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This chapter examines the empirical evidence for interference effects in
psychological experiments. It also reviews the competing interpretations of
these effects with respect to traditional cognitive models and new quantum
cognition models.

Human behavior is not deterministic. If the same person is asked the
same question on two different occasions, then there is some reasonable
chance that the answers are inconsistent, even when there is no known in-
tervention to account for this change. Behavior seems to vary across people,
and within a person, it varies across occasions in ways that are far from
perfectly predictable. Consequently psychologists need to use some type of
probability theory to account for this indeterministic behavior. What kind
of probability theory is best for modeling human behavior?

Almost all previous theoretical work in psychology has been developed
along the lines of Kolmogorov’s theory.1 According to this theory, proba-
bilities are assigned to events represented as sets from a sample space that
form a Boolean algebra. While this has certainly proved to be a useful the-
ory, the Boolean logic that lies at its foundation may be too restrictive to
fully account for human behavior. Another probability theory is based on
the intuitionistic logic of Brouwer.2 According to this theory, probabilities
are assigned to events represented by open sets from a topology. This the-
ory relaxes the complementation axiom of Boolean algebra, and provides
one way to generalize Kolmogorov’s theory. A third probability theory is
based on quantum principles.3 According to this theory, probabilities are
assigned to events represented as subspaces of a vector space. This theory
relaxes the distributive axiom of Boolean algebra, which provides another
way to generalize Kolmogorov’s theory. This chapter explores the latter
approach.

Why consider quantum probability for human behavior? One good
reason is the pervasive finding of interference effects in psychology.4 An
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interference effect is a violation of the law of total probability, which is
a theorem of Kolmogorov theory derived from the distributive axiom. In
other words, interference effects suggest that the distributive axiom may
be violated in psychology. The finding of interference effects in particle
physics was the primary reason for the construction of quantum theory by
physicists from the beginning. What is an interference effect, what is the
empirical evidence for these effects, what is the best explanation for these
effects?

The purpose of this chapter is to answer these three questions, but
before we do, we should note that there are two different lines of research
using quantum theory in psychology. One is to develop a quantum physical
model of the brain,5 and the other is to develop models that are called
‘quantum like’4 or generalized quantum6 or quantum structural7 models.
The latter are not quantum physics models of the brain, but instead they are
mathematical models of human behavior derived from principles abstracted
and extrapolated from quantum theory. This article is only concerned with
the latter type of theory.

0.1. What is an interference effect?

Suppose we have two different judgment tasks: task A with J different lev-
els of a response variable (e.g. J = 2 binary forced choice); and task B with
K levels of a response measure (e.g. K = 7 point confidence rating). Par-
ticipants are randomly assigned to two groups: group A receives only task
A, but group BA receives task B followed immediately by task A. (Other
variations are of course possible). We obtain estimates of the response
probabilities for (a) p(A = j) := the probability of choosing level j from
the response to task A from group A-alone, (b) p(B = k) := the probability
of first responding with level k from task B, and (c) p(A = j|B = k) := the
probability of responding with level j from task A given that the person
responded with level k on the earlier task B. From the latter two probabil-
ity distributions we can compute the total probability for response to task
A as

pT (A = j) =
K∑
k=1

p(B = k) · p(A = j|B = k).

The interference effect for level j of the response to task A (produced by
responding to task B) equals by definition

δA(j) = p(A = j)− pT (A = j).
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Note that
∑J
j=1 p(A = j) = 1 =

∑J
j=1 pT (A = j) so that

∑
j δA(j) = 0.

Given these definitions, we can write

p(A = j) = pT (A = j) + δA(j).

Do these interference effects, δA(j), occur in human psychology experi-
ments? If they do, how do we explain them?

0.2. What is the evidence for interference effects?

Below we summarize several lines of research that provide evidence for
interference effects. The first three lines described below provide direct
tests for interference effects, and the remaining three lines provide indirect
tests of interference.

0.2.1. Perception of ambiguous figures

Interference effects were first investigated in the perceptual domain by
Elio Conte.8 Approximately 100 students randomly were divided into two
groups: One was given 3 seconds to make a single binary choice (plus vs.
minus) concerning an ambiguous figure A, and the other group was given 3
seconds to make a single binary choice for an ambiguous figure B followed
800 msec later by a 3 second presentation requesting another single binary
choice (plus vs. minus) for figure A. The results produced significant inter-
ference effects. For example, for one type of testing stimuli, when test B
preceded test A, the following results were obtained (p(B+) := probability
of plus to figure B, p(A + |B+) := probability of plus to figure A given
plus to figure B, pT (A+) := total probability of plus to figure A, p(A+) :=
probability of plus to figure A alone):

p(B+) p(A+ |B+) p(A+ |B−) pT (A+) p(A+)
.62 .78 .54 .69 .55

The interference effect equals δA(+) = p(A = +) − pT (A = +) =
.55− .69 = −.14, and δA(−) = +.14.

0.2.2. Categorization - decision making

Townsend9 and later Wang10 use a paradigm to study the interactions be-
tween categorization and decision making, which is highly suitable for inves-
tigating interference effects. On each trial, participants are shown pictures
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of faces, which vary along two dimensions (face width and lip thickness).
Two different distribution of faces were used: on average a ‘narrow’ face
distribution had a narrow width and thick lips; on average a ‘wide’ face dis-
tribution had a wide width and thin lips. The participants were asked to
categorize the faces as belonging to either a ‘good’ guy (G) or ‘bad’ guy (B)
group, and/or they were asked to decide whether to take a ‘attack’ (A) or
‘withdraw’ (W) action. The participants were informed that ‘narrow’ faces
had a .60 probability to come from the ‘bad guy’ (B) population, and ‘wide’
faces had a .60 chance to come from the ‘good guy’ (G) population. The
participants were usually (.70 chance) rewarded for attacking ‘bad guys’
and they were usually (.70 chance) rewarded for withdrawing from ‘good
guys.’ The primary manipulation was produced by using the following two
test conditions, presented across a series of trials, to each participant. In
the C-then-D condition, participants made a categorization followed by an
action decision; in the D-Alone condition, participants only made an action
decision.

The categorization-decision paradigm provides a simple test of the law
of total probability. In particular, this paradigm allows one to compare the
probability of taking an ‘attack’ (A) action obtained from the D-Alone con-
dition with the total probability computed from the C-then-D condition.
Townsend et al. (2000) reported significant deviations from the law of total
probability using chi square tests, but they didn’t examine the direction
of these effects. The later study by Wang found a significant interference
effect for the narrow faces and a smaller effect in the same direction for the
wide faces. For example, using the narrow face data, when categorization
preceded decisions, the following results were obtained (p(G) := probability
categorize face as good guy, p(A|G) := probability attack given face cate-
gorized as good guy, p(A|B) := probability of attack given face categorized
as a bad guy, pT (A) := total probability to attack, p(A) := probability of
attack when making only a decision):

p(G) p(A|G) p(A|B) pT (A) p(A)
.17 .41 .63 .59 .69

Surprisingly, the probability of attacking without categorization was
even higher than the probability of attacking after categorizing the face as
a bad guy. The interference effect equals δ(A) = p(A)−pT (A) = .69−.59 =
+.10, and δA(W ) = −.10.
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0.2.3. Disjunction effect in decision making

Perhaps the earliest report of interference effects is the disjunction effect.11

The original studies were designed to test a rational axiom of decision theory
called the sure thing principle.12 According to the sure thing principle, if
under state of the world X you prefer action A over B, and if under the
complementary state of the world ˜X you also prefer action A over B, then
you should prefer action A over B even when you do not know the state
of the world. Tversky and Shafir experimentally tested this principle by
presenting students with a two stage gamble, that is a gamble which can
be played twice. At each stage the decision was whether or not to play a
gamble that has an equal chance of winning $200 or losing $100 (the real
amount won or lost was actually $2.00 and $1.00 respectively). The key
result is based on the decision for the second play, after finishing the first
play. The experiment included three conditions: one in which the students
were informed that they already won the first gamble, a second condition
in which they were informed that they lost the first gamble, and a third in
which they didn’t know the outcome of the first gamble. If they thought
they won the first gamble, the majority (69%) chose to play again; if they
thought they lost the first gamble, then again the majority (59%) chose
to play again; but if they didn’t know whether they won or lost, then the
majority chose not to play (only 36% wanted to play again). Tversky and
Shafir replicated this experiment using both a within subject design (the
same person made choices under all conditions separated by a week) as well
as with a between subject design (different groups of participants received
known and unknown conditions).

This disjunction effect can be interpreted as an interference effect for
the following reason. Define G as the event of playing the second gamble,
W is observing a win on the first gamble, and L is observing a loss on the
first gamble. The player can choose G or Ḡ alone (without observing the
outcome of the first game); or the player can observe the outcome (W,L)
first and then chooseG or Ḡ. Then p(G) is the probability of gambling under
the unknown condition, and pT (G) = p(W ) · p(G|W ) + p(L) · p(G|L) is the
probability of choosing to gamble after observing the first play outcome.
The total probability is a weighted average of the two known conditions, and
so it requires that the probability of playing under the unknown condition
must lie in between the two known probabilities. The results show that the
probability for the unknown condition is below the smaller probability for
the known condition. Therefore we have p(G) < p(G|L) < pT (G), which



December 15, 2010 17:54 World Scientific Review Volume - 9in x 6in BuseTrueCh2

6 J. S. Trueblood

implies a negative interference effect.
This result is cited quite frequently, but the result remains controversial.

Note that the gamble is actually quite attractive and it has a very positive
expected value. Barkan and Busemeyer conducted a very similar study
using the same gamble and under conditions in which participants chose
to play the gamble a second time under three conditions: planning for a
win or planning for a loss or without planning at all for the outcome of
the first gamble; but the participants always preferred to play the gamble
about 70% of the time and no disjunction effect was found.13 Another
study by Kuhberger et al. attempted a direct replication of Tversky and
Shafir’s gambling study, but they failed to find a disjunction effect:14 if
told that they won the first gamble, 60% chose to play again; if told that
they lost the first gamble, 47% chose to play again; and if the first play was
unknown, then 47% again choice to play again. There was no difference
between the known loss condition and the unknown condition.

Another paradigm, using a prisoner dilemma game, was used by Shafir
and Tversky15 to test the sure thing principle. In all PDs, the two players
need to decide independently whether to cooperate with the other player
or to defect against the other. The player who stands to gain the most
is the one who defects against a cooperating player. Mutual cooperation
yields the second-highest payoff for each player. Mutual defection gives the
players a payoff lower than that gained from mutual cooperation. Finally,
the player who cooperates with a defective player gains the least. No matter
what the other player does, an individual player always gains more when
he defects; this makes defection the dominant option when the game is
played only once against a given opponent (one-shot PD). A total of 80
participants were involved and each person played 6 PD games. Shafir and
Tversky found that when a player was informed that the opponent defected,
then 97% of the time they defected; if the player was informed that the
other opponent cooperated, then 84% of the time they defected; but if they
didn’t know what the opponent chose then only 63% chose to defect.

Several other studies were conducted to replicate and extend the dis-
junction effect using the prisoner dilemma game. The first was done by
Rachel Croson who used 80 participants, each playing 2 PD’s, and half
were required to predict or guess what the opponent would do and half were
not asked to make this prediction.16 In the first of Croson’s experiments,
the following results were obtained (p(GD) := probability guess opponent
defected, p(D|GD) := probability player defects given opponent predicted
to defect, p(D|GC) := probability player defects given opponent predicted
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to cooperate, pT (D) := total probability to defect, p(D) := probability to
defect when opponent’s action is unknown):

p(GD) p(D|GD) p(D|GC) pT (D) p(D)
.54 .68 .17 .45 .23

The interference effect equals δ(D) = p(D)−pT (D) = .23− .45 = −.22,
and δ(C) = +.22. The cooperation rates were much higher in this study
as compared to the Shafir and Tversky (1992) study.

A later study by Li and Taplan also found evidence for disjunction
effects but much weaker than Shafir and Tversky’s original study.17 Most
recently, however, a very robust disjunction effect and replication of Shafir
and Tversky (1992) was obtained by Matthew.18 A total of 88 students
played 6 PD games for real money against a computer agent. When told
that the agent defected, then 92.4% defected; when told that the agent
cooperated, then 83.6% defected; but when the agent’s action was unknown
only 64.9% defected.

0.3. What are explanations for these effects?

Interference effects are empirical results that need a scientific explanation.
One cannot immediately jump to the conclusion that they are evidence for
quantum mechanisms. Nor can one jump to the conclusion that interfer-
ence effects are explained psychologically without quantum theory. The
same ‘psychological’ explanation can be formulated probabilistically as ei-
ther a Kolmogorov or a quantum model, and so it does not discriminate
between these two theoretical competitors. The scientific way to determine
which is best is to derive formal predictions from each theory and then
compare the predictions with the data. The model that best predicts the
experimental results is taken as the best explanation. Below we compare
some competing explanations for these interference effects. We initially fo-
cus on the categorization - decision experiment, but the same models also
apply to all of the findings summarized earlier.

0.3.1. Markov model

Markov models are commonly used in cognitive psychology. They pro-
vide the basis for random walk and diffusion models of decision making,19

stochastic models of information processing,20 and they are also the basis
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for multinomial processing tree models of memory retrieval21 and memory
recognition.22

Let us first consider a very simple Markov model for the categorization
- decision making experiment proposed by Townsend et al. (2000). The
person has to infer whether the face comes from the ‘good’ or ‘bad’ category
(represented by two mutually exclusive Markov states |B〉 and |G〉, respec-
tively), and given this inference, the person can intend to take an attack or
withdraw action (represented by two mutually exclusive Markov states |A〉
and |W 〉, respectively). The person starts in a state |S〉 determined by the
face. Then φ(B|S) is the probability of transiting to inference state |B〉,and
φ(G|S) = 1 − φ(B|S) is the probability of starting in inference state |G〉.
These probabilities form an initial distribution

φ0 =
[
φ(B|S)
φ(G|S)

]
.

The distribution φ0 deserves some additional comment and interpretation.
According to the Markov model, at the beginning of a trial, the person
enters exactly one of two states, the person either enters state |B〉 or enters
state |G〉 and the person does not enter both states. The probabilities in
φ0 represent the theorist’s uncertainty about the person’s specific unknown
state, and φ0 is used to make predictions about the exact state at that
moment.

If the player starts out inferring the face is a ‘bad guy’ |B〉, then the
player can transit to the attack action state |A〉 with probability φ(A|B)
or transit to the withdraw action state |W 〉 with probability φ(W |B). If
the player starts out inferring the face is a ‘good guy’ |G〉, then player
can transit to the attack action |A〉 with probability φ(A|G) or transit
to the withdraw action |W 〉 with probability φ(W |G). These conditional
probabilities form a 2× 2 transition probability matrix

T =
[
φ(A|B) φ(A|G)
φ(W |B) φ(W |G)

]
.

The sum across rows within each column must equal one for a transition
matrix. This is required to guarantee that the probabilities sum to one after
making a transition. After the transition from inference to action occurs,
then the probability distribution across action states equals

φ1 = T · φ0 (0.1)[
φ(A|S)
φ(W |S)

]
=
[
φ(A|B) · φ(B|S) + φ(A|G) · φ(G|S)
φ(W |B) · φ(B|S) + φ(W |G) · φ(G|S)

]
.
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This is the Chapman Kolmogorov equation for Markov models. The Chap-
man - Kolmogorov equation is simply a restatement of the law of total
probability expressed in terms of the Markov states.

The probabilities in φ1 deserve some further comment. As Equation 0.1
shows, there are two paths starting from the initial state |S〉 traveling to
the final state |A〉. One is the path |S〉 → |B〉 → |A〉 that passes though
the ‘bad guy’ inference, and the other is the path |S〉 → |G〉 → |A〉 that
passes through the ‘good guy’ inference. The person can travel along one or
the other but not both of these paths, because they are mutually exclusive.
The person ends up either in the |A〉 state or the |W 〉 state and not both.
The particular action state that the person enters determines the choice
response for an action. So the final probability distribution φ1 represents
the theorist’s uncertainty about the person’s final action state, and these
probabilities are used by the theorist to predict the person’s choices.

The preceding Markov model assumed that the states were directly ob-
servable. Now we explore the possibility that the states are mapped into
responses by some ‘noisy’ process that allows measurement ‘errors.’ When
measurements are noisy, it becomes important to introduce a distinction
between states and observed responses. To do this, the categorization re-
sponse is denoted by a variable C that can take on labels b or g for choosing
the ‘bad’ or ‘good’ category respectively; and the choice response for an ac-
tion is denoted by a variable D that can take on labels a or w for the choice
of attack and withdraw actions, respectively.

The noisy measurement is achieved by introducing a probabilistic re-
sponse map from states to responses. This is done by employing probabilis-
tic state to response mappings. The following two matrices map inference
states to category responses

Cb =
[
C(b|B) 0

0 C(b|G)

]
, Cg =

[
C(g|B) 0

0 C(g|G)

]
.

For example, if the person enters the inference state |B〉, there is a probabil-
ity C(b|B) of categorizing the face as ‘bad’ and C(g|B) that it is categorized
as good. The next two matrices map action states to choices of each action

Da =
[
D(a|A) 0

0 D(a|W )

]
, Dw =

[
D(w|A) 0

0 D(w|W )

]
.

For example, if the person is in the state |A〉, then the person may actu-
ally choose to attack with probability D(a|A), but the person may instead
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choose to withdraw with a probability D(w|A). To guarantee that the cat-
egorization response probabilities sum to unity, we require that Ci contains
probabilities such that Cb + Cg = I where I is the identity matrix; to re-
quire the action response probabilities to sum to unity, we require that Dj

contains probabilities such that Da + Dw = I. This model reduces to the
original Markov model without noise when we set C(b|B) = 1 = C(g|G) and
D(a|A) = 1 = D(w|W ). It is convenient to define a row vector L =

[
1 1
]

which used to sum across states.
Using these definitions, we can compute the following response proba-

bilities. The probability that a face is categorized C = i equals

p(C = i) = L · Ci · φ0.

If we observe the C = i category response, then the probability distribution
across inference states is revised by Bayes rule to become

φi =
[
φ(B|C = i)
φ(G|C = i)

]
=

1
p(C = i)

· Ci · φ0

=

[
φ(B)·C(i|B)
p(C=i)

φ(G)·C(i|G)
p(C=i)

]
.

As the above equation shows, the categorization response changes the dis-
tribution across inference states. The probability of choosing action D = j

given that we observe a categorization response C = i equals

p(D = j|C = i) = L ·Dj · T · φi.

Therefore, the probability of choosing category C = i and then choosing
an action D = j equals the matrix product

p(C = i,D = j) = L ·Dj · T · Ci · φ0 (0.2)

The probability that the face is first categorized as a ‘bad guy’ and then
the person attacks equals

p(C = b,D = a) = L ·Da · T · Cb · φ0.

The probability that the face is first categorized as a ‘good guy’ and then
the person attacks equals

p(C = g,D = a) = L ·Da · T · Cg · φ0.
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The probability of attacking under the decision alone condition equals

p(D = a) = L ·Da · T · φ0 (0.3)

= L ·Da · T · I · φ0

= L ·Da · T · (Cb + Cg) · φ0

= L ·Da · T · Cb · φ0 + L ·Da · T · Cg · φ0

= p(C = b,D = a) + p(C = g,D = a)

= pT (D = a).

In summary, this model satisfies the law of total probability, which of course
fails to explain the interference effects found with the categorization deci-
sion making task.

This Markov model also applies to all of the other findings as follows.
For the ambiguous figure results, we use states |B〉 and |G〉 to represent the
plus or minus perceptions to figure B, and we use |A〉 and |W 〉 to represent
the plus or minus perceptions to figure A. For the two stage gambling game,
we use states |G〉 and |B〉 to represent the ‘win’ or ‘losses’ inference about
the first play of the gamble, and we use |A〉 and |W 〉 to represent the ‘play’
or ‘don’t play’ actions. For the PD game, we use states |B〉 and |G〉 to
represent the ‘defect’ or ‘cooperate’ inference about the opponent, and we
use |A〉 and |W 〉 to represent the ‘defect’ or ‘cooperate’ strategy for the
player. But this Markov model fails to explain any of the interference
effects found in these other paradigms.

In fact, the matrix Equations 0.2 and 0.3 hold for any finite hidden
Markov system. We could assume n inference states and m actions states
for arbitrary n and m numbers of states. So these equations are not limited
to a model with only two inference states and two action states with which
we began. As long as the same initial state φ0 and same transition matrix
T is applied for both conditions (whether the inference state is measured
or not), then the Markov model fails to account for the interference effects
for all of these experiments.

0.3.2. Quantum model

The original explanation for the disjunction effect was a psychological expla-
nation based on the failure of consequential reasoning under the unknown
conditions. Shafir and Tversky (1992) explained the finding in terms of
choice based on reasons as follows. Consider for example, the two stage
gambling problem. If the person knew they won, then they had extra
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house money with which to play and for this reason they chose to play
again; if the person knew they had lost, then they needed to recover their
losses and for this other reason they chose to play again; but if they didn’t
know the outcome of the game, then these two reasons did not emerge into
their minds. Why not? If the first play is unknown, it must definitely be
either a win or a loss, and it can’t be anything else. So the mystery is why
these reasons don’t emerge for the unknown condition. If choice is based on
reasons, then the unknown condition has two good reasons. Somehow these
two good reasons cancel out to produce no reasons at all! This sounds a
lot like wave interference where one wave is rising and the other is falling.
From this it follows that there is an interest in quantum models.

The psychological explanation given by Shafir and Tversky (1992) is
quite consistent with a formal quantum mechanism for the effect. Buse-
meyer, Wang, and Townsend (2006) originally suggested a quantum inter-
ference interpretation for the disjunction effect, and since that time, various
quantum models for this effect have been proposed, each one ultimately ex-
plaining the effects by interference terms, which includes Pothos and Buse-
meyer (2009), Khrennikov and Haven (2009), Aerts (2009), Yukalov and
Sornette (2009) and Accardi, Khrennikov and Ohya (2009).

Busemeyer et al. (2006) started with the following simple quantum
model.1 Consider the category - decision making experiment once again. As
in the Markov model, the person has to infer whether the face is a ‘bad’ or
‘good’ guy (represented by two mutually exclusive quantum states |B〉 and
|G〉, respectively), and given this inference, the person may intend to attack
or withdraw (represented by two mutually exclusive quantum states |A〉
and |W 〉, respectively). Quantum theory replaces transition probabilities
such as φ(A|B) with transition amplitudes such as 〈A|B〉 and φ(A|B) =
|〈A|B〉|2 .

The person starts in a state |S〉. Then there is an amplitude 〈B|S〉
of transiting to the ‘bad guy’ inference and another amplitude 〈G|S〉 of
transiting to the ‘good guy’ inference, |〈B|S〉|2 + |〈G|S〉|2 = 1. These
amplitudes form an amplitude distribution (wave function) across inference
states

ψ0 =
[
〈B|S〉
〈G|S〉

]
.

This amplitude distribution ψ0 deserves more interpretation. If the face
1In quantum terminology, this model treats the inference as an observable operating
within a two dimensional Hilbert space, and the action is another incompatible observable

operating within the same Hilbert space.
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is known to come from the ‘bad guy’ population, then 〈B|S〉 = 1, and
the initial state corresponds exactly to state |B〉; if the face is known to
come from the ‘good guy’ population, then 〈G|S〉 = 1, and the initial state
corresponds exactly to state |G〉. But if 1 > |〈B|S〉| > 0 and 1 > |〈G|S〉| >
0, then the person is not exactly in state |B〉, and the person is not exactly
in state |G〉 either. Furthermore, the person is not in both states at the
same time. The person is exactly in an indefinite or superposition state
represented by the wave function ψ0. In the latter case, at a single moment
in time, there is some potential to generate either one of the two mutually
exclusive categorization responses. But only one of these potentials can
become actualized to create an observed response.

On the one hand, if the state starts in the ‘bad guy’ inference, then there
is an amplitude 〈A|B〉 of transiting to the attack action and another ampli-
tude 〈W |B〉 of transiting to the withdraw action, |〈A|B〉|2 + |〈W |B〉|2 = 1.
On the other hand, if the state starts in the ‘good guy’ inference, then there
is an amplitude 〈A|G〉 of transiting to the attack action and another ampli-
tude 〈W |G〉 of transiting to the withdraw action, |〈A|G〉|2 + |〈W |G〉|2 = 1.
These transition amplitudes form a unitary matrix

U =
[
〈A|B〉 〈A|G〉
〈W |B〉 〈W |G〉

]
.

Normally in quantum theory, the matrix U is require to be unitary: U†U =
I = UU†. This is required to guarantee that the transformed amplitude
distribution remains unit length, which is needed to guarantee that the
final probabilities sum to one. The orthogonality restriction of the unitary
matrix implies the equality

〈A|B〉∗〈A|G〉 = −〈W |B〉∗〈W |G〉. (0.4)

If we square the magnitudes of the entries of the unitary matrix, we obtain
the transition probability matrix

T =

[
|〈A|B〉|2 |〈A|G〉|2

|〈W |B〉|2 |〈W |G〉|2

]

In order to satisfy the unitary property, this transition matrix must be
doubly stochastic, that is both rows and columns sum to one. Double
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stochasticity implies that

|〈W |B〉|2 = 1− |〈A|B〉|2 = |〈A|G〉|2 (0.5)

|〈A|G〉|2 = |〈W |B〉|2

|〈A|B〉|2 = |〈W |G〉|2 .

Equations 0.4 and 0.5 are a very strong constraints on this simple quantum
model.

The final amplitude distribution across the action states is equal to

ψ1 = U · ψ0[
〈A|S〉
〈W |S〉

]
=
[
〈A|B〉〈B|S〉+ 〈A|G〉〈G|S〉
〈W |B〉〈B|S〉+ 〈W |G〉〈G|S〉

]
.

The amplitude distribution ψ1 across action states requires some comment.
The amplitude 〈A|S〉 represents the direct path |S〉 → |A〉 from the initial
state to the attack state. This path amplitude can be broken down by
the theorist as the sum of the two other path amplitudes. One is the
path |S〉 → |B〉 → |A〉 from the initial state to the ‘bad guy’ inference
and then to the attack; and the other is the path |S〉 → |G〉 → |A〉 from
the initial state to the ‘good guy’ inference and then to the attack. But
we cannot conclude from this mathematical decomposition that the person
passes through one or the other and not both of these two paths to get to
the attack conclusion. Also one cannot conclude that the person travels
both paths. Instead the person can travel directly from the initial state to
the attack conclusion. Also the final amplitude distribution across action
states is an indefinite or superposition state. One cannot conclude that the
person ends up definitely in the |A〉 state or the |W 〉 state and not both
states immediately before the choice is made. Nor is the person exactly
in both states. At that moment, both actions have some potential to be
expressed, and the choice actualizes one of these potentials to produce the
observed response.

If the person is exactly in the ‘bad guy’ state, then 〈B|S〉 = 1 and the
probability that the person attacks equals |〈A|B〉|2 ; if the person is exactly
in the ‘good guy’ state, then 〈G|S〉 = 1 and the probability that the person
attacks equals |〈A|G〉|2 . For the indefinite or superposed state, the action
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probabilities equal

|〈A|S〉|2 = |〈A|B〉〈B|S〉+ 〈A|G〉〈G|S〉|2

=
∣∣〈A|B〉|2|〈B|S〉|2 + |〈A|G〉|2|〈G|S〉

∣∣2 + δ1,

δ1 = 2 · Re[〈A|B〉〈B|S〉〈A|G〉〈G|S〉]

|〈W |S〉|2 = |〈W |B〉〈B|S〉+ 〈W |G〉〈G|S〉|2

=
∣∣〈W |B〉|2|〈B|S〉|2 + |〈W |G〉|2|〈G|S〉

∣∣2 + δ2

δ2 = 2 · Re[〈W |B〉〈B|S〉〈W |G〉〈G|S〉].

The probabilities from this quantum model can violate the law of total
probability because of the cross product interference terms, δ1 and δ2, gen-
erated by squaring the sum. The orthogonality restriction from the unitary
matrix (Eq. 0.4) implies that

δ1 = 2 · Re[〈A|B〉〈A|G〉〈B|S〉〈G|S〉]
= −2 · Re[〈W |B〉〈W |G〉〈B|S〉〈G|S〉] = −δ2.

It is useful to express the complex numbers in complex exponential form:

〈A|B〉∗〈A|G〉 = |〈A|B〉〈A|G〉| · ei·θ

〈W |B〉∗〈W |G〉 = − |〈A|B〉〈A|G〉| · ei·θ

〈B|S〉∗〈G|S〉 = |〈B|S〉〈G|S〉| · eiω

Then we obtain the well known formula for the quantum interference

δ1 = 2 · |〈A|B〉〈A|G〉〈B|S〉〈G|S〉| · cos(θ + ω) = −δ2.

To account for the categorization - decision results obtained with the
narrow faces, we can set 〈B|S〉 =

√
.8 to approximate the observed initial

probability of categorizing the narrow face as a bad guy (the actual value
was .83 for the narrow faces), and we can set 〈A|B〉 =

√
.60 = 〈W |G〉, and

〈W |B〉 =
√
.40·e−i·1.2313 and 〈A|G〉 =

√
.40·ei·1.2313 to closely approximate

the probabilities for actions conditioned on each categorization, while at
the same time satisfying the requirements for a unitary matrix. Then the
predicted probability of attacking under the decision alone condition equals
|〈A|S〉|2 = .69, which closely approximates the results for the narrow face
condition of the categorization - decision making experiment.

The problem that we run into when we apply this model to the PD game
results of Shafir and Tversky is that the observed transition probabilities
violate double stochasticity, and therefore they cannot be generated from
a unitary matrix. For the PD game, define C = b as the observation that
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the opponent has defected, C = g as the observation that the opponent
has cooperated, and D = a as the defect response by the player. Then the
results show that p(D = a|C = b) = .97 and p(D = a|C = g) = .84 but
the unitary property requires the latter to be equal to 1 − p(D = a|C =
b) = .03 rather than .84. The unitary property is also violated by the two
stage gambling game results of Tversky and Shafir. The perception results
from Conte also violate the unitary property. The unitary property holds
pretty well for the narrow face data obtained in the categorization - decision
experiment by Wang, but it was violated by the wide face data. In short,
the unitary property implied by the two dimensional model does not hold
up well for this two dimensional model. To address this problem, Pothos
and Busemeyer (2009) developed a four dimensional quantum model. But
here we present a newer and much simpler two dimensional model.

0.3.3. Quantum noise model

On the one hand, the two dimensional Markov model failed because the
interference effects violate the law of total probability. On the other hand,
the two dimensional quantum model failed because the observed transition
matrices violate double stochasticity. An interesting idea is to combine the
two classes of models and form a quantum Markov model.27 The following
is a new model inspired by – but much simpler than – the Accardi et al.
(2009) model. It assumes that the noisy measurements are used to assess
the hidden quantum states.

Once again consider the analysis of the categorization - decision exper-
iment. As before, |S〉 is the persons initial state, and we assume that there
are two mutually exclusive states of inference: infer that the face belongs
to the ‘bad guy’ category |B〉, or infer that the face belongs to the good
guy category |G〉. The initial amplitude distribution is again represented
by

ψ0 =
[
〈B|S〉
〈G|S〉

]
.

The initial state represents the amplitude distribution at the very beginning
of the choice process, immediately after instructions. From these states
the person can transition to two different intended actions |A〉 and |W 〉
representing attack and withdraw. The initial amplitude distribution over
inferences evolves for some period of time to produce a final amplitude
distribution ψ1over actions, which is used to make a choice. The final
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amplitude distribution is a unitary transformation of the initial distribution

ψ1 =
[
〈A|S〉
〈W |S〉

]
= U · ψ0.

The unitary transformation is defined as

U =
[
〈A|B〉 〈A|G〉
〈W |B〉 〈W |G〉

]
=
[ √

u
√

1− u · ei·θ
−
√

1− u · e−i·θ
√
u

]
,

for 0 ≤ u ≤ 1, which satisfies the unitary property U†U = UU† = I

required to retain unit length following transformation.
According to this model, if the person starts out in state |B〉, then the

person passes through one line of thought (with amplitude
√
u) that leads

to one reason for attacking; if the person starts out in state |W 〉, then the
person passes through a different line of thought (with amplitude

√
1− u

) that leads to a different reason for attacking; but if the person starts out
in a superposition of these two states, then a direct path from |S〉 → |A〉 is
taken in which the two lines of thought can constructively or destructively
interfere (depending on the parameter θ).

The present model assumes that the quantum states are not directly
observable because of measurement ‘errors’ or ‘noise.’ As before, it is im-
portant to distinguish between states and observed responses. Once again,
the categorization response is denoted by a variable C that can take on
labels b or g for choosing the ‘bad’ or ‘good’ category respectively; and the
choice response for an action is denoted by a variable D that can take on
labels a or w for the choice of attack and withdraw actions, respectively.

The choices are represented by measurement operators28 that map
states in observed responses. The two noisy measurement operators for
categorizing as ‘bad guy’ or ‘good guy’ are defined by

Cb =
[√

C(b|B) 0
0

√
C(b|G)

]
, Cg =

[√
C(g|B) 0

0
√
C(g|G)

]
.

For example, if the person is in the inference state |B〉, then the person
may actually categorize the face as ‘bad’ with probability C(b|B), but the
person may instead categorize the face as good with probability C(g|B).
The two noisy measurement operators for choosing to attack or withdraw
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actions are defined by

Da =
[√

D(a|A) 0
0

√
D(a|W )

]
, Dw =

[√
D(w|A) 0

0
√
D(w|W )

]
.

For example, if the person is in action state |A〉, then the person may choose
to attack with probability C(a|A), but instead the person may choose to
withdraw with probability C(w|A). This model reduces to the original
quantum model without noise when we set C(b|B) = 1 = C(g|G) and
D(a|A) = 1 = D(w|W ). These two measurement operators form a complete
set because they satisfy the completeness property C†bCb + C†gMg = I and
D†aDa +D†wDw = I needed to guarantee that the choice probabilities sum
to one across actions.

Using this definitions, we can compute the following response probabil-
ities. The probability that a face is categorized C = i equals

p(C = i) = ||Ci · ψ0||2.

If we observe the C = i category response, then the amplitude distribution
across inference states is revised by a quantum version of Bayes rule to
become

ψi =
[
ψ(B|C = i)
ψ(G|C = i)

]
=

1√
p(C = i)

· Ci · ψ0

=

ψ(B)·
√
C(i|B)√

p(C=i)

ψ(G)·
√
C(i|G)√

p(C=i)

 .
As the above equation shows, the categorization response changes the am-
plitude distribution across inference states. The probability of choosing
action D = j given that we observe a categorization response C = i equals

p(D = j|C = i) = ||Dj · U · ψi||2.

Therefore, the probability of choosing category C = i and then choosing
an action D = j equals the matrix product

p(C = i,D = j) = ||Dj · U · Ci · ψ0||2 (0.6)

The probability that the face is first categorized as a ‘bad guy’ and then
the person attacks equals

p(C = b,D = a) = ||Da · U · Cb · ψ0||2.
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The probability that the face is first categorized as a ‘good guy’ and then
the person attacks equals

p(C = g,D = a) = ||Da · U · Cg · ψ0||2.

The probability of attacking under the decision alone condition equals

p(D = a) = ||Da · U · ψ0||2 (0.7)

= ||Da · U · I · ψ0||2

= ||Da · U · (Cb + Cg) · ψ0||2

= ||Da · U · Cb · ψ0 +Da · U · Cg · ψ0||2

= p(C = b,D = a) + p(C = g,D = a) + δA

6= pT (D = a).

In summary, this model can violate the law of total probability, and it
can explain the interference effects found with the categorization decision
making task.

To see how this works let us consider the two example applications where
the original quantum model failed. First consider the two stage gambling
game. In this case, we define |B〉 := inferring a loss on the first play, |G〉 :=
inferring a win on the first play, |A〉 choosing to play the second gamble,
|W 〉 choosing to not to play the second gamble, C = g represents being told
that you won the first round, C = b represents being told that you lost the
first round, and D = a represents choosing to play the gamble again on the
second round. Setting C(b|B) = 1 = C(g|G), D(a|A) = 1, D(a|W ) = .28,
u = .57, and θ = .79 · π exactly reproduces all of the results for the two
stage gambling game reported by Tversky and Shafir (1992).

Next consider the results for the PD game. In this case, we define
|B〉 := inferring opponent defects, |G〉 := inferring opponent cooperates,
|A〉 player chooses to defect, |W 〉 player chooses to cooperate, C = g rep-
resents being told that opponent chose to cooperate, C = b represents
being told that opponent chose to defect, and D = a represents player
choosing to defect. Because the player is informed exactly about the op-
ponent’s decision, we simply set C(b|B) = 1 = C(g|G). If we also set
D(a|A) = 1, D(a|W ) = .68, u = .61, and θ = π, then this model pro-
duces the following results. if the opponent is known to defect, then the
probability that the player defects equals p(D = a|C = b) = .88; if the
opponent is known to cooperate, then the probability that the player de-
fects p(D = a|C = g) = .81; and if the opponent’s action is unknown, we
set 〈I1|S〉 = 〈I2|S〉 = 1√

2
to produce a probability of defection equals to
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p(A1) = .69. This approximates the results obtained in the PD game. This
model can also exactly fit both the wide and narrow face data from the
categorization - decision task as well as the results obtained with the am-
biguous figures (details not shown here). In short, this model can perfectly
fit many of the results demonstrating interference effects. But it does not
provide a simple way to test double stochasticity. Also it has too many
parameters relative to the number of data points produced by these experi-
ments and so it is difficult to empirically test. New experiments are needed
that generate more conditions and data points to test the model.

0.4. What next?

Quantum explanations for interference effects found in psychology have al-
ready made one important contribution. Quantum theory has provided a
common way to understand a number of paradoxical findings that have
never been connected before, nor even mentioned together in the same ar-
ticles. By examining interference effects and providing a common quantum
account of these effects, quantum theorists have organized a new and gen-
eral and uniform way to think about all these seemingly unrelated problems.
This is a step forward. We think that these initial promising steps made
toward understanding all of the various interference effects are encouraging
other researchers to begin examining quantum models in other applications
in psychology.

What is needed next is stronger tests of these models. The applications
reviewed above involve too many free parameters and too little data. For
the simplest models – the two state Markov model and the two state quan-
tum model – it was still possible to test the key properties (law of total
probability and double stochasticity, respectively). Unfortunately, when
these properties were tested, they failed for the simple models. The more
complex models can account for the findings in a post hoc way, but they
have not provide a strong empirical test with such small data sets. New
experiments on interference effects are needed with many more conditions
to provide more data points for testing these models.

Quantum probability is considered by many to be a very specialized
probability theory that is only useful in Physics. We believe there are
useful applications of this theory outside of Physics.29 One of the founding
fathers of quantum theory, Neils Bohr,30 speculated on this possibility and
so did David Bohm.31 In fact, quantum and Markov probability theories
are highly similar. Both Markov and quantum theories are defined by
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states and transition operators, and the only difference is the final way
that the probabilities are computed. There are two key differences. Markov
theory operates directly on probabilities and therefore it obeys the law of
total probability but it does not have to obey the doubly stochastic law.
Quantum theory operates on amplitudes and probabilities are obtained by
squaring the amplitudes, consequently it does not have to obey the law of
total probability but instead it must obey the law of double stochasticity.
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