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Abstract. The mathematical principles of quantum theory provide a general 
foundation for assigning probabilities to events. This paper examines the 
application of these principles to the probabilistic inference problem in which 
hypotheses are evaluated on the basis of a sequence of evidence (observations). 
The probabilistic inference problem is usually addressed using Bayesian 
updating rules. Here we derive a quantum inference rule and compare it to the 
Bayesian rule. The primary difference between these two inference principles 
arises when evidence is provided by incompatible measures. Incompatibility 
refers to the case where one measure interferes or disturbs another measure, and 
so the order of measurement affects the probability of the observations. It is 
argued that incompatibility often occurs when evidence is obtained from human 
judgments.  

1   Introduction 

Quantum theory was originally invented by physicists to explain findings that 
seemed paradoxical from the classical physical view point. Later Dirac (1930) and 
Von Neumann (1932) provided an axiomatic foundation for quantum theory, and by 
doing so, they discovered that it implied a new type of logic and probability theory. 
Consequently, there are now at least two general theories for assigning probabilities to 
events: classic theory and quantum theory [7], [10], [16].  

An important application that should be addressed by any general probability 
theory is the problem of inference – that is, the evaluation of hypotheses on the basis 
of evidence. Inference is a general problem that arises in many applications. For 
example, a detective must infer the person who committed a crime on the basis of 
facts collected from the crime scene and testimony of witnesses. A physician must 
infer the cause of an illness based on medical symptoms and medical tests. A 
commander must infer the location of an enemy on the basis of sensory data and 
intelligence reports. According to classic probability theory, Bayes rule is used to 
model this kind of probabilistic inference. Quantum probability theory provides an 
alternative model, and the purpose of this paper is to compare models of probabilistic 
inference based on Bayesian versus quantum principles.  

The evidence used to make an inference is based on observations and 
measurements. It is well known that the key point upon which Bayesian and quantum 
models differ is the concept of compatibility of the measures. If all the measures are 
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compatible, then Bayesian and quantum models always agree and the two models 
assign exactly the same probabilities. Differences only arise when incompatible 
measures are involved. It is argued that incompatibility can arise when measurements 
are based on human judgments which interfere with each other and change depending 
on order of presentation [3].  

There already exists a mature literature on hypothesis testing in the area of 
quantum information theory [8], [9], [10]. This literature is concerned with the 
problem of determining which of several quantum states describe the true state of a 
quantum system by performing measurements. The main concern of this literature is 
designing tests and analyzing the probability of incorrectly deciding which quantum 
state is the true state. This differs from the present goal which is to describe the 
revision of a quantum state on the basis of new evidence.   

There is also a growing literature concerned with quantum networks that are 
comparable to Bayesian networks [13], [15], [17].  This literature is concerned with 
efficient algorithms for computing quantum probabilities from graphical 
representations of relations. However, the present paper examines more directly the 
effect of employing sequences of compatible and incompatible measurements on 
revision of quantum probabilities.  

New research is beginning to appear on quantum models of human probability 
judgments [2], [6], [11].  This work focuses on explaining some paradoxical findings 
about the way humans make judgments. In contrast, the goal of this paper is to 
develop a general model that uses human judgments as sources of evidence for 
making coherent and rational inferences.  

2   Probabilistic Inference Task 

To begin, we limit our discussion to finite sets (although the number of elements 
can be very large). The ideas can be extended to infinite sets, but the latter requires 
more careful handling of convergence and so it is simpler to start with the finite case.  

It is assumed that there is a finite set of m hypotheses labeled {h1, …, hi, …, hm}. 
For example, these might be suspects for a crime, or causes of an illness, or possible 
locations of an enemy, or intentions of an opponent.   

Evidence is obtained from a sequence of measurements that are taken across time,  
t = 1,2, …, T. Different types of measures may be selected at each time step. The 
notation X(t) = xt symbolizes that the measure selected at time t produced outcome xt. 
For example, a physician may first measure the patient’s temperature (producing a 
degree on a digital thermometer), then ask the patient to judge how much pain he or 
she experiences (providing a rating on a one to ten scale), and finally ask the patient 
how long the pain lasts (evaluated in minutes).  Each measure is assumed to produce 
one of a finite set of outcomes.   

The task is to determine the probability of each hypothesis after observing a 
sequence of outcomes: 

p( hi | X(1) = x1, X(2) = x2, …, X(t) = xt) for i = 1,…,m; t = 1, …, T. (1) 



2.1   Classic Probability  

Classic probability theory [12] assigns probabilities to events defined as subsets of 
a sample space, S, which is the universal set. Suppose the cardinality of S equals N. 
Then we can define N elementary events S = {z1, z2, …, zN}. Two elementary events 
can be joined by union to form a new set. Joining elementary events this way, one can 
generate a family of 2N sets (including the empty set).  This forms a Boolean algebra 
of sets. 

Classic probability postulates the existence of a probability function p that assigns 
a probability, 0 ≤ p(zi) ≤ 1 to each elementary event. The probability of an arbitrary A 
event is then defined by p(A) = ∑ i∈A  p(zi). Classic probabilities must satisfy  
p(S) = ∑ i ∈ S p(zi) = 1 for the universal event and p(∅) = 0 for the null event. 

For purposes of comparison, it is worthwhile to describe classic probability theory 
using vectors and projection operations. First, we can define an N × 1 vector |zj〉 
corresponding to elementary event zj that has all zeros except for a one in row j. Then 
we can define a projector for event zj as the outer product Pj = |zj〉〈zj|, which is an  
N × N matrix full of zeros except a one on the diagonal for row j.  The projectors 
corresponding to different elementary events are orthogonal, Pi⋅Pj = 0 for i ≠ j, and 
they are complete in the sense that  ∑ j Pj = IN, where IN is the identity matrix. 

The projector for an arbitrary event A then equals P(A) = ∑ j∈ A Pj.  We can 
represent the probability function by an N × 1 vector of probabilities 

π = ∑ j∈ S p(zi)⋅|zj〉 . (1) 

This vector π can be interpreted as the state of the classic probability system. This 
is called a mixed state. The probability of an event A is determined by the projection 
of the mixed state followed by a sum of the projection: 

p(A) =  1⋅P(A)⋅π, with 1 = [ 1 1 … 1] . (2) 

In particular, the probability of the event corresponding to elementary event |zj〉 is 
simply  

p(zj) = 1⋅Pjπ . (3) 

Also note that p(S) = 1⋅P(S)⋅π = 1⋅I⋅π = 1.0 and p(∅) = 1⋅P(0)⋅π = 1⋅0⋅π = 0.  

2.2   Quantum Probability 

Quantum probability theory [5] assigns probabilities to events defined as subspaces 
of a Hilbert space, H, which is the universal space. Suppose the dimensionality of H is 
N.  Then we can define N orthonormal basis vectors,  
{|z1〉, …, |zi〉, …, |zN〉} where each basis vector  represents a one dimensional subspace 
(corresponding to an elementary event). Two basis vectors can be joined to form a 
subspace that spans the two vectors. Joining basis vectors this way, one can form a 
family of 2N subspaces (including the zero point).  As discussed in the concluding 
section, this forms a partial Boolean algebra of events. 



In quantum theory, each basis vector |zj〉 corresponds to a projector Pj = |zj〉〈zj| that 
projects unit length vectors in H onto this basis vector. This forms a complete set of 
orthogonal projectors Pi⋅Pj = 0 for i ≠ j, and ∑ j Pj = IN.  The projector corresponding 
to the join of basis vector |zi〉 with basis vector |zj〉 equals Pi + Pj. This implies that 
each event A is also defined by a projector P(A) = ∑ j∈ A Pj. Note that the projector for 
H is P(H) = ∑ j∈ H Pj = IN (the identity operator) and the projector for the null event is 
P(∅) = 0 (the zero operator). 

Quantum probability postulates the existence of a state vector, denoted here as |Z〉, 
which is a unit length vector in the Hilbert space.  This state vector can be expressed 
in terms of coordinates of the basis states as follows: 

|Z〉 = IN ⋅|Z〉 = (∑ j∈ H |zj〉〈zj|)⋅|Z〉 = ∑ 〈zj|Z〉|zj〉  = ∑ αj⋅|zj〉 . (4) 

The coefficient, αj = 〈zj|Z〉 is called probability amplitude corresponding to basis 
state |zj〉.  The state vector |Z〉 is a superposition of the basis states.  

The probability of an event A is determined by the squared length of the projection 
of the state vector onto the subspace that defines the event: q(A) = || P(A)|Z〉||2.  In 
particular, the probability of the event corresponding to basis state |zj〉 is simply  

q(zj) = || Pj|Z〉||2 = ||(|zj〉〈zj|⋅|Z〉||2 = ||αj⋅|zj〉||2 = ||αj||2 . (5) 

The analogy between classic and quantum theory can be made even clearer if we 
work directly with the coordinates of the superposition state.  According to quantum 
theory, the coordinates of the state vector |Z〉 with respect to the |zi〉 basis forms an  
N × 1 complex vector α. Also with respect to this basis, the projector Pj = |zj〉〈zj| is 
simply an N × N matrix full of zeros except a one on the diagonal for row j. Finally, 
the probability for the event A is simply  

q(A) = || P(A)|Z〉||2 = ∑ j∈A ||αj||2 . (6) 

2.3   Conditional Probabilities 

Both classic and quantum probabilities revise (collapse, reduce) the state after 
observing an event. First consider state revision given by the conditional probability 
rule of classical probability theory. Suppose the vector π describes the probability 
distribution across the elementary events prior to a measurement.  The probability 
distribution across the elementary events following an observation of event A equals 
the projection onto event A followed by normalization: 

π|A = (P(A)⋅π) / (1⋅P(A)⋅π) . (7) 

Normalization guarantees that the elements of the new state vector sum to unity. 
All subsequent conditional probabilities are then computed from projections on the 
new mixed state π|A. Specifically, the probability of a new event B given A is 

p(B|A) = 1⋅P(B)⋅(π|A) = 1⋅(P(B)⋅P(A)⋅π)/(1⋅P(A)⋅π) . (8) 

Next consider the state revision given by Luder’s rule [14] of quantum probability 
theory. Suppose the vector |Z〉 describes the superposition state prior to a 



measurement.  The state following an observation of event A equals the projection 
onto event A followed by normalization: 

|Z|A〉 = P(A)|Z〉 / ||P(A)|Z〉|| . (9) 

Normalization guarantees that the new state vector has length equal to one. 
Probabilities of new events, conditioned on already observing event A, are then 
computed from projections on the new state vector |Z|A〉. The coefficients for this 
conditional state vector, with respect to the |zj〉 basis, are defined by  

α|A = P(A)⋅α / ||P(A)⋅α|| . (10) 

For example the probability of a new event B given A is 

q(B|A) = ||P(B)⋅(α|A)||2 = ||P(B)⋅P(A)α||2/||P(A)⋅α||2 . (11) 

2.4   Inference Based on a Single Measurement 

Suppose T=1 and one wishes to make an inference based on a single measure 
denoted X. Classic and quantum theories provide the same answers to this problem. 
First we present the classic Bayesian inference model (using projection operators), 
followed by the quantum inference model.  

Suppose the measure X can take n different values, with x representing an arbitrary 
outcome. When we combine each possible outcome x of X with each of the m possible 
hypotheses, we obtain N = m⋅n unique elementary joint events such as (hi ∧ x). (Later 
this number will change.)  The classic inference process starts with initial distribution 
over these N events represented by the N × 1 vector π. The prior probability is given 
by 

p(hi) =  1⋅P(hi)⋅π , (12) 

where P(hi) is a N × N matrix with ones on the diagonal corresponding to the rows 
matching hypothesis hi. 

The marginal probability equals 

p(X(1) = x) = 1⋅P(X(1) = x)⋅π , (13) 

where P(X(1)=x) is a N × N matrix with ones on the diagonal corresponding to the 
rows matching X(1)= x. The new state after observing X(1) = x becomes 

π|x = P(X(1) = x)⋅π / (1⋅P(X(1) = x)⋅π) . (14) 

If hypothesis hi is known to be true then the new state is 

π|hi = P(hi)⋅π / (1⋅P(hi)⋅π) . (15) 

Finally, the likelihood is then given by 

p(X(1) = x| hi) = 1⋅P(X(1) = x)⋅(π|hi) . (16) 

Bayes inference rule follows from the definition of conditional probability: 
 



p(hi | X(1) = x1) = 1⋅P(hi)⋅(π|x) 
 

= 1⋅P(hi)⋅P(X(1)=x)⋅π / (1⋅P(X(1)=x)⋅π) 

                  = 1⋅P(X(1)=x)⋅P(hi)⋅π / (1⋅P(X(1)=x)⋅π) . (17) 

Substituting π|hi = P(hi)⋅π / (1⋅P(hi)⋅π) into the above 
 

p(hi | X(1) = x1) = (1⋅P(hi)⋅π)⋅(1⋅P(X(1)=x)⋅(π|hi)) / (1⋅P(X(1)=x)⋅π) 

                = p(hi)⋅[ p(X(1) = x | hi) / p(X(1)=x) ] . (18) 

Next we examine the quantum inference model for a single measure.  We begin 
with an initial state defined on an N dimensional Hilbert space. This Hilbert space can 
be represented by N = m⋅n basis vectors such as |hi ∧ x〉 representing the elementary 
event (hi ∧ x). (Later this dimension will change.) The initial state can be represented 
by the N × 1 coordinate vector α with respect to this basis.  

The prior probability of hypothesis hi equals 

q(hi) = ||P(hi)⋅α||2 . (19) 

The marginal probability of event X(1) = x is 

 q(X(1) = x) = ||P(X(1) = x)⋅α||2 . (20) 

After observing first observation, X(1)=x, the initial state α changes to a new state  

α|x = P(X(1)=x)⋅α / ||P(X(1) = x)⋅α||, and ||α|x|| = 1 . (21) 

Suppose we assume that hi is true. Then the conditional state given hi equals  

α|hi = P(hi)⋅α /||P(hi)⋅α || and ||α|hi|| = 1 .  (22) 

If we assume that hi is true, then the conditional probability of observing X(1) = x 
equals 

q(X(1) = x | hi) = ||P(X(1) = x)⋅(α|hi)||2 . (23) 

Finally, quantum inference follows from Luder’s rule [14] 
 

q(hi | x)  = ||P(hi)⋅(α|x)||2  
 

= ||P(hi)P(X(1) = x)⋅α||2 / ||P(X(1) = x)⋅α||2  

= ||P(X(1) = x)P(hi)⋅α||2 / ||P(X(1) = x)⋅α||2 . (24) 

Substituting P(hi)⋅α = (α|hi)⋅||P(hi)⋅α|| yields 
 

q(hi | x)  = ||P(hi)⋅α||2⋅||P(X(1)=x)⋅(α|hi)||2 /||P(X(1)=x)⋅α||2  

                            = q(hi) ⋅ [ q( X(1) = x | hi) / q( X(1) = x) ] . (25) 

This is identical to Bayes rule if the classic probability function p replaces the 
quantum probability function q. 



3   Representation of Measurements 

3.1   Change of Basis Vectors  

A key issue arises from the idea of using a Hilbert space representation of events.  
One can choose different sets of basis vectors for spanning a Hilbert space. Two 
different sets of basis vectors are related by a unitary transformation, denoted U with 
UU† = U†U = IN : 

        

                    {|z1〉 , …, |zi〉 , …, |zN〉} = {U|z’1〉 , …,U|z’i〉 , …, U|z’N〉} , 

{|z’1〉 , …, |z’i〉 , …, |z’N〉} = {U†|z1〉 , …,U†|zi〉 , …, U†|zN〉} . (26) 

A state vector can be expressed with respect to either one of these two sets of basis 
vectors: 

 

           |Z〉 = IN ⋅|Z〉 = (∑ j∈ H |zj〉〈zj|)⋅|Z〉 = ∑ 〈zj|Z〉|zj〉 = ∑ αj⋅|zj〉 ,   

     = IN ⋅|Z〉 = (∑ j∈ H |z’j〉〈z’j|)⋅|Z〉 = ∑ 〈z’j|Z〉|z’j〉 = ∑ βj⋅|z’j〉 . (27) 

The coordinates of the state vector |Z〉 with respect to the |zi〉 basis forms a N × 1 
complex vector α, and the probability of elementary event zi is ||αi||2. The coordinates 
of |Z〉 with respect to the |z’i〉 basis forms a N × 1 complex vector denoted β,  and the 
probability of elementary event zi is ||βi||2. These coordinates are related by a unitary 
matrix U = [uij] = [〈z’i|zj 〉] = [〈zi|U|zj〉]:  β = U⋅α, and α = U†⋅β. 

By changing basis vectors, we change the nature of the set of elementary events 
under consideration. In particular, the |zi〉 basis is needed to define elementary events 
{z1, z2, …, zN}, and the projector |zj〉〈zj| defines event zj; but |z’i〉 is needed to define 
elementary events {z’1, z’2, …, z’N}, and the projector |z’j〉〈z’j| defines event z’j.  In 
other words, if we ask questions about the elementary events {z1, z2, …, zN}, then we 
need to use the α coordinates to compute probabilities, and ||αi||2 determines the 
probability of elementary event zi; but if we ask questions about the elementary events 
{z’1, z’2, …, z’N}, then we need to use the β coordinates to compute probabilities and 
||βi||2 determines the probability of elementary event z’i. 

3.2   Compatibility of Measures 

The concept of compatibility is unique to quantum theory.  It is concerns the 
possible disturbing effect of one measure, say X, on another measure, say Y. We could 
take these measurements in two different orders: X first followed by Y, or Y first 
followed by X.  If the probability of the two events produced by the two 
measurements does not depend on the order, then these two measures are compatible; 
otherwise they are incompatible [5].  Human judgments frequently exhibit order 
effects, hence the concern for compatibility. 

One measure is labeled X and it yields an event such as A = (X=x) where x is one 
of the n possible outcomes produced by X.  We assume that these n(X) outcomes 
correspond to a set of n(X) orthogonal projectors  



{P(X = x1),…,P(X = x),…,P(X = xn(X))} operating on the N dimensional Hilbert space 
that forms a complete set so that   

P(X = x)⋅P(X=y) = 0 for x ≠y, ∑ x P(X = x) = IN .  (28) 

Suppose the A = (X=x) event uses the |zj〉 set of basis vectors for its definition and 
corresponds to the projector  

P(X = x) = ∑ j∈ A |zj〉〈zj| . (29) 

The other measure is labeled Y and it yields an event such as B = (Y = y) where y is 
one of the n(Y) possible outcomes produced by Y.  Again we assume that these n(Y) 
outcomes correspond to a set of n(Y) orthogonal projectors 
{P(Y=y1),…,P(Y = y),…,P(Y = yn(Y))} that forms a complete set so that  

P(Y = x)⋅P(Y=y) = 0 for x ≠y, ∑ y P(Y = y) = IN . (30) 

The B = (Y=y) event requires the |z’j〉 set of basis vectors for its definition and 
corresponds to the projector 

P(Y = y) = ∑ j∈ B |z’j〉〈z’j| = ∑ j∈ B U†|zj〉〈zj|U . (31) 

The probability of the A followed by B sequence is 

||P(Y = y) ⋅ P(X = x) ⋅ |Z〉||2 . (32) 

The probability of the opposite sequence of events is  

 ||P(X = x) ⋅ P(Y = y) ⋅ |Z〉||2 . (33) 

Two measures are said to be compatible if the probability distribution over the joint 
outcomes from the two measures does not depend on the order of measurement; 
otherwise they are incompatible.   

These two sequences give the same probability for any arbitrary state vector |Z〉 
and any pair of outcomes x and y if and only if the commutator is always zero: 

[P(X = x) ⋅ P(Y = y) − P(Y = y) ⋅ P(X = x)] = 0 . (34) 

If the commutator is zero for all pairs of values that can be observed on the two 
measures, then the two measures are compatible; otherwise they are incompatible. 
The commutator is always zero when  

( |zj〉〈zj| )⋅ ( |z’k〉〈z’k| ) − ( |z’k〉〈z’k| )⋅ ( |zj〉〈zj| ) = 0 (35) 

for all pairs, which holds when 〈zj|z’k〉 = 0 for j ≠ k and 〈zj|z’j〉 = 1. This implies that  
U = IN, or in other words, the basis set |zj〉 = U⋅|z’j〉 used for X is identical to the basis 
set |z’j〉 used for Y.  If U ≠ IN then the measure X will be incompatible with the 
measure Y.  

If the measures are compatible, then we can define the joint event  

P(X=x∧Y=y) = P(X=x)⋅P(Y=y) = P(Y=y)⋅P(X=x) . (36) 

This forms a new complete set of n(X)⋅n(Y) orthogonal projectors  
{…, P(X=x∧Y=y), …} so that P(X=x∧Y=y)⋅P(X=u∧Y=v) = 0, x ≠ u or y ≠ v, 



∑ x ∑ y P(X=x∧Y=y) = IN.  These projectors are then used to define the joint 
probabilities for these two measures 

q(X=x∧Y=y) = ||P(X=x∧Y=y)|Z〉||2 . (37) 

Classic probability theory assumes that it is always possible to define these joint 
probabilities between measures. However, in quantum theory, this joint probability 
does not exist for incompatible measures.  

When two measures are compatible, then the first measure does not disturb or 
affect the second measure, order of measurement does not matter, and both measures 
can be determined simultaneously. However, when two measures are incompatible, 
then determining the value of one measure necessarily makes the values of the other 
measure uncertain. To see how this uncertainty principle arises with incompatible 
measures, suppose the inference state |Z〉 is placed at the following point after a 
measurement:   

|Z|x〉 = P(X = x)|Z〉 / ||P(X = x)|Z〉|| . (38) 

We can express this state using the coordinates defined by |zj〉 as follows: 

(α|x) = P(X = x)⋅α / ||P(X = x)⋅α||, and so ||α|x||2 = 1 . (39) 

Here P(X = x) is the matrix representation of the projector with respect to the |zj〉 basis 
(it is simply a matrix with zeros everywhere except for ones on the diagonal in the 
rows corresponding to combinations that satisfy X = x).  Given this state, the outcome 
x is certain to occur again with measure X: 

 

    q( X = x) = ||P(X = x)⋅(α|x)||2 

= ||P(X = x)2⋅α||2 / ||P(X = x)⋅α||2 = 1 . (40) 

Now let us examine this same state using the coordinates defined by |z’j〉 : 
(β|x) = U⋅(α|x), and note that ||(β|x)||2 = ||U⋅(α|x)||2 = 1 because U is unitary. The 
probability of the outcome y for the measure Y is determined by  

q(Y = y) = ||P(Y = y)⋅(β|x)||2  (41) 

where P(Y = y) is the matrix representation with respect to the |z’j〉 basis. That is, it is a 
matrix with zeros everywhere except ones on the diagonal for rows that satisfy Y = y. 
Now we find that q(Y = y) = ||P(Y=y)⋅(β|x)||2 < 1because ||(β|x)||2 = 1 and P(Y=y) is a 
projection on a subspace of H. 

In other words, if X and Y are incompatible, and if we are certain about the 
outcome that X will produce, then we must be uncertain about the outcome produced 
by Y. 

3.3   Constructing a Hilber t Space Representation 

We construct our Hilbert space using the principles initially described by Dirac [5]. 
The dimension, N, of the Hilbert space used to represent all T measures is determined 
by a maximum number K ≤ T of mutually compatible measures. Incompatible 
measures, being unitary transformations of a set of compatible measures, remain 



within the same space, and so they do not increase the dimensionality of the Hilbert 
space.  

If all of the measures are compatible with each other, and K = T, then we can use 
the same set of basis vectors to represent events for all T of the measures.  This is 
exactly the key assumption of classical probability theory. In fact, quantum 
probability assigns the same probabilities to all of the events as classical probability 
when all of the measures are compatible. 

Hereafter we will assume that there are only K ≤ T compatible measures labeled 
{X1,…,Xk,…,XK}. As described earlier, an incompatible measure Yk can be 
constructed from one of the compatible set Xk by a unitary transformation of the basis.  

Any given measure from the compatible set, say Xk, has n(k) possible outcomes 
{x1,x2,…,xk,…,xn(k)}. This produces a total of n = [n(1)⋅n(2)⋅…⋅n(k)⋅…⋅n(K)] 
combinations of possible outcomes from all K compatible measures, such as  
zj = (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK). 

To model inference, we also need to include the m possible hypotheses, {h1,…,hm}. 
We assume the hypotheses are compatible with all of the measures. Combining each 
hypothesis with each combination of measurement outcomes defines an elementary 
event, and so this produces a set of N = m⋅n elementary events, with typical element 
(hi ∧ zj) = hi∧(X1=x1)∧…∧(XK=xK).  These events are represented as subspaces (rays) 
of an N dimensional Hilbert space.  

The n(k) outcomes produced by Xk are represented by a complete set of n(k) 
orthogonal projectors {…,P(Xk=x),…}, P(Xk=x)⋅P(Xk=y)=0, x≠y, ∑ x P(Xk=x) = IN. 
There is one such set of projectors from each measure, and all K compatible measures 
are defined by the same basis. Finally, each hypothesis is represented by a set of 
orthogonal projectors {…,P(hi),…}, P(hi)⋅P(hj) = 0, i ≠ j,  ∑ i P(hi) = IN. The 
projectors for the hypotheses are defined by the same basis as the projectors for the 
compatible measures. 

The projectors for the outcomes of each measure can be combined to form a 
projector for each combination of outcomes. The projector for an elementary event  
(hi ∧ zj) is Pij = P(hi)⋅P(X1=x1)⋅…⋅P(Xk=xk)⋅…⋅P(XK=xK). This forms a complete set of 
N orthogonal projectors: {...,Pij…}, Pij⋅Pi’j’ = 0, ij ≠ i’j’, ∑ i ∑ j Pij = IN.  Each projector 
Pij for an elementary event has a single and unique (unit length) eigenvector 

|hi ∧ zi〉  = |hi ∧ (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK) 〉 . (43) 

These basis vectors span the N × 1 dimensional Hilbert space denoted H.  
It is useful to construct each basis vector |hi ∧ zj〉 of H from a tensor product of 

vectors representing the K compatible measures and the hypotheses as follows. 
Consider the measure Xk that has n(k) possible values.  For this measure, we can 
define a set of n(k) orthonormal vectors  {|Xk=x1〉,…,|Xk=x〉,…,|Xk=xn(k)〉}, where each 
possible outcome, say x, from the measure Xk corresponds to a normalized vector 
|Xk=x〉. The set of orthonormal vectors for Xk spans an n(k) × 1 subspace Hk. Then the 
tensor product of the individual measurement vectors produces a vector representing a 
combination of measurement outcomes:  

 

                      |zj〉 = |X1=x1〉⊗…⊗|Xk=xk〉⊗…⊗ |XK=xK〉  

= | (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK) 〉 . (44) 



There are total of n such vectors which form an orthonormal set that spans an n 
dimensional tensor product space H1⊗H2⊗…⊗Hk⊗…⊗HK. 

The hypotheses are represented by a set of orthonormal vectors  
{|h1〉, …,|hi〉,…,|hm〉}. This orthonormal set forms an m-dimensional Hilbert space 
denoted Hm. Then each basis vector of H can be constructed from a tensor product of 
vectors from each measure and hypothesis: 

 

  |hi ∧ zj〉 = |hi〉⊗|zj〉  
 

                        = |hi〉⊗|X1=x1〉⊗…⊗|Xk=xk〉⊗…⊗ |XK=xK〉 

= |hi ∧ (X1=x1)∧…∧(Xk=xk)∧…∧(XK=xK)〉 . (45) 

This spans an N dimensional tensor product space H = Hm ⊗ H1⊗…⊗Hk⊗…⊗HK. 
Finally the state of the quantum system is defined as 

|ψ(t)〉 = ∑ ∑ ψij(t) ⋅ |hi〉⊗|zj〉 . (46) 

The N × 1 vector of coefficients, ψ(t), represents the state with respect to the basis 
formed by |hi〉⊗|zj〉. So if we wish to compute the joint probability that hypothesis hi is 
true and that elementary event zj occurs, then this is given by  

||P(hi∧zj)⋅ψ(t)||2 = ||ψij(t)||2 , (42) 

where P(hj∧zj) is a N × N matrix with zeros everywhere except a one on the diagonal 
in the row corresponding to the event (hj∧zj). 

4   Quantum Inference 

4.1   Quantum Inference after  the First Measurement 

The first measure to be selected is denoted X(1). If this is one of the measures in 
the compatible set {X1,…,Xk,…,XK} then we proceed by using the basis with vectors 
|zj(1)〉 = |X1=x1〉⊗…⊗|Xk=xk〉⊗…⊗ |XK=xK〉.  

If the first measure is incompatible with one of the measures in compatible the set 
{X1,…,Xk,…,XK}, then we need to change the basis by applying a unitary 
transformation. Suppose the first measure is Yk which is incompatible with Xk. Then 
the basis vectors for these elementary events are defined by  

 

     |zj(1)〉 = |X1=x1〉⊗…⊗|Yk=yk〉⊗…⊗ |XK=xK〉 

= |X1=x1〉⊗…⊗U†
k|Xk=xk〉⊗…⊗ |XK=xK〉 . (48) 

where we have replaced (Xk=xk) with (Yk=yk). In other words, we start with a basis 
|zj(1)〉 that is defined by the first measure. The initial state is represented by: 

|ψ(0)〉 = ∑ ∑ ψij(0) ⋅ |hi〉⊗|zj(1)〉 . (49) 

The m⋅N vector of coordinates ψ(0) represents the state with respect to this initial 
basis. 



In section 2.4, we calculated the quantum inference based on a single 
measurement.  By letting α = ψ(0) in these calculations we have the inference after 
the first observation for the initial state ψ(0). 

4.2   Quantum Inference after  a Second Measurement 

Suppose we take another measurement X(2) = x2 which defines our second event.  
If it is compatible with the first measure, X(1), then we simply continue working with 
the same basis by setting ψ(1|x1) = α(1|x1), where α(1|x1)is the new state defined by 
Equation 22.  If it is incompatible with the first measure, then we need to change 
coordinates.  

Suppose the first measure was chosen to be X(1) = Xk and the coefficients for X(1) 
are initially expressed in terms of the |zj(1)〉 basis with coordinates α(1|x1) given by 
Equation 22. Now suppose the second measure is X(2) = Yk, which is incompatible 
with Xk. So we need to change the coordinates from α which are defined by the |zj(1)〉 
basis to β which are defined with respect to the new basis: 
β(1|x1) = (I⊗…⊗I⊗Uk⊗I⊗…I)⋅α(1|x1). Finally we set ψ(1|x1) = β(1|x1) and continue 
as before. The projector for P(X(2) = x2) is simply an N × N matrix with zeros 
everywhere except ones on the diagonals of the rows that correspond to the event  
X(2) = x2.  P(hi) is simply an N × N matrix with zeros everywhere except ones on the 
diagonals of the rows that correspond to hypothesis hi. 

The prior after the first measure but before the second observation equals 

q(hi|x1) = ||P(hi)⋅ψ(1|x1)||2 . (50) 

The probability of event X(2) = x2 given X(1)=x1 is 

q(X(2)=x2|X(1)=x1) = ||P(X(2) = x2)ψ(1|x1)||2 . (51) 

After observing the second observation, X(2)=x2, the state ψ(1|x1) changes to a new 
state  

α(2|x1, x2) = P(X(2)=x2)ψ(1|x1)/||P(X(2) = x2)ψ(1|x1)|| (52) 

and ||α(2| x1, x2)|| = 1. 
 
Suppose we assume that hi is true. Then the conditional state given hi and X(1)=x1 

equals  

ψ(1|x1, hi) = P(hi)ψ(1|x1)/||P(hi)ψ(1|x1)|| (53) 

and ||ψ(1|x1, hi)|| = 1. 
If hi is true, and we already observed X(1) = x1, then the conditional probability given 
of observing X(2) = x2 equals 

q(X(2)=x2 |x1, hi) = ||P(X(2) = x2)ψ(1|x1, hi)||2 . (54) 

Finally, our inference after the second observation equals 
 

q(hi | x1, x2) = ||P(hi)α(2|x1, x2)||2  
 



          = ||P(hi)P(X(2)=x2)ψ(1|x1)||2 / ||P(X(2)=x2)ψ(1|x1)||2  
 

          = ||P(X(2)=x2)P(hi)ψ(1|x1)||2 / ||P(X(2)=x2)ψ(1|x1)||2  
 

          = ||P(hi)ψ(1|x1)||2 × ||P(X(2)=x2)ψ(1|x1, hi)||2 ÷ ||P(X(2)=x2)ψ(1|x1)||2  

= q(hi|x1) ⋅ [q(X(2) = x2 |x1, hi) / q(X(2) = x2 | x1)] . (55) 

Once again, this corresponds with Bayes rule. 

4.3   Quantum Inference after  Several Observations 

A new measure is denoted X(t+1). The process continues with the coefficients 
produced by the last measurement, α(t|x1, …,xt).  For example, if t+1=3, then we 
would start with Equation 52.  If X(t+1) is compatible with X(t) then we use the same 
basis states as used for the last measurement. That is, we continue using the same 
coordinates ψ(t|x1, …,xt) = α(t|x1, …,xt).  If X(t+1) = Yk is incompatible with X(t), then 
we transform the coordinates to the new basis for the new measure: 
β(t|x1, …,xt) = (I⊗…⊗Uj⊗…⊗I)⋅α(t|x1, …,xt). In this case, we express the 
coordinates of the current inference state as ψ(t|x1, …,xt) = β(t|x1, …,xt). 

The prior after the first measure but before the second observation equals 

q(hi|x1,…,xt) = ||P(hi)⋅ψ(t|x1,…,xt)||2 . (56) 

The probability of event X(t+1) = xt+1 given the previous history is 

q(X(t+1)=xt+1|x1,…,xt) = ||P(X(2) = x2)ψ(t|x1,…,xt)||2 . (57) 

After observing the next observation, X(t+1)=xt+1, the state ψ(t|x1,…,xt) changes to a 
new state  

α(t+1|x1, …,xt+1) = P(X(t+1)=xt+1)ψ(t|x1,…,xt) ÷ ||P(X(t+1)=xt+1)ψ(t|x1,…,xt)|| (58) 

and ||α(t+1| x1,…, xt+1)|| = 1. 
Suppose we assume that hi is true. Then the conditional state given hi and the past 

history equals  

ψ(t|x1, …,xt, hi) = P(hi)ψ(t|x1,…,xt)/||P(hi)ψ(t|x1,…,xt)||  (59) 

and ||ψ(t|x1,…,xt,  hi)|| = 1.  If hi is true, and we already observed a history of events, 
then the conditional probability of X(t+1) = xt+1 given hi and this history equals  

q( X(t+1)=xt+1|x1,…,xt,hi) = ||P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt, hi)||2 . (60) 

Finally, our inference after the next observation equals 
 

q(hi | x1, …,xt+1) = ||P(hi)α(t+1|x1,…, xt+1)||2 
 

= ||P(hi)P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt)||2 ÷ ||P(X(t+1)=xt+1)ψ(t|x1,…,xt)||2  
 

= ||P(X(t+1)=xt+1)P(hi)⋅ψ(t|x1,…,xt)||2 ÷ ||P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt)||2  
 

= ||P(hi)ψ(t|x1,…,xt)||2 × ||P(X(t+1)=xt+1)ψ(t|x1,…,xt,hi)||2 
÷ ||P(X(t+1)=xt+1)⋅ψ(t|x1,…,xt)||2  



     = q(hi|x1,…,xt) × [q(X(t+1)=xt+1|x1,…,xt,hi) ÷ q(X(t+1)=xt+1| x1,…,xt)] . (61) 

Again, this corresponds with Bayes rule if the classic probability function p replaces 
the quantum probability function q. 

5   Summary and Concluding Comments 

 
This paper began with the assumption that the abstract mathematical basis of 

quantum theory is not tied to physics per se, but rather it can be used as a generalized 
probability theory with meaningful applications outside of physics. If so, it should be 
applicable to probabilistic inference problems.  

If we do this, we find that quantum inferences are updated in manner that 
correspond exactly to Bayesian updating except that the coordinates of the state must 
be transformed by unitary matrices to coordinates of a different a basis for changes 
between incompatible measurements. Determining the unitary matrices that transform 
from one set of coordinates to another is a critical step that remains to be achieved for 
applications outside of physics. 

Quantum inference is identical to Bayesian inference when only compatible 
measures are involved. But quantum inference can depart dramatically from Bayesian 
inference when incompatible measurements are involved. In particular, one can start 
out certain about a particular value of a measure, but if this is followed later by an 
incompatible measure, then one will become uncertain again about the value of the 
earlier (certain) measure. This results from the disturbance of one incompatible 
measure on another. 

When all the measures are compatible, we have one set of elementary events and 
this forms a single Boolean algebra of events. When incompatible measures are 
involved, we need to define different incompatible sets of elementary events, which 
correspond to different sets of basis vectors within the same Hilbert space. These sets 
of events cannot be combined into a single comprehensive set of events using 
Boolean logic.1

Cognitive psychologists have attempted to describe the disturbing effect of one 
judgment on another by building cognitive models that describe a separate probability 
distribution for each order. However, they have implicitly assumed a partial Boolean 
algebra to formulate these models, and thus these models are not really consistent 
with classic probability theory either.  An important empirical question is whether 
simpler yet more generalizable probabilistic models can be found using quantum 

 Thus we are forced to work with a partial Boolean algebra of events. 
So the most crucial question is whether incompatible measurements occur outside 

of physics. There is clear evidence that one type of human judgment can disturb 
another and the order of human judgments changes the probabilities [3]. This suggests 
that it may be fruitful to employ quantum probabilities when human judgments are 
involved.  

                                                           
1 The events from incompatible measures follow quantum logic (not discussed here), which 

obeys all of the rules of Boolean logic except for the distributive axiom. 



probabilities. The success in physics suggests this may be the case. This remains to be 
seen outside of physics (but see, [1], [11]). 
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