45, 500, .55, ..., .95, 1.00] (16)
€ [-5.00, —4.57 iy —.5,0.0,.5, ...,4.5,5.00] (quantum). (17)

This grid generated 214 combinations, and we evaluated the log likelihood func-
tion for each model at each combination. These ranges were chosen on the basis
of past fits of these models. The risk aversion parameter ranges from risk aversion
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to risk seeking; the loss aversion parameter ranges across loss insensitivity to loss
sensitivity; and the memory parameter ranges from no recall to perfect recall.
The key v parameter ranges from positive to negative values for the quantum
model. Define [a;, b;, m;, vi] = [0i1,0i2, 0i3, 0ia] = 0; as the 4-tuple of parameters
from a single person i, and define 6§ = [61,..,6xy] as the 4 - N tuple of the four
parameters for N = 100 participants.

4.3 Hierarchical Parameters

The hierarchical parameters are used to determine the distribution of ; across
individuals. Define m = [m, w2, 73, m4] as a 4-tuple containing four hierarchical
parameters, where 7; is the hierarchical parameter used to determine the distri-
bution of ;; across the individuals 7. Each hierarchical parameter was evaluated
by a grid of 19 points m; € [.05,.10,...,.90,.95] which generated a grid of 19%
combinations.

Define r () as the prior distribution over the hierarchical parameters. We
assumed an independent uniform so that r () = 197%. Define ¢(6;|m;) as the
prior distribution over model parameter 6; given the hierarchical parameter ;.
For this prior we assumed an independent binomial distribution across the 21
values of each model parameter

4

21 _
q (bs|m) = H 0ijlmi) s q(0ij = Ox|m;) = ( A ) e (1— )R (8)

The joint distribution of data and parameters then equals

=100

p(m, 0,X) H q (0i|m) - L (Xi6:) . (19)

We marginalize over 6 to obtain the joint distribution of hierarchical parameters
and data

:Zp(ﬂ',H,X). (20)
0

Finally, we obtain the posterior distribution over the hierarchical parameters

p(m, X)
> p(mX)

The posterior distribution for each hierarchical parameter is plotted in Figure
1 shown below. The top left distribution indicates that the risk aversion hierar-
chical parameter distribution is located below .50, which implies that the mean
of the risk aversion parameter equals .6518, indicating somewhat strong risk
aversion, which is a common finding in the literature. The top right distribution
indicates that the loss aversion hierarchical parameter distribution is located

p(m|X) = (21)
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above .50, which implies that the mean of the loss aversion equals 1.97, higher
sensitivity to losses, which is also a common finding in the literature. The bot-
tom left distribution indicates that the hierarchical memory parameter is slightly
above .50, which implies that the mean of the memory parameter equals .5932,
so that a little more than half the time people were simply recalling their pre-
vious choices. The bottom right distribution shows the hierarchical distribution
for the key quantum parameter. According to the Markov model, this should
be located around .50 to produce a mean value equal to zero. Contrary to this
expectation, the entire distribution lies below .50, which implies a mean value
equal to —2.67.

0.4 0.2
> 0.3 > 0.15
e 5
302 I 01
<] o
o o
0.1 0.05
0 0
0 0.5 1 0 0.5 1
Risk Aversion Loss Aversion
1 0.8
0.8
> > 0.6
% 0.6 % 04
S 04 IS
o o
0.2 02
0 0
0 0.5 1 0 0.5 1
Recall Gamma

Fig. 1. Posterior distribution of hierarchical parameters of the quantum decision model

5 Conclusions

This paper presents the first hierarchical Bayesian estimation of the parameters
used in a quantum decision model. A classic Markov model is a special case of
the quantum model when the key quantum parameter is zero. The posterior
distribution of the key quantum parameter was entirely below the value expected
by the Markov model, providing strong evidence that the parameter lies within
a quantum regime. Of course, it is much too soon to conclude that the quantum
model is always superior to a Markov model. The models need to be compared
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using other data sets from various other experiments. Even within the same
data set, various other prior distributions need to be examined. Further, with
the two stage gambling paradigm, the learned model could be used to predict
the next result with cross-validation methods. But the surprising lesson learned
from this model comparison exercise was that contrary to expectations, there is
clear evidence for the quantum model parameter.
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