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A quantum probability model is introduced and used to explain human probability judgment errors
including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects
on inference. On the one hand, quantum theory is similar to other categorization and memory models of
cognition in that it relies on vector spaces defined by features and similarities between vectors to
determine probability judgments. On the other hand, quantum probability theory is a generalization of
Bayesian probability theory because it is based on a set of (von Neumann) axioms that relax some of the
classic (Kolmogorov) axioms. The quantum model is compared and contrasted with other competing
explanations for these judgment errors, including the anchoring and adjustment model for probability
judgments. In the quantum model, a new fundamental concept in cognition is advanced—the compati-
bility versus incompatibility of questions and the effect this can have on the sequential order of
judgments. We conclude that quantum information-processing principles provide a viable and promising
new way to understand human judgment and reasoning.
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Nearly 30 years ago, Kahneman, Slovic, and Tversky (1982)
began their influential program of research to discover the heuris-
tics and biases that form the basis of human probability judgments.
Since that time, a great deal of new and challenging empirical
phenomena have been discovered including conjunction and dis-
junction fallacies, unpacking effects, and order effects on inference
(Gilovich, Griffin, & Kahneman, 2002). Although heuristic con-
cepts (such as representativeness, availability, and anchor adjust-
ment) initially served as a guide to researchers in this area, there is
a growing need to move beyond these intuitions and develop more
coherent, comprehensive, and deductive theoretical explanations
(Shah & Oppenheimer, 2008). In this article, we propose a new
way of understanding human probability judgment using quantum
probability principles (Gudder, 1988).

At first, it might seem odd to apply quantum theory to human
judgments. Before we address this general issue, we would like to
point out that we are not claiming the brain to be a quantum
computer; rather, we only use quantum principles to derive cog-
nitive models and leave the neural basis for later research. That is,

we use the mathematical principles of quantum probability de-
tached from the physical meaning associated with quantum me-
chanics. This approach is similar to the application of complexity
theory or stochastic processes to domains outside physics.1

There are at least five reasons for doing so: (a) Judgment is not
a simple readout from a pre-existing or recorded state; instead, it
is constructed from the question and the cognitive state created by
the current context. From this first point, it then follows that (b)
drawing a conclusion from one judgment changes the context,
which disturbs the state of the cognitive system, and the second
point implies (c) changes in context and state produced by the first
judgment affects the next judgment, producing order effects, so
that (d) human judgments do not obey the commutative rule of
Boolean logic. (e) Finally, these violations of the commutative rule
lead to various types of judgment errors according to classic
probability theory. If we replace “human judgment” with “physical
measurement” and replace “cognitive system” with “physical sys-
tem,” then these are the same points faced by physicists in the
1920s that forced them to develop quantum theory. In other words,
quantum theory was initially invented to explain noncommutative
findings in physics that seemed paradoxical from a classical point
of view. Similarly, noncommutative findings in cognitive psychol-
ogy, such as order effects on human judgments, suggest that
classical probability theory is too limited to provide a full expla-
nation of all aspects of human cognition. So while it is true that

1 There is another line of research in which quantum physical models of
the brain are used to understand consciousness (Hammeroff, 1998) and
human memory (Pribram, 1993). We are not following this line; instead,
we are using quantum models at a more abstract level, analogous to
Bayesian models of cognition.
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quantum probability rarely has been applied outside physics, a
growing number of researchers are exploring its use to explain
human cognition, including perception (Atmanspacher, Filk, &
Romer, 2004), conceptual structure (Aerts & Gabora, 2005), in-
formation retrieval (van Rijsbergen, 2004), decision making
(Franco, 2009; Pothos & Busemeyer, 2009), and other human
judgments (Khrennikov, 2010).2

Thus, in this article, we had two major goals. An immediate goal
was to use quantum probability theory to explain some paradoxical
findings on probability judgment errors. But a larger goal was to
blaze a new trail by which future applications of quantum proba-
bility theory could be guided to other fields of judgment research.
The remainder of this article is organized as follows. First, we
develop a psychological interpretation of quantum probability the-
ory and compare it side by side with classic probability theory.
Second, we use the quantum model to derive qualitative predic-
tions for conjunction errors and disjunction errors and other
closely related findings. Third, we examine the quantitative pre-
dictions of the quantum model for a probabilistic inference task
and compare these predictions to a heuristic anchor-adjustment
model previously used to describe order effects. Fourth, we briefly
summarize other applications of quantum theory to cognition.
Finally we discuss the main new ideas that quantum theory con-
tributes and the issues that it raises about rationality.

Quantum Judgment Model

We applied the same quantum judgment model to two different
types of probability judgment problems. Both types involve prob-
ability judgments about two or more events. The first type of
problem is a single judgment about a combination of events such
as the conjunction or disjunction of events. According to our
quantum theory, judgments about event combinations require an
implicit sequential evaluation of each component event. The sec-
ond type of problem requires an explicit sequence of judgments
about a hypothesis on the basis of evaluation of a series of events.
We argue that judgment errors arise in both tasks from the sequen-
tial evaluation of events, because conclusions from earlier judg-
ments change the context for later judgments.

Quantum theory requires the introduction of a number of new
concepts to cognitive psychologists. First, we present these con-
cepts in an intuitive manner that directly relates the ideas to
psychological judgments. Later, we summarize the basic axioms of
quantum probability more formally and compare these side by side
with classic probability used in Bayesian models.

To introduce the new ideas, we first consider the famous
“Linda” problem that has been used to demonstrate the conjunc-
tion fallacy. (Many different types of stories have been used in past
research to study conjunction effects, but this story is the most
famous of all). Judges are provided a brief story about a woman
named Linda who used to be a philosophy student at a liberal
university and who used to be active in an anti-nuclear movement.
Then each judge is asked to rank the likelihood of the following
events: that Linda is now (a) active in the feminist movement, (b)
a bank teller, (c) active in the feminist movement and a bank teller,
(d) active in the feminist movement and not a bank teller, and (e)
active in the feminist movement or a bank teller. The conjunction
fallacy occurs when Option C is judged to be more likely than
Option B (even though the latter contains the former), and the

disjunction fallacy occurs when Option A is judged to be more
likely than Option E (again the latter contains the former).

State Representation

To apply quantum probability to this problem, our first postulate
is that the Linda story generates a state of belief represented by a
unit-length state vector that can be described by a high dimen-
sional vector space. Each dimension of the vector space corre-
sponds to a basis vector. Formally, a basis for a vector space is a
set of mutually orthogonal and unit-length vectors that span the
vector space. That is, any point in the space can be reached from
a linear combination of the basis vectors. Psychologically, each
basis vector represents a unique combination of properties or
feature values, called a feature pattern, which is used to describe
the situation under question. The state vector is a working-memory
state (Baddeley, 1992) that represents the judge’s beliefs about
Linda regarding the feature patterns. On the one hand, our use of
feature vectors to represent cognitive states follows other related
cognitive research (e.g., on memory or categorization), whereby
information is represented as vectors in high-dimensional spaces.
On the other hand, our basis vectors and state vector are analogous
to the elementary events and the probability function, respectively,
used in classic probability theory.

In general, the feature space used to form the basis for the
description of the state is constructed from long-term memory in
response to both the story that is presented and the question that is
being asked. To make this concrete, let us consider a very simple
toy example. Initially focus on the Linda story and the question
about whether or not Linda is a feminist and suppose this question
calls to mind three binary features that are used to describe the
judge’s beliefs about Linda for this event: she may or may not be
a feminist, she can be young or old, and she can be gay or straight.
Then the vector space would have eight dimensions, and one basis
vector would correspond to the feature pattern (feminist, young,
gay), a second would correspond to the feature pattern (not fem-
inist, young, straight), a third would correspond to the feature
pattern (feminist, old, straight), and so forth. In classic probability
theory, these eight feature patterns would represent the eight
elementary events formed by the eight conjunctions of three binary
events.

In actuality, there may be many more features, and each feature
may have many values, all generated by the story and the question.
In particular, if there are n individual features (n � 3 features in
our example) that take on m different values (m � 2 in our
example), then the dimension of the feature space is N � nm. The
problem of defining all the relevant features is not unique to
quantum theory; it also arises in the specification of a sample space
for a Bayesian model. Experimentally, one could devise artificial
worlds in which the features are carefully controlled by instruction
or training. For problems involving real-world knowledge, there is
less control, and instead, one could ask judges to list all of the
relevant features. For our toy example, we restricted our discussion
to the three previously described binary features for simplicity. But
our general theory does not require us to specify this a priori. In

2 Also see the special issue on quantum cognition (Bruza, Busemeyer, &
Gabora, 2009).
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fact, one great advantage of the quantum model is that many
qualitative predictions can be derived without these additional
assumptions being imposed. However, later on when we present a
quantitative test of the quantum model, we fully specify the feature
space and its dependence on the story and the question.

To evaluate the question about feminism, the judge uses knowl-
edge about the features based on the Linda story and other related
past experience. In the state vector, the judge’s beliefs about Linda
are represented by a belief value, called an amplitude, assigned to
each basis vector (feature pattern or combination of features), and
the squared magnitudes of the amplitudes sum to one. In general,
amplitudes can be complex numbers, but they can always be
transformed to square roots of probabilities prior to a judgment,
and only the latter is used to represent a belief that is available for
reporting (see Appendix A). In our toy example, the amplitude
assigned to the (feminist, young, gay) basis vector represents the
judge’s belief about this feature pattern. Usually the belief state has
some amplitude assigned to each basis vector; in other words, the
belief state is a linear combination of the basis vectors (called a
superposition state). But a special case is one in which a belief
state exactly equals a basis vector. In this special case, the belief
state has an amplitude with magnitude equal to one assigned to
a single basis vector and zeros everywhere else. This corresponds
to the special case in which a person is certain about the presence
of a specific feature pattern. In the section on qualitative tests, we
derive predictions without assuming specific values for the ampli-
tudes. However, the section on quantitative tests describes a spe-
cific way to assign these amplitudes.

Event Representation

An event refers to a possible answer to a question about features
chosen from a common basis. For example, the answer “yes” to the
feminism question is one event, and the answer “no” to the
feminism question is the complementary event. Our second pos-
tulate is that each event is represented by a subspace of the vector
space, and each subspace has a projector that is used to evaluate
the event.

Consider once again our toy example with eight basis vectors.
The event “yes” to the specific question “Is Linda is a feminist,
young, gay person?” corresponds to the subspace spanned by the
basis vector (feminist, young, gay), which is a single ray in the
vector space. To evaluate this event, the judge maps (more for-
mally projects) the belief state vector down onto this ray. This is
analogous to fitting the belief state to this basis vector (feminist,
young, gay) with simple linear regression. This fitting process is
performed by a cognitive operator called the projector that is used
to evaluate the fit of the feature pattern (feminist, young, gay).
Thus the event “yes” to the question “Is Linda a feminist young
gay person?” corresponds to a ray, and this ray has a projector that
is used to evaluate its fit to the belief state.

Now consider a more general event such as saying “yes” to the
question “Is Linda a feminist?” Note that the question about
feminism concerns only one of the many possible features that are
being considered. In our toy example, a yes answer to the femi-
nism question is consistent with only four of the basis vectors: (yes
feminist, young, gay), (yes feminist, young, straight), (yes femi-
nist, old, gay), and (yes feminist, old, straight). The span of these
four basis vectors forms a four-dimensional subspace within the

eight-dimensional space, which represents the event “yes” to the
feminist question. This is comparable to a union of these four
elementary events in classic probability. To evaluate this event, the
judge maps (more formally projects) the belief state down onto this
four-dimensional subspace. This is analogous to fitting the belief
state to the four basis vectors with multiple regression. Once again,
the cognitive operator by which this mapping is performed is
called the projector for the “yes” to the feminism question. In the
event of a “no” answer to the feminism question, the complemen-
tary subspace is used, which is the subspace spanned by the
remaining four basis vectors (not feminist, young, gay), (not fem-
inist, young, straight), (not feminist, old, gay), and (not feminist,
old, straight).

Projective Probability

Quantum theory provides a geometric way to compute proba-
bilities. Our third postulate is that the judged probability of con-
cluding that the answer to a question is yes equals the squared
length of the projection of the state vector onto the subspace
representing the question.

To make this clear, first let us consider the judged probability of
concluding that a specific feature pattern, say (feminist, young,
gay) from our toy example is true of Linda. To evaluate this event,
the judge projects the belief state vector down onto the ray repre-
senting (feminist, young, gay), and the result of this fit is called the
projection. In our toy example, the projection has zeros assigned to
all basis vectors except the (feminist, young, gay) basis vector, and
the basis vector (feminist, young, gay) is assigned a value equal to
its original amplitude. Finally, the judged probability for a yes
answer to this elementary event equals the squared length of this
projection (the squared magnitude of the amplitude, which is
analogous to the squared correlation). Psychologically speaking,
the person evaluates how well each feature pattern fits the belief
state, and the judged probability for that feature pattern equals the
proportion of the belief state reproduced by the feature pattern.

Now consider the judged probability of a more general event.
The judge evaluates the event of a yes answer to the feminism
question by judging how well his or her beliefs about Linda are fit
by the feminist feature patterns used to describe this event. The
judge makes the projection for the yes response to the feminism
question by mapping (projecting) the belief state vector down onto
the subspace representing the yes answer to the feminism question.
In our toy example, the amplitudes corresponding to (not feminist,
young, gay), (not feminist, young, straight), (not feminist, old,
gay), and (not feminist, old, straight) are set to zero, and only the
remaining amplitudes previously assigned to (yes feminist, young,
gay), (yes feminist, young, straight), (yes feminist, old, gay), and
(yes feminist, old, straight) are retained. To continue with our
example, the judged probability for a yes answer to the feminism
question equals the square length of the projection onto the sub-
space corresponding to this event. This is analogous to the R2

produced by the person’s beliefs being fitted to the feminist basis
vectors with multiple regression. In our toy example, the judged
probability for a yes answer to the feminism question equals the
sum of the squared magnitudes of the amplitudes assigned to the
four basis vectors (yes feminist, young, gay), (yes feminist, young,
straight), (yes feminist, old, gay), and (yes feminist, old, straight).
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In classic probability, this is computed by summing the probabil-
ities of elementary events that form the union.

The residual difference (between the original state vector and the
projection on the yes answer to feminism) equals the projection on the
complementary subspace corresponding to a no answer on the femi-
nism question. Thus, the projection on the yes answer is orthogonal
(i.e., uncorrelated) to the projection on the no answer to the feminism
question. The judged probability for concluding that the answer to the
feminism question is no is determined from the projection on the no
subspace, so that the no probability equals 1 minus the probability of
saying yes. If the vector lies entirely in a subspace, then the squared
projection of the vector onto the subspace will be 1; if the vector is
perpendicular to the subspace, then the squared projection will be 0.
Note that two subspaces are orthogonal if they correspond to mutually
exclusive states of affairs.

This scheme provides a precise way to express Tversky and
Kahneman’s (1983) representativeness proposal in judgment.
Tversky and Kahneman suggested that the conjunction fallacy
arises because participants consider Linda to be a representative
case of feminists. However, previously, representativeness has
been interpreted as an intuition of how much the belief about Linda
based on the story matched the prototype of feminists in the
question. Now the representativeness can be interpreted as the
projection or fit of a belief state vector about Linda to the subspace
corresponding to knowledge about feminists. The squared length
of the projection corresponds to the proportion of the belief state
reproduced by the subspace. This generalization of the concept of
representativeness makes a critical difference in its application.

State Revision

Suppose the person concludes that an event is a true fact. Our
fourth postulate is that the original state vector changes to a new
conditional state vector, which is the projection onto the subspace
representing the event that is concluded to be true but now is
normalized to have unit length. This is called Lüder’s rule (Nies-
tegge, 2008), and it is analogous to computation of a conditional
probability in classic theory. Now we need to expand on what it
means for a person to conclude that an event is true.

First, suppose that the judge is simply informed that the answer
to the feminism question is yes. On the basis of this information,
the amplitudes corresponding to (not feminist, young, gay), (not
feminist, young, straight), (not feminist, old, gay), and (not femi-
nist, old, straight) are set to 0, and the remaining amplitudes
previously assigned to (yes feminist, young, gay), (yes feminist,
young, straight), (yes feminist, old, gay), and (yes feminist, old,
straight) are now divided by the length of this projection. Thus, the
new conditional state vector has unit length so that the squared
magnitudes of the new amplitudes assigned by the conditional
state vector sum to 1. This corresponds to the normalization used
to form conditional probabilities in classic probability theory.

Second, consider an example related to an inference problem
used in the section “Quantitative Predictions for Order Effects on
Inference” for the second application of quantum theory presented
in this article. Suppose a juror is evaluating guilt or innocence,
which depends on whether positive or negative evidence is present.
Before the evidence, the belief state has amplitudes assigned to
four different patterns (guilty, positive), (guilty, negative), (not
guilty, positive), and (not guilty, negative). Now suppose the

prosecutor presents positive evidence. On the basis of this infor-
mation, the amplitudes corresponding to (guilty, negative) and (not
guilty, negative) are set to 0, and the remaining amplitudes are now
divided by the length of the resulting vector so that the squared
magnitude of the amplitudes of the revised state sum to 1. Again,
this is analogous to how conditional probabilities are revised by
evidence according to Bayes’ rule.

The conditional state vector is then used to answer subsequent
questions. For example, if the person who is judging concludes that
Linda is a feminist, then that person uses the state conditioned on this
conclusion to judge the probability that Linda is also a bank teller.
Following the earlier principles, the judged probability for an answer
of yes to this next question is determined by the judge projecting the
conditional state vector onto the bank teller subspace and squaring this
projection. In other words, the judged conditional probability for yes
to the bank teller question, given that Linda is a feminist, equals the
squared length of the projection of the conditional state (given a yes
response to feminism) on the bank teller subspace. Alternatively, the
judged probability that Linda is a bank teller, before any conclusions
about feminism is made, is simply determined by the original belief
state that was initially generated by the Linda story.

Compatibility

At this point, we have not yet defined the basis vectors used to
describe the bank teller question. In our toy example, we started by
considering the feminism question, which we assumed called to
mind, in addition to the feminism feature, other related features
such as age, and sexual orientation (and other related features not
included for simplicity). However, for answers to this question, we
did not rely on any features about bank tellers or other professional
occupations. In other words, in considering the feminism question,
we deliberately chose not to include these features, because we
assumed that the judge never thought much about these unusual
combinations of questions (feminism and bank teller) before.
Thus, these have to be treated as two separate questions answered
one at a time. The judge may have thought about professions and
their relations to salaries and other occupational features but more
likely than not, he or she never thought enough about feminism
and professions together to form precise beliefs about these par-
ticular combinations. Therefore, in order to answer the question
about the profession of Linda, the judge would need to view the
problem from a different perspective and evaluate this question
using knowledge about the combinations of a different set of
features relating to professions. To continue with the toy example,
suppose the judge considers four professions (e.g., bank teller,
doctor, insurance agent, and computer programmer) along with
two levels of salary (low or high), forming eight feature patterns
(each combination of four professions and two salary levels), and
the eight basis vectors corresponding to these feature patterns span
an eight-dimensional vector space.3 The key idea is that the set of
feature patterns used to evaluate the professions is inconsistent
with the set used to think about feminism, in which case we believe
that the two questions are incompatible, and they must be an-
swered sequentially.

3 It is possible that some features, say gender or college major, are
compatible with both feminism and bank teller.
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In this toy example, we used only eight dimensions (e.g. four
professions combined with two levels of salary) for simplicity. In
a more realistic model, a much larger dimensional space could be
used. For example, suppose we used N � 100 dimensions to
represent the space. Then to answer the question about feminism,
we could represent age by, say, 25 age levels (young vs. old then
representing only two coarse categories of these 25 age levels)
combined with two levels of feminism and two levels of sexual
orientation. To answer the question about professions, we could
use 10 professions combined with 10 salary levels (low vs. high
then representing two coarse categories of the 10 salary levels). By
increasing the dimensionality of the space, we could allow for
more refined levels of the features, which then could be catego-
rized in various ways.

We could formalize the concept of incompatibility by using a
vector space representation of knowledge—the same vector space
can be represented by many different sets of basis vectors (corre-
sponding to different sets of feature patterns), and the same exact
state (vector) can be defined by different sets of basis vectors. Each
(orthonormal) set of basis vectors corresponds to a description of
the situation with a particular set of features and their combina-
tions. But different sets of basis vectors correspond to different
descriptions, with different sets of features and combinations,
representing complementary ways of thinking about events. For-
mally, we can apply a unitary operator to transform one set of basis
vectors to another. This is analogous to rotating the axes in
multidimensional scaling (Carrol & Chang, 1970; Shepard, 1962)
or multivariate signal detection theory (Lu & Dosher, 2008;
Rotello, Macmillan, & Reeder, 2004). Psychologically, this corre-
sponds to consideration of different perspectives or different points
of view for answering questions. For example, in the second
application to inference, we argue that a juror has to view evidence
from a prosecutor’s point of view and then view the evidence from
a defense point of view and that it is not possible to hold these two
incompatible views in mind at the same time. Later on when we
present our quantitative test of the quantum model, we provide a
detailed description of this rotation process. However, qualitative
tests of the quantum model can be derived without making these
specific assumptions. So first we examine these qualitative prop-
erties of the theory, and later we examine a more specific model.

These ideas lead us to an important fifth postulate about com-
patibility. If one can answer two questions using a common basis
(i.e. the same basis vectors corresponding to a common set of
feature patterns), then the questions are said to be compatible. If
one must answer two questions using different bases (i.e. using
different sets of basis vectors corresponding to a different set of
feature patterns), then the two questions are said to be incompat-
ible. To continue with our toy example, a question about age is
compatible with a question about feminism, and a question about
salary is compatible with a question about profession, but a ques-
tion about feminism is incompatible with a question about profes-
sion. In order to make questions about feminism, age, and sexual
orientation compatible with questions about profession and salary,
a person would need to utilize a (2 � 2 � 2) � (4 � 2) � 64
dimensional space, with each basis vector representing one of the
feature patterns produced by a unique combination of these five
features. This is also the number of elementary events that would
be required to represent the sample space in classic probability
theory. Instead the person could utilize a lower eight-dimensional

space by representing questions about feminism, age, and sexual
orientation in a way that is incompatible with questions about
occupation and salary. Thus, compatibility requires use of a higher
dimensional space to form all combinations, whereas incompati-
bility can make use of a lower dimensional representation by a
change in perspectives. Incompatibility provides an efficient and
practical means for a cognitive system to deal with all sorts and
varieties of questions. But a person must answer incompatible
questions sequentially.

Suppose the question about feminism were incompatible with
the question about the bank teller (e.g., the basis vectors are related
by a rotation). Then, the basis vectors used to represent the
feminism question would not be orthogonal to the basis vectors
used to represent the bank teller question. For example, the inner
product (analogous to correlation) between the (feminist, old,
straight) basis vector and the (bank teller, low salary) basis vector
could be positive. More generally, the subspace for feminism lies
at oblique angles with respect to the subspace for bank teller. To
see the implications of using incompatible events, consider again
the feminist–bank teller problem. Initially, it is very difficult from
the details of the Linda story to imagine Linda as a bank teller, but
once the judge concludes that Linda is a feminist, the state is
projected onto the feminism subspace, which eliminates many
specific details about Linda story. (In projecting onto the feminism
subspace, only those elements of the original Linda story that are
consistent with feminism would be retained). From this more
abstract projection on the feminism subspace, the person can
imagine all sorts of professions for feminists (e.g., some feminists
who are bank tellers). Clearly, some professions remain more
probable than others, given the original story, but when thinking
about the more general category of feminists, the judge can enter-
tain possibilities that were extremely unlikely for Linda herself.
For example, if the projection of Linda onto the feminism subspace
produces a state corresponding to (old, straight, feminist), then the
judge may have some past experiences associating this type of
feminist with bank clerks who receive low salaries. The associa-
tions do not have to be strong, but they make it easier to imagine
Linda as a feminist and to imagine a feminist as a bank teller, even
though it was initially (before the feminist question) very difficult
to imagine Linda as a bank teller. In this way, quantum probability
also incorporates ideas related to the popular availability heuristic
(Kahneman et al., 1982). The answer to the first question can
increase the availability of events related to a second question.

Order Effects

Incompatibility is a source of order effects on judgments, and
here is the critical point at which quantum probabilities deviate
from classic probabilities. To see how order effects can happen,
consider the special simple case in which the judged probability of
a feminist given bank teller equals the judged probability of a bank
teller given feminist (a simple geometric example is shown in
Appendix A). One order is to judge whether Linda is a bank teller,
and given that she is a bank teller, whether she is also a feminist;
this probability is obtained by the product of the probability that
Linda is a bank teller and the conditional probability that she is a
feminist, given that she is a bank teller. On the basis of the Linda
story, the judged probability for a yes response to bank teller
question is close to 0, and when this is multiplied by the proba-
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bility of feminist given bank teller, it is even closer to 0. The other
order is to judge whether Linda is a feminist, and given that she is
a feminist, whether she is also is a bank teller; this probability is
obtained by the product of the probability that Linda is a feminist
and the conditional probability that she is a bank teller, given that
she is a feminist. On the basis of the Linda story, the judged
probability that Linda is feminist is very high, and when this is
multiplied by the same (as assumed) conditional probability of
bank teller given feminist, then the product produced by the
feminist–bank teller order must be greater than the product pro-
duced by the bank teller–feminist order. This order effect cannot
happen with classic probability theory (because these two orders
produce the same joint probability), but in Appendix A, a very
simple geometric and numerical example of this order effect is
provided through quantum theory. In sum, the indirect path of
thought from Linda to feminism to bank teller is a fair possibility
even though the direct path from Linda to bank teller is almost
impossible. In other words, asking first about feminism increases
the availability of later thoughts about bank tellers.

What is the evidence for order effects, and is there any reason to
think that quantum theory provides a good explanation for them?
It is well established that presentation order affects human prob-
ability judgments (Hogarth & Einhorn, 1992). In the next section
headed “Qualitative Predictions for Conjunction and Disjunction
Questions,” we present evidence for question-order effects on
conjunction fallacies (Stolarz-Fantino, Fantino, Zizzo, & Wen,
2003), and we account for them with the quantum model. In the
section headed “Quantitative Predictions for Order Effects on
Inference,” we successfully fit the quantum model to the results of
a new study of order effects on inference (Trueblood & Buse-
meyer, in press). In the section headed “Other Applications and
Extensions,” we report some surprisingly accurate predictions of
the quantum model for question order effects in attitude question-
naire research (Moore, 2002).

Theoretical Postulates

In this section, we summarize the five quantum postulates (von
Neumann, 1932) more formally, and we compare them to the
corresponding postulates of classic probability (Kolmogorov,
1933).4 At a conceptual level, a key difference is that classic
theory relies on a set theoretic representation, whereas quantum
theory relies on a geometric representation.

1. Classic theory begins with the concept of a sample space,
which is a set that contains all the events. Suppose (for simplicity)
the cardinality of this sample space is N so that the sample space
is comprised of N elementary events or points. Classic theory
defines the state of a system (e.g., all of a person’s beliefs) by a
probability function p in which a probability is assigned (a real
number between 0 and 1 inclusive) to each elementary event, and
the probabilities assigned by p sum to 1. If Ei is an elementary
event, then p(Ei) is the probability assigned to this event.

Quantum theory uses an N dimensional vector space to contain
all the events. The vector space is described by a set of N (ortho-
normal) basis vectors, and each basis vector corresponds to an
elementary event. Quantum theory defines the state of a system
(e.g., a person’s belief state) by a state vector, denoted ���, which
assigns an amplitude to each basis vector, and the state vector has
unit length. The amplitude assigned to a basis vector, such as the

basis vector �Ei�, equals the inner product between the basis vector
and state vector, denoted �Ei���.

2. Classic theory defines a general event as a subset of the
sample space. The event A is defined by the union of the elemen-
tary events that it contains: A � �i�AEi.

Quantum theory defines a general event as a subspace of the
vector space, and each subspace corresponds to a projector. The
projection of a state onto a ray spanned by basis vector �Ei� equals
Pi��� � �Ei� � �Ei���, where �Ei��� is an inner product. The projector
for this ray equals Pi � �Ei� � �Ei�, which is an outer product. The
projector for event A spanned by a subset {�E1�, . . . ,�Ek�} of
orthonormal basis vectors equals PA � �i�APi.

3. In classic theory, the probability of an event equals the sum
of the probabilities assigned to the elementary events contained in
the subset. If A is an event, then p(A) � �i�A p(Ei), where Ei is an
elementary event.

In quantum theory, the probability of event A equals the squared
length of the projection of the state onto the corresponding sub-
space. If PA is the projector for subspace A, then PA��� is the
projection, and the probability of event A equals �PA����2 �
�i�A��Ei����2.

4. Suppose that event A is concluded to be a true. Given this fact,
classic theory changes the original probability function p into a
new conditional probability function pA by the classic rule pA(B) �
p(A�B)/p(A). This conditional probability is more commonly writ-
ten as p(B�A).

Quantum theory changes the original state ��� into a new con-
ditional state ��A� by what is known as Lüder’s rule: ��A� �
PA���/��PA�����. The probability of event B given event A is known
to be true equals ��PB��A���2 � ��PBPA�����2/��PA�����2.

5. Classic probability assumes a single common sample space
from which all events are defined. In other words, all events are
compatible. Two events from the sample space can always be
intersected to form a single event in the sample space.

According to quantum theory, the same exact state can be
represented by more than one basis. This allows for two kinds of
events: compatible versus incompatible. If two events A and B can
be described by a common basis, then they are compatible, and the
projectors commute (PBPA � PAPB). When two events are com-
patible, the two subspaces can be combined to form a single event
represented by a single projector. If these two events cannot be
described by a common basis, then they are incompatible, and the
projectors do not commute (PBPA � PAPB). Formally, the basis
vectors used to describe event A are a unitary transformation of the
basis vectors used to describe event B. If event A is incompatible
with event B, then the pair of events cannot be represented by a
single projector, and they have to be evaluated sequentially.

If all events are compatible, then quantum theory is equivalent
to classic theory (Gudder, 1988). Thus, incompatibility is a key
new idea that distinguishes quantum and classic theories.

A short and simple tutorial of the quantum postulates appears in
Appendix A (see also Busemeyer & Bruza, in press). These same
five quantum postulates are consistently used in both of applica-
tions presented in this article.

4 Both theories are applicable to the continuum, but for simplicity, we
will limit this presentation to the finite case.
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Implications

From these postulates, we can also derive new implications for
both classic theory and quantum theory. First, classic theory de-
fines the negated event, �A, as the complement of the subset for
A, and its probability equals p(�A) � 1 	 p(A). Quantum theory
defines the negation of an event as the subspace orthogonal to the
event A, represented by the projector P�A � I – PA, where I is the
identity operator (I � ��� � ���). Then the probability of �A equals
��P�A�����2 � 1 	 ��PA�����2.

Classic theory defines the probability of the conjunction A and
B as the probability p(A) � p(B�A) � p(A�B), but because
p(A�B) � p(B�A), this is also equal to p(B�A) � p(B) � p(A�B),
which equals the probability of B and A. Thus, order does not
matter, and it makes sense to consider this a conjunction of events
A and B without regard to order. In quantum theory, order does
matter, and the events in question have to be evaluated as a
sequence (Franco, 2009): According to Lüder’s rule, the probabil-
ity of event A and then event B equals ��PA�����2 � ��PB��A���2 �
��PBPA�����2. If the questions are compatible, so that the projectors
commute, then ��PBPA�����2 � ��PAPB�����2, order does not matter,
and the conjunction can be interpreted in the same way as in
classic theory. But if the events are incompatible, then the projec-
tors do not commute, and ��PBPA�����2 � ��PAPB�����2. In other
words, asking a sequence of two incompatible questions corre-
sponds to the person’s starting from his or her initial belief state,
projecting onto the subspace corresponding to the answer to the
first question, and then projecting the resulting state onto the
subspace corresponding to the answer to the second question.
Reversing the order of these projections can lead to different
results. Psychologically, such order effects can be interpreted in
the sense that the first statement changes a person’s viewpoint for
evaluating the second statement. Given the prevalence of order
effects on human probability judgments (Hogarth & Einhorn,
1992), this is an important advantage for quantum theory.

The classic probability for the disjunction of two events A and
B is the probability assigned to the union of the two subsets
representing the two events, which equals

p
A � B� � p
A � B� � p
A � �B� � p
�A � B�

� p
A� � p
�A � B�

� 1 � p
�A � �B�

The last form, 1 	 p(�A��B), is commonly used because it
extends most easily to disjunctions involving more than two
events. It is clear that p(A�B) � p(B�A) so the order does not
matter for classic theory, and so it makes sense to define this as a
disjunction of events A and B. Quantum theory assigns a proba-
bility to the sequence A or then B equal to

�PBPA�����2 � ��P�BPA�����2 � ��PBP�A�����2 �

��PA�����2 � ��PBP�A�����2 � 1 � ��P�BP�A�����2.

Again, we use the form 1 	 ��P�BP�A�����2 because this extends
most easily to disjunctions involving more than two events. This
form also makes it is clear that order does matter for quantum
theory when the events are incompatible.

The classic probability rule for inferring a hypothesis on the
basis of new evidence is Bayes’ rule, which is essentially derived

from the definition of a conditional probability. A quantum ana-
logue of Bayes’ rule is obtained from Postulate 4, which is known
as Lüder’s rule. In the section on quantitative tests, we provide a
more detailed description of the quantum model applied to infer-
ence problems.

Clearly, the sequential order in which questions are considered
is a major aspect of the application of quantum probability to
human judgments. Any application of quantum theory must spec-
ify this order. In the section on quantitative tests, we present an
experiment in which we directly manipulated this order. However,
in other problems, the order of processing is not controlled, and the
individual is free to choose an order. Sometimes, a causal order is
implied by the questions that are being asked. For example, when
asked to judge the likelihood that “the cigarette tax will increase
and a decrease in teenage smoking will occur,” it is natural to
assume that the causal event “increase in cigarette tax” is pro-
cessed first. But for questions with no causal order, such as
feminist and bank teller, we assumed that individuals tend to
consider the more likely of the two events first. Note that a person
can easily rank order the likelihood of individual events (being a
feminist vs. being a bank teller) before going through the more
extensive process of estimating the probability of a sequence of
events (being a feminist and then being a bank teller conditioned
on the answer to the question about feminism). There are several
ways to justify the assumption that the more likely event is
processed first. One is that the more likely event matches the story
better and so these features are more quickly retrieved and avail-
able for consideration. A second reason is that individuals some-
times conform to a confirmation bias (Wason, 1960) and seek
questions that are likely to be confirmed first. Finally, our assump-
tion of considering the more likely event first is analogous to the
assumption that most important cues are considered first in prob-
ability inferences (Gigerenzer & Goldstein, 1996). For more than
two events, the same principle applies, and the events are pro-
cessed in rank order of likelihood.

Summary of the Quantum Judgment Model

When given a story, the judge forms a belief state that is
represented by a state vector in a possibly high-dimensional (fea-
ture) vector space. An answer to a question about an event is
represented by a subspace of this vector space. The judged prob-
ability of an answer to a question equals the squared projection of
the belief state onto the subspace representing the question. Two
questions are incompatible if the two subspaces require the use of
different sets of basis vectors. If the events involved in conjunction
and disjunction questions are incompatible, then they must be
processed sequentially, and the more likely of the two questions is
processed first. In the latter case, the conclusion from the first
question changes the state and affects the second question, pro-
ducing order effects which in turn cause conjunction and disjunc-
tion errors. Judgments about hypotheses are revised according to
Lüder’s rule, in which the normalized projection is used to update
the state on the basis of the observed evidence. If the sequence of
evidence involves incompatible events, then the inference judg-
ments exhibit order effects.

Now we are prepared to apply the quantum judgment model to
conjunction and disjunction errors and related phenomena. Later
we present a quantitative test for order effects on inference. The
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qualitative tests are important because they do not require specific
assumptions regarding the dimension of the feature space, the
amplitudes assigned to the initial state, or the relations between the
incompatible features. The quantitative test is important to de-
scribe how to make these specifications as well as to examine the
capability of the model to make precise predictions in comparison
with previous models.

Qualitative Predictions for Conjunction and
Disjunction Questions

Conjunction and Disjunction Fallacies

A large body of empirical literature establishes the findings of
both conjunction (Gavanski & Roskos-Ewoldsen, 1991; Sides,
Osherson, Bonini, & Viale, 2002; Stolarz-Fantino et al., 2003;
Tversky & Kahneman, 1983; Wedell & Moro, 2008) and disjunc-
tion fallacies (Bar-Hillel & Neter, 1993; Carlson & Yates, 1989;
Fisk, 2002). These findings are very robust and occur with various
types of stories (e.g., female philosophy students who are now
feminist bank tellers, high-pressure business men who are older
than 50 and have heart disease, Norwegian students with blue eyes
and blond hair, state legislatures that increase cigarette taxes and
reduce teenage smoking), and various types of response measures
(e.g., choice, ranking, probability ratings, monetary bids) (Sides et
al., 2002; Wedell & Moro, 2008). These fallacies are not simply
the result of misunderstanding the meaning of probability, because
they even occur with bets in which the word probability never
appears. For example, Sides et al. (2002) found that participants
preferred to bet on the future event “cigarette tax will increase and
teenage smoking will decrease” over betting on the single event
“teenage smoking will decrease.”

Moreover, both fallacies have been observed to occur at the
same time (Morier & Borgida, 1984). For example, Morier and
Borgida (1984) used the Linda story and found that the mean
probability judgments were ordered as follows, where J(A) de-
notes the mean judgment for event: J(feminist) � .83 � J(feminist
or bank teller) � .60 � J(feminist and bank teller) � .36 � J(bank
teller) � .26 (N � 64 observations per mean, and all pair wise
differences are statistically significant). These results violate clas-
sic probability theory, which is the reason they are called fallacies.

The quantum model starts with a state vector ��� that represents
the participant’s belief state after reading the Linda story; the event
“yes to the feminist question” is represented by a subspace corre-
sponding to the projector PF; the event “yes to the bank teller
question” is represented by an incompatible subspace correspond-
ing to the projector PB; and finally, the event “no to the feminist
question” is represented by an orthogonal subspace corresponding
to the P�F so that PF  P�F � I. Our key assumption is that the
projector PF does not commute with the projector PB (Franco,
2009). When considering a conjunction, the more likely event is
considered first, and because “yes to feminist” is more likely than
“yes to bank teller,” the judged probability of the event “feminist
and bank teller” equals ��PF�����2 � ��PB��F���2 � ��PBPF�����2.

For the conjunction fallacy, we need to compare the probability
for the single event ��PB�����2 with the probability for the conjunc-
tion ��PBPF�����2, and a conjunction fallacy is predicted when
��PBPF�����2 � ��PB�����2. To do this comparison, we decompose the

quantum probability of the bank teller event by expanding this
event as follows:

��PB�����2 � ��PB � I�����2 � ��PB
PF � P�F� � �����2 �

��PBPF��� � PBP�F�����2 �

��PBPF�����2 � ��PBP�F�����2 � ��B,�F��B,F� � ��B,F��B, �F�,

(1)

where ��B,F� � PBPF��� and ��B, �F� � PBP�F���. The last term
on the right hand side of Equation 1, denoted �B � ��B,�F��B,F� 
��B, F��B,�F�, is called the interference term for the bank teller
event.5 There is another interference, ��B, corresponding to the
probability ��P�B�����2, but the two interferences must sum to 0, so
that (�B  ��B) � 0 (see Appendix B). Thus, one of these
interference terms must be negative, and we argue that �B � 0,
because this makes it less likely to judge that Linda is a bank teller.
Also, the story suggests that the probability ��PBP�F�����2 that
Linda is not a feminist and is a bank teller is small. Under these
conditions, the interference can be sufficiently negative so that
�B � 	 ��PBP�F�����2, and consequently (��PBP�F�����2  �B) � 0,
which implies ��PBPF�����2 � ��PB�����2 � ��PBPF�����2 	
�(��PBP�F�����2  �B)� as required to explain the conjunction fal-
lacy.

The interference, �B, is determined by the inner product of two
projections: One is the projection ��B, F� of the initial state first on
the “she is a feminist” subspace and then onto the “she is a bank
teller” subspace; the second is the projection ��B, �F� of the initial
state first onto the “she is not a feminist” subspace and then onto
the “she is a bank teller” subspace. Recall that the inner product is
analogous to the correlation between two vectors. For many
judges, the features matching “feminist bank teller” may be neg-
atively correlated (pointing in a dissimilar direction) with the
features matching “not feminist bank teller,” thus producing neg-
ative interference.

Next, consider the disjunction probability, in which the person
judges the probability of saying no to “Linda is neither a bank
teller nor a feminist.” First note that when one is processing the
two events “Linda is not a bank teller” versus “Linda is not a
feminist,” the former is more likely than the latter, and so the
former is processed first. In this case, we need to compare the
single event ��PF�����2 � 1 	 ��P�F�����2 with the probability for
the disjunction 1 	 ��P�F P�B�����2, and disjunction fallacy is
predicted when ��PF�����2 � 1	��P�F�����2 � 1	��P�FP�B�����2, or
equivalently when ��P�FP�B�����2 � ��P�F�����2. To do this, we
mathematically decompose the quantum probability that Linda is
not a feminist as follows:

��P�F�����2 � ��P�FP�B�����2 � ��P�FPB�����2 �

���F, B���F, �B� � ���F, �B���F, B�. (2)

In this case, the interference is ��F � ���F, B���F, �B� 
���F, �B���F, B�. Once again, there is a corresponding interference
�F for ��PF�����2, and these two interferences must sum to 0 (�F 

5 The interference equals an inner product plus its conjugate, and so it is
a real number. Cross-product interference terms also arise in other appli-
cations of decision theory (Luce, Ng, Marley, & Aczel, 2008).
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��F) � 0 (see Appendix B). Thus, one of these two interference
terms must be negative, and we argue that �F � 0, because this
makes it more likely that Linda is a feminist. If the interference for
��F is sufficiently negative so that (��P�FPB�����2  ��F) � 0,
then ��P�FP�B�����2 � ��P�F�����2 � ��P�FP�B�����2 	
�(��P�FPB�����2  ��F)� as required to explain the disjunction
fallacy.

The interference, ��F, is determined by the inner product of two
projections: One is the projection ���F, �B� of the initial state first
on the “she is a not a bank teller” subspace and then onto “she is
a not a feminist” subspace; the second is the projection ���F, B� of
the initial state first onto “she is a bank teller” subspace and then
onto “she is not a feminist” subspace. For many judges, the
features matching “not a bank teller and not a feminist” may be
negatively correlated (pointing in a dissimilar direction) with the
features matching “bank teller and not a feminist,” thus producing
negative interference.

To complete the analysis of conjunction and disjunction falla-
cies, we must check to see what the quantum model predicts for the
remaining ordinal relations reported by Morier and Borgida
(1984). The quantity ��PB��F���2 is a probability so that 1 �
��PB��F���2 � 0, and it mathematically follows that

��PF�����2 � 1 � ��PF�����2 � ��PB��F���2 � ��PBPF�����2. (3)

Therefore, the quantum model must predict that the event ‘Linda
is a feminist’ is judged at least as likely as the conjunction.

Now consider the order of the conjunction versus disjunction.
The Linda story is designed so that the probability ��P�B PF�����2

corresponding to the “Linda is a feminist and she is not a bank
teller” conjunction is more likely than the probability
��P�FP�B�����2 corresponding to “Linda is not a bank teller and she
is not a feminist” conjunction.6 This design implies that

��P�FP�B�����2 � ��P�B PF�����2  ��P�F�����2,

but it is also true that

��P�BPF�����2  ��P�F�����2 � 1 	 ��PBPF�����2

3 ��PBPF�����2 � 1 	 ��P�FP�B�����2, (4)

and Equation 4 implies that the conjunction is less likely than the
disjunction. This last prediction is important because even though
human judgments tend to satisfy this constraint, there is no re-
quirement for them to do so. Therefore, if both the conjunction and
disjunction fallacies occur, then the quantum model must produce
the order reported by Morier and Borgida (1984). This is not true
of theoretical explanations that we present later, which are free to
produce consistent or inconsistent orderings of disjunction and
conjunction events depending on free parameters.

Now the quantum model is forced to make another strong
qualitative prediction. Both conjunction and disjunction effects
require the events to be incompatible; for if the events are com-
patible, then there is no interference (see Appendix B). But in-
compatible events produce order effects. To simultaneously ex-
plain both the conjunction and disjunction fallacies, the model
requires the following order constraint (see Appendix B):
��PFPB�����2 � ��PBPF�����2. This constraint exactly fits our psycho-
logical explanation of order effects that we presented earlier—the
first likely event increases availability of the second unlikely

event. In other words, processing the likely event first facilitates
retrieval of relevant thoughts for the second event, which then
increases the likelihood of the conjunction. By contrast, if the
unlikely event is processed first, it is hard to imagine any thoughts
at all in favor of this unlikely event from the very beginning, which
lowers the probability of the conjunction.

Order Effects

The quantum explanation for conjunction and disjunction errors
must predict that order of processing is a critical factor for deter-
mining whether or not the fallacy will occur. One effective way to
manipulate this order is to ask people to judge the conjunction first
or last when judging the likelihood of events. For example, after
hearing a story, a person could be asked to judge the unlikely event
U first and then judge the conjunction U and L, or the person could
be asked these questions in the opposite order. The quantum model
predicts smaller effects when the conjunction is presented last,
because in this case, the person evaluates the probability ��PU�����2

for the unlikely event first and so is encouraged to use this
probability estimate to determine the conjunction probability for U
and L. But in the latter case, it must be predicted that ��PU�����2 �
��PL��U���2 � ��PLPU�����2, and mathematically it follows that
��PU�����2 � 1 � ��PU�����2 � ��PL��U���2; therefore, no conjunction
error can occur. This reduction does not happen in the reverse
order when the conjunction is evaluated first, because in this case,
the “start with the higher probability event first” rule applies, and
the conjunction is always computed from the opposite order
��PL�����2 � ��PU��L���2 � ��PUPL�����2, which produces conjunction
errors as given by Equation 1.

In fact, conjunction errors are significantly larger when the
conjunction is rated first as opposed to being rated last (Gavanski
& Roskos-Ewoldsen, 1991; Stolarz-Fantino et al., 2003). In the
study by Stolarz-Fantino et al. (2003), when the single judgment
for the unlikely event was made first, the mean judgment for the
unlikely event was J(U) � .14 compared with J(U and L) � .17 for
the conjunction (N � 105, not significantly different), but when
the conjunction was rated first, the mean judgment for the con-
junction was J(U and L) � .26 compared with J(U) � .18 for the
unlikely event (N � 102, significantly different). Similar robust
and large effects of order were reported by Gavanski and Roskos-
Ewoldsen (1991). This order effect also explains why ratings
produce fewer errors than rank orders (Wedell & Moro, 2008)—
the latter procedure does not require any estimates of the constit-
uent events ahead of time.

Averaging Type Errors

One of the earliest explanations for conjunction and disjunction
fallacies is that these judgments are based on the average of the
likelihoods of the individual events (Abelson, Leddo, & Gross,
1987; Fantino, Kulik, & Stolarz-Fantino, 1997; Nilsson, 2008;
Wyer, 1976). For example, if one averages the likely event L with
an unlikely event U, then the average must lie between these two
likelihoods. If one assumes that more weight is placed on the

6 In fact, the empirical results are that ��P�BPF�����2 � .47 �
��P�F�B�����2 � .40.
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unlikely event for the conjunctive question and that more weight is
placed on the likely event for the disjunction question, then this
model can accommodate both fallacies at the same time.

An important source of support for the averaging model is
another fallacy called the averaging error (Fantino et al., 1997).
This finding involves a story followed by questions that are judged
to be unlikely (U), moderately likely (M), and very likely (L) to be
true on the basis of the story. These questions produce the follow-
ing reversal in the order for the mean judgments: J(U) � J(U and
M) but J(M and L) � J(L), which again violates classic probability
theory.

This finding also rules out an additive model in which judg-
ments are assumed to be made by adding (rather than averaging)
the signed evidence of individual events (Yates & Carlson, 1986).
According to an additive model, if J(M and L) � J(L), then signed
evidence for M is negative, but if this is true, then J(U) � J(U and
M) should be found, but the opposite occurs.

For these unlikely (U), moderately likely (M), and very likely
(L) type of questions, the quantum model must always predict the
order ��PL�����2 � ��PL�����2 � ��PU��L���2 � ��PUPL�����2, which
satisfies the second inequality that forms the averaging error. The
first inequality in the averaging error is simply a conjunction
fallacy, ��PUPM�����2 � ��PU�����2, which we have already explained
using negative interference (see Equation 1). Thus, the quantum
model also explains this averaging error.

Event Likelihoods

In general, the interference term, �, will depend on both the
story and the question. For the Linda story, the event “Linda is a
feminist” was designed to seem likely (producing a large projec-
tion for the likely event L, denoted ��PL�����2), whereas the event
“Linda is a bank teller” was designed to be unlikely (producing a
small projection for the unlikely event U, denoted ��PU�����2). From
Equation 3, it follows that the size of the conjunction error is
bounded by

��PL�����2 � ��PUPL�����2 � ��PU�����2, (5)

and it shrinks to 0 if ��PL�����2 � ��PU�����2. In fact, researchers find
that both fallacies depend on the difference between the likeli-
hoods of the two events (Gavanski & Roskos-Ewoldsen, 1991;
Wells, 1985; Yates & Carlson, 1986). For example, the mean
estimates reported by Gavanski and Roskos-Ewoldsen (1991) were
J(A) � .28, J(B) � .19, and J(A and B) � .18 when both events (A,
B) were unlikely; J(A) � .77, J(B) � .23, and J(A and B)�.38
when event A was unlikely and event B was likely; and J(A) � .76,
J(B) � .69, and J(A and B) � .67 when both events (A, B) were
likely. The mean estimates reported by Fisk (2002) were J(A) �
.36, J(B) � .14, and J(A or B) � .27 when both events (A, B) were
unlikely; J(A) � .23, J(B) � .73, and J(A or B) � .59 when event
A was unlikely and event B was likely; and J(A) � .80, J(B) � .62,
and J(A or B) � .75 when both events (A, B) were likely.

The constraint on the judgments imposed by Equation 5 implies
another strong prediction of the quantum model. Only a single
conjunction error can occur—that is, when the conjunction is
judged more likely than the lower likelihood event. In examina-
tions of the mean or median of probability estimates, this predic-
tion is generally supported (Gavanski & Roskos-Ewoldsen, 1991).
Furthermore, it is also generally found that single conjunction

errors are overwhelmingly most frequent (Yates & Carlson, 1986).
Double conjunction errors are infrequent, but they occasionally
occur with two highly likely events, and the latter easily could be
caused by judgments errors when all the events are rated almost
equally high (Costello, 2009).

An averaging model also predicts that conjunction and disjunc-
tion errors are larger for the (unlikely, likely) combination of
events and that only single conjunction errors can occur. But the
quantum and averaging models make distinct predictions for the
extreme case of complementary events A and not A. For comple-
mentary events, the quantum model must predict that the proba-
bility of the conjunction is 0 (��P�APA�����2 � 0), and the proba-
bility of the disjunction is 1 (1 	 ��P�APA�����2 � 1	0). Thus, the
quantum model must predict no conjunction or disjunction errors
for this extreme case, except those errors produced accidently by
random error (Costello, 2009). However, an averaging model must
predict that these effects remain as large as ever for this extreme
condition because the average must always fall between the like-
lihood of A and the likelihood of not A. For example, if A is highly
likely to be true, then �A is highly likely to be false, and the
averaging model predicts that the conjunction will fall between
these two mutually exclusive events. In fact, conjunction and
disjunction errors are greatly reduced when the events are mutually
exclusive (Wolfe & Reyna, 2010).

Event Dependencies

The quantum model makes another strong prediction concerning
the effect of dependencies between events on the conjunction
fallacy. In classic theory, if pL(U) � P(U) so that knowledge of
event L increases the probability of event U, then there is a positive
dependency of event L on event U. According to the quantum
model, an event L has a positive dependency on an event U if
��PU��L���2 � ��PU�����2. To produce a conjunction fallacy, the
quantum model requires

��PUPL�����2 � ��PL�����2 � ��PU��L���2 � ��PU�����23

��PU��L���2 � ��PU�����2/��PL�����2 � ��PU�����2. (6)

Thus, the quantum model is forced to predict that conjunction
errors occur only when there is a positive dependency of the unlikely
event on the likely event. For example, according to the quantum
model, knowing that Linda is a feminist increases the likelihood that
she is a bank teller. In fact, the presence of dependencies between
events A and B has been shown to affect the rate of conjunction
fallacies—a positive conditional dependency generally increases the
frequency of conjunction errors (Fisk, 2002).

Both classic and quantum theories predict that dependencies
between events strongly influence the probability judgment for a
sequence of events. This property is important because the aver-
aging model, which simply averages the likelihoods of the indi-
vidual events, fails to consider event dependencies. Not surpris-
ingly, human judgments are strongly influenced by event
dependencies, as cleverly shown by Miyamoto, Gonzalez, and Tu
(1995). In their design, judges evaluated four conjunctions of
events: A and X, A and Y, B and X, and B and Y. Contrary to an
averaging model, violations of independence were observed: J(A
and X) � J(B and X) but J(A and Y) � J(B and Y). According to
the averaging model, the common event (X) in the first comparison
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cancels out, and so the first inequality implies that event A is more
likely than event B; similarly, the common event (Y) in the second
comparison cancels out, and so the order established by the first
comparison should be maintained for the second comparison (but
it is not). According to both the classic and quantum models, the
probability of event A conditioned on the state X is larger than
event B, but the opposite occurs conditioned on the state Y.

Event Relationships

One of the major criticisms of the representativeness heuristic
concerns the effect of manipulation of the relatedness between the
two events. Suppose two stories are told, one about the liberal
college student named Linda and another about an intellectual but
somewhat boring man named Bill. After hearing both stories, the
judge could be asked two related questions concerning the same
person such as “Is Linda a feminist, and is Linda a bank teller?”
Alternatively, the judge could be asked two unrelated questions
such as “Is Linda a feminist, and does Bill play jazz for a hobby?”
It turns out that the conjunction fallacy is almost equally strong for
related and unrelated questions (Gavanski & Roskos-Ewoldsen,
1991; Yates & Carlson, 1986). This finding has been interpreted as
evidence against the representativeness heuristic and evidence for
a simple averaging rule. But this is not a problem for the quantum
interpretation of the representativeness heuristic.

The quantum model predicts that conjunction errors only occur
when there is interference, and interference can only occur when
the two projectors do not commute. Thus, the key question is
whether the projectors commute; that is, whether the subspaces are
based on a compatible set of basis vectors representing a common
set of features.

Having already considered the case of related questions, let us
now consider the case of unrelated questions (e.g., is Linda a
feminist, and does Bill play jazz for a hobby?). According to the
quantum model, the knowledge obtained from the two stories is
represented by a state vector ��� that now must contain knowledge
about features of both Linda and Bill. The projector PLF represents
the question “Is Linda a feminist,” and another projector PBJ

represents the question “Does Bill play jazz for a hobby?” The key
question is whether these two projectors commute. Given that the
judge never heard of these two people before and given that the
judge is unlikely to know anything about the co-occurrences of
women who are feminists and men who are jazz players, the judge
cannot form a compatible representation that combines all these
features in a consistent representation. Instead, the judge must fall
back on a simpler incompatible representation in which one set of
features is used to evaluate the Linda question and a different set
of features is used to evaluate the Bill question. Thus, we expect
these two projectors to be noncommutative. This is exactly the
property required to produce the conjunction error.

Given that that the projectors for the two unrelated questions are
incompatible, then the probability for the conjunction is obtained
first by projection of the belief state onto the “Linda is a feminist”
subspace followed by the projection onto the “Bill plays jazz for a
hobby” subspace. The interference effect produced by this incom-
patible representation depends on the particular stories and ques-
tions. In this particular example, negative interference implies that
thoughts evoked by thinking about a woman who is not a feminist

are negatively correlated with thoughts about a man who plays jazz
for a hobby.

Further support for the idea that the unrelated questions are
answered by incompatible subspaces comes from the finding of
order effects found in the same studies by Gavansky and Roskos-
Ewoldsen (1991). Conjunction errors were found to be more
frequent and significantly larger when the conjunction question
(e.g. Linda is a feminist, and Bill plays jazz for a hobby) was
presented first as opposed to being presented last.

Unpacking Effects

A finding that is closely related to the disjunction error is the
implicit unpacking effect (Rottenstreich & Tversky, 1997; Sloman,
Rottenstreich, Wisniewski, Hadjichristidis, & Fox, 2004).7 In this
case, a person is asked to rank order the likelihood of the same
logical event when it is described in the “packed” form B versus in
the “unpacked” form (B and A or B and �A). When an event (e.g.,
death by murder) is unpacked into a likely cause (murder by a
stranger) and an unlikely cause (murder by an acquaintance), then
the unpacked event is judged to be more likely than the packed
event, which is called subadditivity (Rottenstreich & Tversky,
1997). But if an event (e.g. death by disease) is unpacked into an
unlikely cause and a residual (death from pneumonia or other
diseases), then the packed event is judged to be more likely than
the unpacked event (Sloman et al., 2004). Support theory (Tversky
& Koehler, 1994) was designed to explain the first (subadditivity),
but it cannot explain the second (superadditivity).

This effect is especially interesting because it provides an ex-
ample where both positive and negative interference is required to
explain the opposing results. According to the quantum model, the
probability for the unpacked event B can be decomposed as fol-
lows:

��PB�����2 � ��PB � 
PA � P�A������2

� ��PBPA�����2 � ��PBP�A�����2 � �,

(7)

where � is the interference term.8 The probabilities for the two
unpacked events sum to ��PBPA�����2  ��PBP�A�����2.

In general, the interference, �, can be positive or negative,
depending on the inner product between the projection PBPA���
and PBP�A���. In all of the previous examples, we assumed that
this inner product was negative, producing negative interference,
resulting in a conjunction and disjunction effect. To account for
subadditivity, we again needed the interference to be negative, but
if we were to account for the opposite superadditive effect, the
interference had to become positive. The quantum model agrees
with the intuition provided by Sloman et al. (2004) that when

7 The unpacking effect refers to a comparison between the sum of
judgments of individual events versus the judgment of the union of these
events. However, these findings are affected by the response scale used to
make judgments, as well as judgment errors produced by judging individ-
ual events. We focus on the implicit unpacking effect which simply asks a
person to order the likelihood of two events.

8 Bordley (1998) first pointed out that quantum theory provides an
alternative explanation for unpacking effects.
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unpacking an event into an unlikely event and a residual, the
indirect retrieval paths produced by unpacking make it difficult to
reach the conclusion, and it is easier to reach the conclusion
directly from the packed event. The positive interference implies
that the projection of the initial state first onto pneumonia and then
onto death is positively correlated (pointing in a similar direction)
with the projection of the initial state first onto the residual
(diabetes, cirrhosis, and so forth) and then onto death.

Conditional Versus Conjunction Probabilities

Both classic and quantum probability models make a strong
prediction concerning the comparison of the probability of a
conjunction with the conditional probability involving the same
events. According to classic probability theory, pL(U) � p(L) �
pL(U) � p(L�U) and similarly the quantum model must obey

��PU��L���2 � ��PL�����2 � ��PU��L���2 � ��PUPL�����2. (8)

A conditional fallacy occurs when the probability of a conjunction
strictly exceeds the conditional probability.

The evidence regarding this fallacy is mixed. Tversky and
Kahneman (1983) reported a study involving an unlikely (U)
event “dying from heart attack” and a likely (L) causal event
“age over 50.” The mean judgment for the conditional proba-
bility equaled J(U given L) � .59; the mean judgment for the
conjunction probability equaled J(U and L) � .30; and the mean
judgment for the unlikely event equaled J(U) � .18. Thus, the
conditional event exceeded the conjunction event, but the con-
junction exceeded the single event. Hertwig, Bjorn, and Krauss
(2008) found no differences between the conditional and con-
junction probabilities and used this to argue that people confuse
or misinterpret these two types of questions. Miyamoto, Lun-
dell, and Tu (1988) investigated the conditional fallacy using
four different stories. In one of the stories, the conditional
exceeded the conjunction; in another, the conditional equaled
the conjunction; and in two other stories, the conjunction ex-
ceeded the conditional. The largest fallacy occurred with a story
based on rain and temperature in Seattle, which produced the
results (N � 150): J(L) � .71 � J(L and U) � .61 �J(U) �
.49 � J(U given L) � .47 (the difference between the means for
the conjunction and the conditional was statistically signifi-
cant). However, there was little difference between the condi-
tional probability J(U given L) and the single event probability
J(U), and so it is possible that the participants ignored the
conditioning event L when judging the conditional U given L.
More research is needed on this important question.

Conjunction of Three Events

The quantum model also makes clear predictions for conjunc-
tions involving two and three constituent events. According to the
quantum model, the judgment for the conjunction of unlikely (U),
moderately likely (M), and likely (L) events must be lower than the
conjunction for a moderately likely (M) and likely (L) event. This
follows from the fact that

��PL�����2 � ��PM��L���2 � ��PL�����2 � ��PM��L���2 � ��PU��M, L���2.

(9a)

The quantum model predicts a higher judgment for a conjunc-
tion of an unlikely (U) event, a likely (L1) event, and another likely
(L2) event as compared with an unlikely (U) event and likely (L2)
event under the following condition (for simplicity, suppose L2 is
more likely than L1):

��PL2�����2 � ��PU��L2���2

� ��PL2�����2 � ��PUPL1��L2���2 3 ��PU��L2���2

� ��PUPL1��L2���2.

Expanding the left-hand term (as we did in Equation 1) produces
the following expression:

��PU ��L2���2 � ��PU � 
PL1 � P�L1���L2���2 �

��PUPL1��L2���2 � ��PUP�L1��L2���2 � �. (9b)

It follows that the required inequality, ��PU��L2���2 �
��PUPL1��L2���

2, will hold if the interference is sufficiently negative
so that � � 	��PUP�L1��L2���

2. In this case, the judgment for a
conjunction of three events is judged more likely than a conjunc-
tion of two events.

In fact, both of these predicted results have been experimentally
obtained. Judgments for the conjunction of an unlikely event, a
moderately likely event, and a likely event were found to be lower
than judgments for the conjunction of the same moderately likely
event and likely event (Stolarz-Fantino et al., 2003; Nilsson, Win-
man, Juslin, & Hansson, 2010). Furthermore, judgments for an
unlikely, likely, and second likely event were found to be higher
than judgments for the conjunction of the same unlikely event and
likely event (Nilsson et al., 2010). Previously, these results have
been explained by an averaging model, but they are also consistent
with the quantum model.

Comparison of Explanations

The classic (Kolmogorov) probability model fails to explain
conjunction and disjunction fallacies because when a story S and
two uncertain events U and L are given, p(U�L�S) � p(U�S) and
p(U�L�S) � p(L�S) are required. However, it is possible that
people evaluate the conditional in the wrong direction (Gigerenzer
& Hoffrage, 1995). Classic probability theory does allow
p(S�U�L) � p(S�U) and p(S�U�L) � p(S�L). This explanation fails
to predict any ordering for p(S�U�L) versus p(S�L), nor does it
predict any ordering for p(S�U�L) versus p(S�U�L). A more
serious problem is that this idea cannot explain why the fallacy
occurs for a conjunction of future events that entail the current
state. For example, given the current cigarette tax and teenage
smoking rate, people prefer to bet on the event “an increase in
cigarette tax from the current rate and a decrease in teenage
smoking from the current rate” rather than the event “a decrease
in teenage smoking from the current rate” (Sides et al., 2002).
In this case, if we let S represent the current state of the world,
then we are asked to compare p(S�U�L�S) � p(U�L�S) versus
p(S�U�S) � p(U�S). If the conditional is reversed, then we have
p(S�S�U�L) � p(S) � p(S�S�U), which fails to explain the
findings.

Support theory (Narens, 2009; Rottenstreich & Tversky, 1997;
Tversky & Koehler, 1994) proposes that unpacking an event into
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its component parts increases the availability of the components,
and thus the unpacked event is judged to be more likely than the
logically identical packed event. This theory provides an account
of unpacking effects when they are subadditive but not when they
are superadditive (Macchi, Osherson, & Krantz, 1999). Tversky
and Kohler (1994) also explained conjunction errors as an effect of
unpacking an unlikely event (e.g., bank teller). So far, however,
support theory, has not provided an explanation of disjunction
errors. This may be difficult because a packed event (e.g., being a
feminist) is judged greater than the explicit disjunction of this
same event with another event (e.g., being a feminist or bank
teller).

The most popular models for both conjunction and disjunction
fallacies are the averaging (Wyer, 1976) and adding (Yates &
Carlson, 1986) models. These models seem especially plausible
when conjunction errors are obtained without presenting any story,
and judges are simply given numerical likelihoods on which to
base their judgments (Gavanski & Roskos-Ewoldsen, 1991). In the
latter case, it is hard to see how one could use a representativeness
type heuristic that is reliant on feature descriptions when there are
no features to use. The averaging model assumes that each item is
assigned a likelihood value (from 0 to 1), and the judgment for a
conjunction or disjunction question equals the weighted average of
these likelihoods. The adding model assumes each item is assigned
a signed value of evidence (negative one to positive one), and the
judgment for a conjunction or disjunction question equals the
weighted sum of evidence. Different weights must be assigned to
the unlikely and likely events to explain both the conjunction and
disjunction errors. The averaging model turns out to be superior to
the adding model, because the latter is ruled out by averaging type
errors. But the averaging model also has some serious deficiencies.
One of the most important is that it fails to account for interdepen-
dence among events. An item is assigned a likelihood value indepen-
dent of the other items with which it is paired. This independence
assumption is falsified by empirical violations of independence. Also,
this model fails to account for the effect of event dependencies on the
size and rate of conjunction errors, and it fails to explain the reduction
in conjunction and disjunction errors when mutually exclusive events
are used. Finally, the averaging model cannot account for double
conjunction errors and the conditional fallacy, but these findings are
still open to question.

A probability judgment model based on memory retrieval has
also been used to explain conjunction errors (Dougherty, Gettys, &
Odgen, 1999). Two specific types of models were proposed, one
for judgments based on stories (vignettes) and the other for judg-
ments based on training examples. All of the studies in our review
were based on stories (vignettes), and so our discussion is limited
to the first model. According to the vignette memory model,
information about the story is stored in a memory trace (column)
vector. A single question is represented by a probe vector of the
same length with values assigned to features related to both the
question and the story, and zeros otherwise. A conjunctive ques-
tion is represented by a single conjunctive probe, which is the
direct sum of the two vectors, one vector representing each sepa-
rate item. Retrieval strength (echo intensity) to a question is
determined by the inner product between the memory trace vector
and the question probe vector, and relative frequency judgments
are proportional to echo intensity. In Appendix C, we show that the
vignette memory predicts the same order as an averaging model

and thus shares many of the same advantages and disadvantages of
the averaging model. Like the averaging model, the vignette mem-
ory model has no explicit mechanism for explaining event depen-
dencies on conjunction errors. The latter problem arises from the
fact that the conjunctive probe is simply the direct sum of the
separate item probes.

The quantum judgment model provides a common simple ex-
planation for both conjunction and disjunction errors as well as
unpacking effects and averaging errors. More important, it also
makes a number of strong, testable, a priori predictions that are
supported by the empirical results. This includes (a) the ordering of
the most likely event compared with either disjunction or disjunc-
tion events (Equation 3), (b) the ordering of judgments for con-
junction and disjunction events (Equation 4), (c) the effect of event
dependency on the conjunction fallacy (Equation 5), (d) the effect
of event likelihood on conjunction fallacy (Equation 6), (e) the
order of a conditional versus a conjunction (Equation 8), (f) the
effect of event order on the conjunction fallacy, (g) the occurrence
of conjunction fallacies for three events (Equation 9), and (h)
conjunction errors for unrelated events. Overall, the predictions of
the quantum judgment model agree with all of the well-established
empirical findings. The quantum model has some difficulty with
double conjunction errors and the conditional fallacy, but the
empirical status of these latter two findings remains weak. So far
we have relied on evidence based on qualitative properties that
provide tests of general principles. Next, we turn to a more specific
quantitative comparison of the averaging model and the quantum
model.

Quantitative Predictions for Order Effects
on Inference

Inference tasks provide an ideal paradigm for testing the quan-
tum model. The hypotheses and different types of evidence can be
controlled to manipulate the feature space, and the order in which
evidence is presented is easy to manipulate. Also, one of the oldest
and most reliable findings regarding human inference is that the
order in which evidence is presented affects the final inference
(Hogarth & Einhorn, 1992). Consider the following example from
a medical inference task (Bergus, Chapman, Levy, Ely, & Opp-
liger, 1998). Physicians (N � 315) were initially informed about a
particular women’s health complaint, and they were asked to
estimate the likelihood that she had an infection on the basis of (a)
the patient’s history and findings of the physical exam and (b)
laboratory test results, presented in different orders. For one order,
the physicians’ initial estimate started out at .67; after they had
seen the patient’s history and findings of the physical exam, the
estimate increased to .78; and then after they had also seen the lab
test results, it decreased to .51. For the other order, the initial
estimate again started at .67; after they had seen the lab test results,
the estimate decreased to .44; and then after they also had seen the
history and findings of the physical exam, it increased to .59. This
is called a recency effect, because the same evidence had a larger
effect when it appeared at the end as opposed to the beginning of
a sequence. Recency effects are commonly observed in inference
tasks whenever a sequence of judgments is made, one after each
new piece of evidence (Hogarth & Einhorn, 1992). One might
suspect that these order effects arise from memory recall failures,
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but it turns out that memory recall is uncorrelated with order
effects in sequential judgment tasks (Hastie & Park, 1986).

Order effects are problematic for a Bayesian model for the
following reason. Suppose we have two abstract events A and B
and a hypothesis H; then

p
H�A � B� � p
H�A� �
p
B�H � A�

p
B�A�

� p
H�B� �
p
A�H � B�

p
A�B�
� p
H�B � A�,

and the order used to evaluate these two events does not matter
because the events commute A�B � B�A. For a Bayesian model
to account for order effects, presentation order would need to be
introduced as another piece of information (e.g., event O1, that A
is presented before B, and event O2, that B is presented before A),
so that we obtain p(H�A�B�O1) � p(H�A�B�O2). But without
specification of p(H) � p(Oi�H) � p(A�H�Oi) � p(B�H�Oi�A), this
approach simply redescribes the empirical result, and such a spec-
ification is not known at present. One difficulty that arises for this
approach is that presentation order is randomly determined, and
order information is irrelevant.

To explain order effects, Hogarth and Einhorn (1992) proposed
an anchor-adjust model in which order is not simply another piece
of information, but rather evidence is accumulated one step at a
time with a weight that depends on serial position. Recently,
Trueblood and Busemeyer (in press) developed a quantum infer-
ence model in which order is an intrinsic part of the process of
sequentially evaluating information represented by incompatible
perspectives. However, the previous studies provided too few data
points to provide a sufficiently strong test of the two competing
models. Therefore Trueblood and Busemeyer (2010) conducted a
larger study of order effects to compare these two models. First,
we summarize this study and its basic findings. Then we describe
the details of fitting both the anchor-adjust model and the quantum
model to the results. Finally, we summarize the comparison of fits
produced by the two competing models.

Order Effects on Criminal Inference

The Trueblood and Busemeyer (2010) study included total of
291 undergraduates from Indiana University. Each of these
students participated in a computer-controlled experiment in
which they read fictitious criminal cases (robbery, larceny, or
burglary) and made judgments of guilt or innocence on a
probability scale ranging from 0 to 1. A sequence of three
judgments was made for each case: one before any presenting
any evidence, and two more judgments after presentations of
evidence by a prosecutor and a defense. For a random half of
the cases, the prosecution was presented before the defense, and
for the other half, the defense was presented first. For example,
in one case, participants read a short story (one short paragraph)
about a burglarized warehouse, made an initial judgment that
was based on no information, read a strong prosecution (de-
scribed by three sentences), made a second judgment that was
based only on this prosecution, read a weak defense (described
by one sentence), and made a third judgment that was based on
both the prosecution and the defense. Altogether, each person
was presented with eight cases based on the experimental
design shown in Table 1. Each case was different for each
person, and the assignment of cases to orders was counterbal-
anced across participants, which produced approximately 38
participants per order condition (see Trueblood & Busemeyer,
in press, for details). Note that different groups of participants
are needed to produce different orders of evidence, and as far as
we know, 12 order conditions is the largest existing study of
order effects on inference. The main results are shown in Table
1, which shows the mean judgment, averaged over participants
and across the eight cases.

Trueblood and Busemeyer (in press) provided more detailed
results separately for each of the eight separate cases, but the
results were consistent across cases, and so here we only
present a summary. The initial judgment (prior to any informa-
tion) produced a mean probability equal to .459 (this is shown
in the table notes). This small bias against guilt reflects the

Table 1
Estimation of Guilt Following Presentation of Evidence

Type and strength
of evidence

Observed results
Averaging version of
anchor–adjust model Quantum inference model

After 1st

evidence
After 2nd
evidence

After 1st
evidence

After 2nd
evidence

After 1st
evidence

After 2nd
evidence

WP .651 .578 .647
WPWD .516 .552 .502
WPSD .398 .436 .407

SP .805 .748 .870
SPWD .687 .587 .689
SPSD .540 .437 .527

WD .390 .499 .390
WDWP .619 .589 .639
WDSP .779 .747 .758

SD .278 .401 .275
SDWP .495 .568 .487
SDSP .690 .756 .702

Note. Initial value equals .46. W � weak evidence, S � strong evidence, P � Prosecution, D � Defense.
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instruction to assume innocence at the beginning. The first
column of Table 1 shows the effect of the first piece of
information, which demonstrates a clear effect produced by
manipulation of the evidence. The second column shows the
judgment after both pieces of evidence, which provide four tests
for order effects. The strongest example is strong prosecution
and strong defense: SPSD � .54 � SDSP � .69 (which is a
recency effect equal to .15); the other three recency effects were
approximately equal to .10. All four tests for order effects
produced strong and statistically significant recency effects (all
with p � .001; see Trueblood & Busemeyer, in press, for
details).

Anchor–Adjust Inference Model

Hogarth and Einhorn (1992) proposed a heuristic model of
inference in which a new state of belief equals the previous
(anchor) state plus an adjustment:

Cn � Cn	1 � wn � �s
En� � Rn�, (10)

where Cn is the participant’s new belief state after observing n
pieces of information, Cn	1 is the participant’s previous belief
state after observing n–1 pieces of information, s(En) is the evi-
dence provided by the nth piece of information, wn is a weight and
Rn is a reference point for this serial position. Furthermore, Hog-
arth and Einhorn (1992) proposed the following principle for
setting the serial position weight: if [s(En) 	 Rn] � 0, then wn �
(1 	 Cn	1), and if [s(En) 	 Rn] � 0, then wn � Cn	1.

Different versions of the model can be formed by imposition of
assumptions on the evidence s(En) and the reference point Rn. One
can form an important variation, the averaging model, by assuming
that 0 � s(En) � 1 and setting Rn � Cn	1.9 Hogarth and Einhorn
(1992) proved that the averaging model is guaranteed to produce
recency effects, which is found in all tests shown in Table 1. Another
important version, the adding model, is formed by assuming 	1 �
s(En) � 1 and setting Rn � 0. As pointed out by Hogarth and Einhorn
(1992), the adding model is not guaranteed to produce recency effects.

Recall that the averaging model provides a better explanation than
the additive model for conjunction and disjunction errors. In fact, the
adding model was ruled out because of the averaging type errors
discussed earlier. We think it is important for a model to be consistent
across both probability judgment paradigms, the conjunction/
disjunction and inference paradigms. Therefore, we focused here on
the averaging model. Of course, this is only one version of the anchor
and adjust model, and one could always construct more complex
versions by relaxing the assumptions about the serial position weight
and the reference point. But the averaging model is one of the primary
models proposed by Hogarth and Einhorn (1992) for recency effects,
and it is also one of the primary models for explaining conjunction
and disjunction fallacies. Trueblood and Busemeyer (2010, in press)
presented more model comparisons including averaging and adding
models and even more complex anchor–adjust models, but the con-
clusions we reached remain the same.

The averaging model cannot make any predictions for the first
judgment (before presentation of any evidence), and so we used
this mean (.459) to initiate the averaging process, C0 � .459, and
then we fitted the model to the remaining 12 conditions on the
basis of the second and third judgments. The averaging model
requires estimation of four parameters to fit the 12 conditions in

Table 1. These four parameters represent the four values of s(E)
corresponding to the four types of evidence: weak defense (WD),
strong defense (SD), weak prosecution (WP), and strong prosecu-
tion (SP). We fit the four parameters by minimizing the sum of
squared errors (SSE) between the predicted and observed mean
probability judgments for each of the 12 conditions, which pro-
duced a SSE � .0704 (standard deviation of the error � .0766,
R2 � .9833). The predicted values are shown under the two
columns labeled anchor–adjust in Table 1. The model correctly
predicts the recency effects, but despite the high R2 values, the
model fit is only fair. For example, the model severely overesti-
mates the recency effect for the SDSP versus SPSD comparison
(predicted effect � .319, observed effect � .15). Also, the model
fails to reproduce the correct ordering across all the conditions. For
example, the averaging model predicts that SDSP � .756 �
WDSP � .747, when in fact SDSP � .69 � WDSP � .779. There
are many other substantial quantitative prediction errors, which
illustrate that even when the model is designed to produce recency
effects, it still remains a challenge to fit these order effects.

Quantum Inference Model

Before introducing the quantum model proposed by Trueblood
and Busemeyer (in press), let us first think about how a classic
Bayesian model would be set up for this task. A simple classic
probability model would be based on a sample space containing
eight elementary events formed by combining two types of pros-
ecutor evidence with two types of defense evidence and two
hypotheses. A quantum model could be set up in the same manner
on a single basis formed by eight basis vectors, one corresponding
to each of these eight elementary events. Then the events would all
be compatible, and the quantum model would make the same
predictions as the classic Bayesian model. But this model would
not produce any order effects. Instead, Trueblood and Busemeyer
(in press) proposed a quantum model that was designed to be as
simple as possible for application to this criminal inference task.10

The basic idea is that the judge evaluates two types of evidence
(positive vs. negative) regarding two hypotheses (guilty vs. inno-
cent) from three points of view: a naı̈ve point of view, the prose-
cutor’s point of view, and the defense’s point of view. In this basic
idea, only a four-dimensional vector space is required. (In the
following presentation, a superscript T is used to represent a
transpose of a matrix, and a superscript † is used represent a con-
jugate transpose of a matrix. In particular, [row vector]T is a
column vector.).

The judgment process begins with a description of this four-
dimensional space in terms of four basis vectors used to make a
judgment from the naı̈ve point of view: {�NG�, �NG	�, �NI�,
�NI	�}, representing (guilty, positive), (guilty, negative), (inno-
cent, positive), and (innocent, negative), respectively. The initial

9 In this case, Cn � Cn	1  wn � [s(En) 	 Cn	1] � (1 	 wn) � Cn	1 
wn � s(En) and for n � 2

C2 � (1 	 wn	2)(1 	 wn	1) � C0  wn	2 � (1 	 wn) � s(E1)  wn �

s(En).
10 Trueblood and Busemeyer (in press) used this same quantum infer-

ence model to fit the results from the Bergus et al.’s (1998) medical
inference study and McKenzie et al.’s (2002) criminal inference study.
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state equals ��� � nG � �NG�  nG	 � �NG	�  nI � �NI� 
nI	 � �NI	�.

For example, the third coordinate, nI represents the amplitude
�NI��� initially assigned to the basis vector �NI�. To be concrete,
we represented �NG� by the column vector [1, 0, 0, 0]T, repre-
sented �NG	� by the column vector [0, 1, 0, 0]T, represented �NI�
by the column vector [0, 0, 1, 0]T, and represent �NI	� by the
column vector [0, 0, 0, 1]T. Thus, the initial state vector ��� assigns
a column vector of amplitudes n � [nG, nG	, nI, nI	]T to the
four basis vectors. We start with nG � nG	 � (1/�2)(�.459)
and nI � nI	 � (1/�2)(�.541). The positive or negative sign of
the evidence has no meaning at this point because the judge has no
idea what the evidence is about (we labeled it positive or negative
for convenience, but at this stage, it represents only two possible
types of evidence). Equating the amplitudes for the two types of
unknown evidence is analogous to using a uniform prior in a
Bayesian model when nothing is known. The amplitude for guilt is
lower because the instructions inform the person to assume inno-
cence until guilt is proven, and the .459 is chosen to reproduce the
observed value of the first judgment (before any evidence is
presented). This is also the same initial state used for the averaging
model. The probability of guilt from this naı̈ve perspective is
obtained first by projection of this initial state onto the subspace
for guilt. The projector for guilty equals PG � �NG��NG� 
�NG	��NG	�, which is represented by a 4 � 4 diagonal matrix with
1s in the diagonals of the first two rows and 0s elsewhere. The
projection equals PG � n � [(1/�2)(�.459), (1/�2)(�.459), 0,
0]T, and so the probability of guilt from the naı̈ve judgment point
of view equals ��PG � n��2 � .459. This initial state was chosen to
reproduce the observed mean judgment of guilt equal to .459,
slightly favoring not guilty, before any information is provided.

Next, suppose the prosecutor presents positive evidence favor-
ing guilt followed by a likelihood judgment. This requires an
evaluation according to a different set of basis vectors, {�PG�,
�PG	�, �PI�, �PI	�}, which again represent (guilty, positive),
(guilty, negative), (innocent, positive), and (innocent, negative) but
now represent the prosecutor’s viewpoint. The initial state can be
expressed in this basis as ��� � pG � �PG�pG	 � �PG	�pI �
�PI�pI	 � �PI	�.

For example, the first coordinate, pG represents the amplitude
�PG��� initially assigned to the basis vector �PG�. Note that the
amplitudes assigned according to the naı̈ve perspective are different
than those assigned according to the prosecutor’s perspective because
the latter reflect the prosecutor’s arguments for guilt. The four pros-
ecutor basis vectors can be represented by a 4 � 4 unitary matrix
denoted Unp, with the first column representing �PG�, the second
column representing �PG	�, the third column representing �PI� and
the fourth column representing �PI	�. Later, we will show exactly how
we computed the unitary matrix Unp, but at this point, we assume it
was known and continue with the evaluation of the prosecutor’s
evidence. First, we consider how to revise the initial state on the basis
of the prosecutor’s positive evidence. The projector for the positive
evidence is denoted P and is spanned by {�PG�, �PI�}. According
to Postulate 4, ��� � P���/��P�����, and

P��� � �PG��PG��� � �PI��PI��� �

pG � �PG� � 0 � �PG	� � pI � �PI� � 0 � �PI	�,

and therefore

��� �
pG


�pG�2 � �pI�2� .5 � �PG� � 0 � �PG	�

�
pI


�pG�2 � �pI�2� .5 � �PI� � 0 � �PI	�.

The revised state ��� is now represented on the prosecutor basis
by the column vector of amplitudes p � [pG, 0, pI, 0]T/
(�pG�2  �pI�2).5.

Next, we consider how to determine the probability of guilt after
being presented with the prosecutor’s positive evidence. The pro-
jector for guilty is denoted PG and is spanned by {�PG�, �PG	�}.
According to Postulate 3, ��PG�����2 � ��(PG  PG	) �����2, and
because PG and PG	 are orthogonal projections, it follows that

��PG���  PG	�����2 � ��PG�����2  ��PG	�����2,

and because the evidence is positive, we have ��PG	�����2 � 0 so
that

��PG�����2 � ��PG����2 � �pG�2/(�pG�2  �pI�2). (11)

Equation 11 provides a simple formula for computing the prob-
ability of guilt following the positive evidence by the prosecutor.
All that is needed is the column vector of amplitudes p � [pG,
pG	, pI, pI	]T assigned to the four prosecutor basis vectors.
These are related to amplitudes for the naı̈ve basis by the unitary
transformation p � Unp

† � n � Upn � n, which is described later. At
this point, we will continue with the evaluation of the defense
evidence.

Finally, suppose the defense presents negative evidence after the
positive evidence given by the prosecutor. Now the judge needs to
view the two hypotheses and two types of evidence from the
defense perspective. This entails a change of perspective to the
defense basis, which requires an evaluation according to the four
basis vectors �DG�, �DG	�, �DI�, and �DI	�. The revised state can
be re-expressed in terms of this basis as

��� � dG � �DG�  dG	 � �DG	�  dI � �DI�  dI	 � �DI	�.

For example, the second coordinate, dG	, represents the ampli-
tude �DG	��� assigned to the basis vector �DG	� at this point.
Note that the amplitudes for the defense differ from the amplitudes
for the prosecutor because the defense tries to persuade the judge
to view the evidence from a different perspective, which weakens
the prosecution and strengthens the defense. The four defense basis
vectors can be represented by a 4 � 4 unitary matrix, denoted Und,
with the first column representing �DG�, the second column
representing �DG	�, the third column representing �DI�, and the
fourth column representing �DI	�. Later, we will show exactly how
we computed the unitary matrix, Und, but at this point, we as-
sume it is known and continue with the evaluation of the defense
evidence. Now, consider how to revise the state based on the
defense negative evidence. The projector for the negative evidence
is denoted P	 and is spanned by {�DG	�, �DI	�}. According to
Postulate 4, ��, 	� � P	���/��P	�����, and

P	��� � PG	 ��� � PI	��� �

�DG	��DG	��� � �DI	��DI	��� �

0 � �DG� � dG	 � �DG	� � 0 � �DI� � dI	 � �DI	�.
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Finally, we consider how to determine the probability of guilt
after being presented with the prosecutor’s positive evidence and
the defense’s negative evidence. The projector for guilty is denoted
PG and is spanned by {�DG�, �DG	�}. According to Postulate 3,
we obtain

��PG��, 	���2 � �dG	�2/
�dG	�2 � �dI	�2�. (12)

In sum, Equation 12 provides a simple formula for a judge to
compute the probability of guilt following presentation of the
positive evidence by the prosecutor and then negative evidence by
the defense. All that is needed for this formula is the vector of
amplitudes d� � [dG, dG	, dI, dI	] assigned to the four defense
basis vectors. These amplitudes are related to amplitudes for the
prosecutor basis by the unitary transformation d� � Und

†

Unp � p� � UdnUnp � p�, which is described next.
It is time to return to the question about how to specify the

unitary matrices. A unitary matrix is one that satisfies U � U† � I �
U† � U, and this is necessary for the quantum model in order to
preserve lengths and inner products of the basis vectors (Nielsen &
Chuang, 2000). The model has three different bases: one for the
naı̈ve point of view, one for the prosecution point of view, and one
for the defense point of view. This in turn implies three unitary
matrices that relate the amplitudes of the three bases: Upn that
transforms amplitudes of the naı̈ve basis into amplitudes of the
prosecutor basis; Udn that transforms amplitudes of the naı̈ve basis
into amplitudes of the defense; and Udp that transforms amplitudes
of the prosecutor into amplitudes of the defense. However, the last
one is derived from the first two by the relation Udp � UdnUnp,
with Unp � Upn

†, and furthermore Upd � Udp
†, and so we only

need to describe how to construct Udn and Upn and all the rest are
determined from just these two.11 Note that these unitary transfor-
mations are used independently of the particular belief state, and
the same transformation from one set of coordinates to another is
used for initial belief states as well as revised belief states. In short,
the transformations are only used to change the coordinate system
that represents the current belief state.

Any unitary matrix can be constructed from a Hermitian matrix,
H � H†, by the complex matrix exponential transformation U �
exp(	i � x � H); see Nielsen & Chuang, 2000), where x is a
parameter.12 Trueblood and Busemeyer (in press) used a Hermi-
tian matrix that was previously developed for two earlier psycho-
logical applications involving four dimensional vector spaces (see
Busemeyer, Wang, & Lambert-Mogilianksy, 2009, and Pothos &
Busemeyer, 2009). In these previous applications, the Hermitian
matrix H is constructed from two components, H � H1  H2,
defined by

H1 � �
1 1 0 0
1 � 1 0 0
0 0 1 1
0 0 1 � 1

� ,

H2 � �
1 0 1 0
0 � 1 0 1
1 0 � 1 0
0 1 0 1

� . (13)

The purpose of H1 is to rotate amplitudes to favor either the
presence of positive evidence or negative evidence; and the pur-

pose of the second of H2 is to rotate beliefs toward guilt when
positive evidence is present and to rotate beliefs toward innocence
when negative evidence is present. Together, these two matrices
coordinate beliefs about evidence and hypotheses. The parameter
x determines the degree of rotation, and this is a free parameter in
the model. We allowed a different parameter value of x for Upn

versus Udn. We also allowed a different parameter value of x for
strong and weak evidence. Altogether this produces four free
parameter values for x, one for each combination of the four types
of evidence WP, SP, WD, and SD This way of constructing the
unitary matrices was chosen because it was the same as used in
previous applications, and it is as simple as we can make it. Just as
with the anchor-adjust model, more complex models are possible
(for more details on this topic, see Trueblood and Busemeyer, in
press).

To summarize, we started with the naı̈ve initial state n � �.5 �
[�.459 �.459 �.541 �.541]T, and computed the two unitary
matrices Upn � exp(	i � xp � H) and Udn � exp(	i � xd � H) with
H defined by Equation 13. First, the prosecutor–defense order was
considered. We transformed p � Upn � n, set p � [pG, 0, pI,
0]T/(�pG�2  �pI�2).5, and then took the squared magnitude of the
first coordinate of p to obtain the probability of guilt following
the first positive evidence. Next, we transformed to d � UdnUnp �
p, set d, 	 � [0, dG	, 0, dI	 ]T/(�dG	�2  �dI	

2).5, and take the
squared magnitude of the second coordinate of d, 	 to obtain the
probability of guilt following the second negative evidence. Next,
we considered the defense–prosecutor order. We transformed d �
Udn � n, set d	 � [0, dG	, 0, dI	]T/(�dG	�2  �dI	�2).5 and then
took the squared magnitude of the second coordinate of d	 to
obtain the probability of guilt following the first negative evidence.
Next, we transformed to p	 � UpnUnd � d	, set p	,  � [pG, 0,
pI, 0]T/(�pG�2  �pI�2).5 and took the squared magnitude of the
first coordinate of p	,  to obtain the probability of guilt following
presentation of the second positive evidence. Recency effects
occur because the two operations of (a) unitary transformation
used to change the point of view followed by (b) projection on type
of evidence do not commute. This causes the judgments after each
piece of evidence to be order dependent, and the last point of view
has the greatest impact.

The quantum model requires fitting four parameters, a pair (xp,s,
xd,s) for strong evidence and another pair (xp,w, xd,w) for weak
evidence, to the 12 conditions in Table 1. We fit the four param-
eters by minimizing the SSE between the predicted and observed
mean probability judgments for each of the 12 conditions plus the
initial judgment, which produced a SSE � .0058 (SD of the
error � .022, R2 � .9986). The predicted values are displayed in
the last two columns of Table 1. This quantum model provides a
very accurate fit, and it is a clearly better fit than the averaging
model. Note that the quantum model correctly predicts all of the
recency effects, and it also correctly reproduces ordering of the
probabilities across all conditions. The only place where the model
makes a noticeable error is for the SP condition where it overes-
timates the strength of this evidence.

11 The relation between Udp � UdnUnp follows from the fact that Und �

d � n � Unp � p and so d � UdnUnp � p.
12 This matrix exponential is the solution to the Schrödinger equation. It

is a function that is commonly available in matrix programming languages.
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Summary of the Quantitative Test

We had three purposes for this quantitative test of the quan-
tum model. One was to extend the quantum model from the
conjunction– disjunction paradigm to the inference paradigm.
The second was to provide a detailed example of how to
construct a vector space and unitary transformations relating
different incompatible bases. The third was to provide a quan-
titative test that compares the quantum model with another
heuristic model, the averaging model, to explain order effects
on inference. The averaging model was chosen for comparison
because it was the strongest candidate to explain conjunction–
disjunction errors, and it was also designed specifically to
explain recency effects observed in inference tasks.

Both the quantum model and the averaging model used the
same initial belief, and both models were allowed to fit a
separate parameter to the SP, WP, SD, and WD types of
evidence. Thus both models had the same number of parameters
(although the relative complexity of these models remains un-
known). The models were fit to 12 different conditions in Table
1, which provides a challenging data set with strong recency
effects. It is not so easy to fit these 12 conditions, because the
averaging model did not even succeed in reproducing the cor-
rect ordering across all the conditions. The quantum model
succeeded in producing a very accurate fit to all 12 conditions.

The quantitative test reported here was based on the average
across eight individual criminal cases presented to the partici-
pants. Trueblood and Busemeyer (2010, in press) provided a
more thorough analysis of each of the eight cases, and they
showed that the quantum model continues to fit better than the
averaging model for all eight cases. Trueblood and Busemeyer
(2010, in press) also compared the quantum model to the
additive model (again with both using four parameters), and the
quantum model continued to fit better than the additive model.
More important, Trueblood and Busemeyer (2010, in press)
derived an important qualitative prediction from the quantum
model that distinguished the quantum model from the additive
model. This property was based on the fact that the addi-
tive model is insensitive to the interdependence of evidence,
whereas the quantum model is sensitive to this interdependence.
Trueblood and Busemeyer (2010, in press) reported the results
of a second experiment designed to test this property, and the
predictions strongly supported the quantum model over the
additive model. Finally, Trueblood and Busemeyer (in press)
compared the quantum model to a more complex version of the
anchor–adjust model (one in which the reference R was allowed
to be a free parameter and a logistic response function was used,
which entailed more parameters than the quantum model). They
compared the two models using a challenging set of order
effects on inference reported by McKenzie, Lee, and Chen
(2002), and the quantum model continued to produce a better fit
than the anchor–adjust model.

We do not claim that we have proven the quantum model to
be the correct explanation for recency effects on inference. Nor
have we proven that the quantum model is always better than
the anchor–adjust model. Much more research is needed to
establish these facts. What we have concluded is that this
quantitative test makes a convincing case for the quantum

model to be considered a viable new candidate for modeling
human inference, and it deserves to enter the model testing fray.

Other Applications and Extensions

The quantum model presented here has been successfully
applied to several other interesting areas, which demonstrates
the generality of the theory. Now we briefly summarize three of
these other applications. We also point out third area that needs
further theoretical and experimental research.

Attitude Questions

Question order effects are ubiquitous in survey research
(Moore, 2002), and quantum theory provides a natural expla-
nation for these effects. In one example of a Gallup poll (N �
1002) reported in Moore (2002), half the participants were
asked the pair of questions: “Is Clinton honest and trustwor-
thy?” and then “Is Gore honest and trustworthy?”; half were
asked the same pair of questions in the opposite order. Clinton
received 50% agreement when he was asked about first and
57% when asked about second; Gore received 68% when he
was asked about first and 60% when asked about second. (This
is called an assimilation effect because the candidates become
more similar after the first question). In another example of a
Gallup poll (N � 1015) presented by Moore (2002), half the
participants were asked “Is Gingrich honest and trustworthy?”
and then “Is Dole honest and trustworthy?”; the other half were
asked the same in the opposite order. Gingrich received 41%
agreement when he was asked about first and 33% when asked
about second; Dole received 60% agreement when he was asked
about first and 64% when asked about second (which is called
a contrast effect because the candidates become more different
on the second question). Two other kinds of order effects, called
additive effects and subtractive effects, are also found (Moore,
2002). In all of the studies reviewed by Moore (2002), order
effects were found so that p(AyBn) � p(BnAy) and p(AnBy) �
p(ByAn) was observed, where, for example, p(AyBn) is the
probability of a yes response to question A followed by a
response no to question B.

Z. Wang and Busemeyer (2010) assumed that answers to back-
to-back questions such as those reviewed in Moore (2002) are
made with a sequence of projectors. For example,
p(AyBy)���PBPA �����2 and p(ByAy) � ��PAPB �����2. If the pro-
jectors are noncommuting, then the sequence of projections pro-
duces order effects. This is the same assumption that we used to
predict conjunction and disjunction errors. Z. Wang and Buse-
meyer (2010) were able to derive all of the order effects reported
in Moore (2002) from this simple model; but more important, they
derived the following parameter free prediction from the model: If
questions are answered back to back and no new information is
presented in between questions, then

q � [p(AyBn)  p(AnBy)] 	 [p(ByAn)  p(BnAy)] � 0,

Surprisingly, for the three data sets that satisfied the test require-
ment, the observed results produced an average q � .008 (average
z test statistic � .44, N � 1000), which is a highly accurate
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prediction.13 These results provide strong evidence that the quan-
tum model can make precise and accurate predictions regarding
order effects on judgment.

Decision Making

The more specific quantum model described in the previous
section also has been used in two of our earlier applications in
decision making. Pothos and Busemeyer (2009) used this model
to explain a phenomenon called the disjunction effect (Shafir &
Tversky, 1992). Researchers have studied this most frequently
using the prisoner dilemma paradigm, which is a two-player
game in which each player can choose to defect or cooperate.
The disjunction effect refers to the surprising fact that the
probability of defecting when the move of the opponent is
unknown turns out to be less than the probability of defecting
when either of the opponent’s moves is known. The quantum
model used a four-dimensional vector space to represent the
four combinations of beliefs about the opponent’s move (oppo-
nent defects or not), and actions by the player (player defects or
not). This quantum model was compared to a Markov model
which used the same four states, and while the quantum model
provided a highly accurate description of the disjunction effect,
the Markov model failed to do so.

Busemeyer et al. (2009) used the same quantum model to
explain a phenomenon called the interference of categorization on
decision making. This phenomenon has been studied in a
categorization–decision task in which participants are shown a
face, and then they are asked to (a) categorize the face as good or
bad or (b) make a decision to act friendly or defensive or (c)
categorize the face and decide on an action. The interference effect
refers to the surprising fact that the probability of attacking was
higher when no categorization was made as compared to when the
action was preceded by a categorization. Once again, the quantum
model used a four-dimensional vector space to represent the com-
binations of categorizations (good, bad) and actions (friendly,
defensive). As before, the quantum model was compared to a
Markov model which used the same four states, and while the
quantum model provided an accurate description of the results, the
Markov model failed to so.

Following our initial applications of quantum theory to conjunc-
tion fallacies and the disjunction effect, several other physicists
have formulated alternative quantum models for these phenomena
(Aerts, 2009; Conte, et al., 2009; Khrennikov, 2010; Yukalov &
Sornette, 2010). However, all of these variations rely on the
common use of interference to account for these results.

Quantum Judgment Process

This article presents a theory of probability judgments, where
the judged probabilities are based on the postulates previously
described. There are at least two important questions that we still
need to address. How are these judgments made, and how does one
judgment affect a later judgment?

The first question is what cognitive mechanism is used to
produce a probability judgment? In physics, it is not possible to
ask an electron to judge the probability that it is in an excited
as opposed to a ground state. The physicist can only force the
particle by a measurement interaction to resolve into a definite

yes or no answer. Humans, however, are capable of making
judgments. As in the case with many Bayesian judgment mod-
els, in our quantum judgment model we remain agnostic about
the exact mechanism used to generate these judgments. But if
we were forced to speculate, then one idea is that beliefs in a
quantum judgment model are assessed in the same way as
familiarity in a memory recognition model. With regard to this
idea, it is useful to compare the quantum model with a memory
process model for probability judgments (MINERVA-DM;
Dougherty et al., 1999). According to the memory model,
probability judgments are determined by an echo intensity,
which equals the sum of the cubed inner products between
vectors representing the memory for the story and a vector
representing the question. According to the quantum model,
probability judgments are determined by a squared projection,
which equals the sum of the squared inner products between
each basis vector entailed by a question and a belief state based
on the story. In short, the squared projection from quantum
theory is analogous to the echo intensity from MINVERA-DM.

The second question is how does one judgment affect a later
judgment? According to our Postulate 4, the belief state is updated
when the judge concludes that a new event has occurred or a new
fact is true. This is the same principle that is used to update
conditional probabilities in classic probability theory. The two
probability theories only differ when incompatible events are
involved in the judgment. Now we examine the two types of
judgment problems reviewed in the sections “Qualitative Predic-
tions for Conjunction and Disjunction Questions” and “Quantita-
tive Predictions for Order Effects on Inference.”

Let us start with the juror inference task in which evidence is
presented followed by a probability judgment of guilt. The pre-
sentation of new evidence causes the state to be revised by pro-
jection of the state onto the subspace consistent with the evidence.
This is the same assumption that would be used in a Bayesian
updating model or the averaging model. After this update, the
person judges the probability of guilt. The belief state used to make
this judgment contains the square roots of the judged probabilities
for guilt and innocence. This judgment does not require the juror
to resolve his or her uncertainty about guilt (i.e., the juror does not
have to conclude whether the defendant is definitely guilty or not).
Therefore the judgment about guilt leaves the juror in the same
indefinite and uncertain state regarding guilt as before judgment. If
instead we ask the juror to resolve all uncertainty and make a firm
decision (definitely decide guilty vs. not guilty), then the conclu-
sion that the juror finally reaches about guilt could change the
juror’s state of belief from an indefinite to a definite state (and
affect later punishment judgments).

Finally, consider the probability judgment for the conjunction task.
If the person is asked to judge the probability that Linda is a feminist
bank teller, then the person first judges the probability that feminism
is true of Linda; second, the person projects the state onto the sub-
space for the feminism event in order to judge the conditional prob-
ability of bank teller given that Linda is truly a feminist. The person
only judges the probability that Linda is a bank teller at this point and

13 If new information is inserted between questions, thus violating a key
assumption used to derive the prediction, then we find strong and statisti-
cally significant deviations (see Z. Wang and Busemeyer, 2010).
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is not required to reach any firm conclusions. Therefore, the state
remains indefinite about the bank teller question after the probability
judgment about bank teller, and the final state immediately after this
sequence equals the projection on the feminism event. Now suppose
another question about Linda is asked afterwards. One hypothesis is
that the person remains passively in the state left over from the
previous judgment (the normalized projection of Linda on feminism).
However, people are not passive entities like particles in physics, and
instead they are capable of actively changing their own state (by
reading information or retrieving new thoughts). A more plausible
hypothesis is that the person refers back to the Linda story before
another judgment is made and thereby resets the state to one that is
based on the original Linda story.14

Contribution of Quantum Ideas to Psychology and
Rationality

Quantum probability theory introduces a new concept to the
field of psychology–that is, the concept of compatibility between
events. More accurately, we should say that this distinction is
“re-introduced” because Niels Bohr (one of the founding fathers of
quantum theory) actually borrowed the idea of complementarity
(Bohr’s term for incompatibility) from William James (one of the
founding fathers of psychology). Quantum theory also raises some
questions about the rationality of human judgments. Is this prob-
ability system rational, and if not, then why would people use this
system? These two issues are addressed in the following sections.

Compatibility

The key new principle that distinguishes classic and quantum
probabilities is the concept of compatibility. According to classic
probability, all events are subsets of a common sample space, S;
that is, all events are based on a common set of elementary events.
Questions about different events, A and B, must refer to this same
common space S, which makes the two questions compatible. In
the present application, each of the elementary events represents a
combination of feature values, and so a classic representation
requires one to assign probabilities to all of the combinations for
all of the features. If there are a lot of features, then this involves
a large number of elementary events, resulting in a very complex
probability function. To simplify this probability function, Bayes-
ian theorists often impose strong conditional independence as-
sumptions, which may or may not be empirically valid.

Quantum theory allows a person to use an incompatible represen-
tation. In other words, a person is not required to use a single (but very
large) common set of features and their combinations. Instead, one set
of features and their combinations could be used to answer a question
A, and another set of features and their combinations could be used to
answer another question B. The features can be selected to answer a
specific question. The person does not have to assign probabilities to
all the combinations from both questions A and B. Moreover, forming
all combinations for answering all possible questions could easily
exceed a person’s knowledge capabilities. This is especially true if
one considers all the various sorts of questions that a person might be
asked. It is more practical and efficient for a person to use an
incompatible representation, because one only needs to assign prob-
ability amplitudes to the set of feature patterns needed to answer a
specific question. Quantum theory achieves this efficiency with dif-

ferent basis vectors used to represent different questions within the
same vector space. Quantum theory retains coherence among these
different incompatible questions by relating them through a (unitary)
rotation of the basis vectors. In other words, one question might
require viewing the problem from a first perspective, but then a
second question might require viewing the problem from a different
perspective. The two perspectives are complementary in the sense that
they are systematically related by a rotational transformation.

An important question for any quantum model of cognition is
the following: when will two questions rely on a compatible versus
an incompatible representation? We argue that a compatible rep-
resentation may be formed under two circumstances. The first is
when the judge has received a sufficiently extensive amount of
experience with the combinations of feature values to form a belief
state over all of these combinations. If an unusual or novel com-
bination of events is presented, and the person judging has little or
no experience with such combinations, then the person may not
have formed a compatible representation and must rely on incom-
patible representations of events that use the same small vector
space but require the person to take different perspectives. In fact,
conjunction errors disappear when individuals are given direct
training experience with pairs of events (Nilsson, 2008), and order
effects on abductive inference also decrease with training experi-
ence (H. Wang, Todd, & Zhang, 2006). A second way to facilitate
the formation of a compatible representation is to present the
required joint frequency information in a tabular format (Wolfe,
1995; Wolfe & Reyna, 2009; Yamagishi, 2003). Instructions to use
a joint frequency table format would encourage a person to form
and make use of a compatible representation that assigns ampli-
tudes to the cells of the joint frequency tables.

Quantum Rationality

Both classic (Kolmogorov) and quantum (von Neumann) prob-
ability theories are based on a coherent set of principles. In fact,
classic probability theory is a special case of quantum probability
theory in which all the events are compatible. So why use incom-
patible events, and isn’t this irrational? In fact, the physical world
obeys quantum principles, and incompatible events are an essential
part of nature. Nevertheless, there are clear circumstances in which
everyone agrees that the events should be treated classically (such
as random selection of balls from urns or dice throwing). Perhaps
in these circumstances a person uses a quantum representation
because he or she is willing to trade some accuracy for a simpler
(lower dimensional) representation of uncertainty. Furthermore, it
remains an empirical question whether quantum or Bayesian meth-
ods are more useful for modeling probabilities of very complex
sequences when the joint probabilities are largely unknown.15

Also, incompatible events may be essential for understanding
commonly occurring but nevertheless very complex human inter-
actions. For instance, when one is trying to judge something as
uncertain as winning an argument with another person, the likeli-

14 One can go on asking how this is done using quantum computing and
information principles, and one answer is to use if–then types of control U
gates (see Nielsen and Chuang, 2000), but this is getting too far into the
realm of speculation with respect to the data at hand.

15 In this case, a Bayesian model must approximate with conditional
independence assumptions that could be false.
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hood of success may depend on using incompatible representations
that allows viewing the same facts from different perspectives. As
another example, judges or jurors in a courtroom setting must
adopt both prosecution and defense perspectives for viewing the
same facts (Trueblood & Busemeyer, in press).

Human judges may be capable of using either compatible or
incompatible representations, and they are not constrained or
forced to use just one. The use of compatible representations
produces judgments that agree with the classic laws of probability,
whereas the use of incompatible representations produces viola-
tions. But the latter may be necessary to deal with deeply uncertain
situations (involving unknown joint probabilities), where one
needs to rely on simple incompatible representations to construct
sequential probabilities coherently from quantum principles. In
fact, both types of representations, compatible and incompatible,
may be available to the judge, and the context of a problem may
trigger the use of one or the other (Reyna & Brainerd, 1995). More
advanced versions of quantum probability theory (using a Fock
space, which is analogous to a hierarchical Bayesian type model)
provide principles for combining both types of representations
(Aerts, 2009).

Concluding Comments

During the 19th century, it was hard for scientists to imagine
that there could be any geometry other than Euclidean geome-
try; but non-Euclidean geometries eventually became essential
for many important scientific applications. During the 20th
century, it was equally hard for scientists to imagine that there
could be any probability theory other than classic probability,
but quantum probability became essential to physics. Its impor-
tance for psychology is beginning to be recognized as well
(Shiffrin, 2010).

Quantum theory is one of the most elegant and internally
consistent creations of the human mind. It was developed by
several ingenious physicists as a way to assign probabilities to
physical events. In this article, we have explored its potential
for assigning probabilities to psychological events, specifically
in the context of human judgment. In fact, we have utilized the
basic axioms of quantum probability theory and simply aug-
mented them with an additional postulate, regarding the order in
which multiple questions are evaluated. On the basis of uncon-
tentious assumptions regarding the relatedness of different
pieces of information and the similarity between different in-
stances, we showed how it is possible to account for many of
the basic findings in human probabilistic judgment. The main
aspect of quantum theory that makes it successful relates to
order effects in probability computations. Order effects arise in
quantum theory because it is a geometric theory of probabili-
ties: probabilities are computed from projections to different
subspaces. But as we have shown, the order with which these
projections occur typically can affect the eventual outcome.
Empirical findings on human judgment indicate strong order
effects as well, and it is for this reason that quantum theory
appears to provide an intuitive and parsimonious explanation
for such findings. We conclude that quantum information pro-
cessing principles provide a viable and promising new way to
understand human judgment and reasoning.
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Appendix A

The first part of this appendix provides a simple geometric and
numerical example of an order effect based on the vectors shown
in Figure 1 (visual display limits this to three dimensions). Our
example expresses all the vectors in terms of coordinates with
respect to the standard X, Y, Z basis in Figure 1. In this figure, one
basis is generated by the X � [1, 0, 0], Y � [0, 1, 0], and Z � [0,
0, 1] basis vectors. The blue X, Y, Z basis could represent three
mutually exclusive and exhaustive answers to an X or Y or Z
question. A second basis is generated by the U � [1/�2, 1/�2, 0],
V � [1/2, 	1/2, 1/�2], and W � [	1/2, 1/2, 1/�2] basis vectors.
The orange U, V, W basis could represent three mutually exclusive
and exhaustive answers to another incompatible U or V or W
question. The initial state is represented by the black vector S �
[	.6963, .6963, .1741] in the figure.

To become familiar with the quantum method of calculating
probabilities, let us first compute the probabilities for saying yes to
question X (squared length of the projection of S onto the ray
spanned by X), as well as the probability of saying yes to question
W (squared length of the projection of S on the ray spanned by W).
In general, the projection of a state onto a ray is determined by the
inner product of the state and the basis vector that spans the ray.
The inner product between a vector T with coordinates [t1, . . . , tN]
and another vector S with coordinates [s1, . . . , sN] is defined (with
Dirac bracket notation) as �T�S���(ti

� � si). (Here ti
� is the conjugate

of ti, but in this example, all of the coordinates are real and so ti
�

� ti). First, consider the probability of an individual choosing X
when asked question X or Y or Z from state S. The event of
responding yes to X is represented by a ray spanned by the basis
vector X. The inner product between X and S equals �X�S��(1) �
(	.69631)  (0) � (.69630)  0 � (.17410) � 	.6963, the projec-
tion of S onto X equals the point labeled A � (	.6963) � X in the

figure, and the probability of choosing this answer equals
��	.6963 � X��2 � �	.6963�2 � ��X��2 � (.6963)2 � 1 � .4848. Note
that it is arbitrary whether the basis vector X or X� � (	X) is used
to span the ray representing question X, because they both span the
same ray. In the latter case, the inner product equals �X��S� �
.6963, yet the projection is exactly the same A � (.6963) � X� �

(Appendices continue)

Figure 1. Order effect based on the vectors described in Appendix A.
One basis is generated by the X � [1, 0, 0], Y � [0, 1, 0], and Z � [0, 0,
1] basis vectors. The blue X, Y, Z basis could represent three mutually
exclusive and exhaustive answers to an X or Y or Z question. A second
basis is generated by the U � [1/�2, 1/�2, 0], V � [1/2, 	1/2, 1/�2],
and W � [	1/2, 1/2, 1/�2] basis vectors. The orange U, V, W basis could
represent three mutually exclusive and exhaustive answers to another
incompatible U or V or W question. The initial state is represented by the
black vector S � [	.6963, .6963, .1741].
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(	.6963) � X. In other words, the question is represented by a ray,
and the ray spanned by the basis vector X does not have a positive
or negative direction. Next consider the probability of an individ-
ual choosing W when asked question U or V or W from state S. The
projection of S on the basis vector W is determined by the inner
product �W�S��(	1/2) � (	.6963)  (1/2) � (.6963)  (1/�2) �
(1741) � .8194, the projection equals the point labeled B �
(.8194) � W, and the probability of choosing this answer equals
��.8194 � W��2 � �.8194�2 � ��W��2 � (.8194)2 � 1 � .6714.

To examine the order effect, compare (a) asking U first and then
X with (b) asking X first and then U. (Consider U the bank teller
event, and consider X the feminist event.) Note that in the figure,
the probability of X given U equals ��X�U��2 � .50 � ��U�X��2,
which also equals the probability of U given X. In this example, the
inner product between the initial state S and the basis vector U is
0, �S�U� � 0, so these two vectors are orthogonal. (We made these
two vectors orthogonal so that it is easy to visualize the relation in
the figure. We could easily adjust all the vectors slightly so that the
probabilities are small but not zero and make the same following
point.) The fact that S and U are orthogonal implies that the
probability of a person saying yes to question U directly from the
initial state S is 0. But if we first ask whether X is true, then there
is a probability (.4848) of answering yes; and if the answer is yes
to X, then the projection of X on U equals (1/�2) � U, and so now
there is a probability (1/�2)2 � .50 of saying yes to U given yes
to X. Thus, the probability from the direct path S3 U equals 0, but
the probability of the indirect path S 3 X 3 U equals .4848 �
.50 � .2424. Therefore, this is an example in which the joint
probability of first saying yes to X and then yes to U exceeds the
single probability of saying yes to U when it is asked first.

The second part of this appendix explains why we can always
choose a basis using basis vectors that produce amplitudes which
are square roots of probabilities. The reason being that at the time
of judgment, the phase of an amplitude is not meaningful, because
it is not unique, and so it can be ignored, and we only need to
consider the magnitude.

Consider a basis {�E1�, . . . , �EN�} for describing a state ��� in
an N dimensional space. The state vector ��� can be represented in
the �Ej� basis as a linear combination

��� � ��Ej��Ej���.

The amplitude �Ej��� assigned to the basis vector �Ej� equals the
inner product between the state vector and the basis vector. In
general, this inner product can be a complex number expressed as
�Ej��� � Rj � ei�j, with 0 � Rj � 1, and Rj

2 equals the probability
for the ray spanned by the basis vector �Ej�. Note that ei�j � e	i�j �
1 so that

��� � ��Ej��Ej��� � ��Ej�
ei�j � e	i�j��Ej���

� �ei�j � �Ej� � 
e	i�j �Ej���� � ��Fj��Fj���.

What we have done here is change from the �Ej� basis to the �Fj�
basis for describing the state vector ���. But �Fj� � ei�j � �Ej� spans

the same ray as �Ej�, and the squared magnitude of the amplitude
��Fj����2 � �e	i�j�Ej����2 � Rj

2 produces the same probabilities as
��Ej����2 � Rj

2. Suppose a question about an event corresponds to
a subspace spanned by {�Ej�, j � X, where X is the set of basis
vectors that define the event in question}. This subspace corre-
sponds to the projector PX � ��Ej��Ej� for j�X. Then the matrix
representation of PX with respect to the �Ej� basis is the N � N
matrix PX with �Ej�PX�Ej� � 1 in rows j � X and �Ei�PX�Ej��0
otherwise; the matrix representation of PX with respect to the �Fj�
basis is exactly the same matrix PX with the value �Fj�PX�Fj� �
e	i�j � �Ej�PX�Ej� � ei�j � �Ej�PX�Ej� � 1 in row i � X and zero
otherwise. Finally, the probability of the event in question equals
��PX�����2 � ��PX � E��2 � ��PX � F��2. Therefore, we can represent the
state using either basis. To make the state more meaningful for
cognition, we can choose to orientate the basis vectors so that they
represent the state vector by using the square roots of probabilities.
Then why do we need the phases?

The phases of the amplitudes are critical when a unitary trans-
formation is used to change from one basis to another basis.
Suppose A is an N � 1 unit length column vector with complex
coordinates [a1, . . . , aN] � [�a1�ei�1, . . . , �aN�ei�N]; for this vector,
we can define a unitary matrix UA � diag[e	i�1, . . . , e	 i�N] so
that (UA � A) is now a positive real unit length vector containing
coordinates [�a1�, . . . , �aN�] in this new basis. Suppose B is another
N � 1 unit length column vector with coordinates [b1, . . . , bN] �
[�b1� � ei�1, . . . , �bN� � ei�N]; again for this vector we can define a
unitary matrix UB � diag[e	i�1, . . . , e	i�N] so that (UB � B) is also
a positive real unit length vector with coordinates [�b1�, . . . , �bN�].
Finally, suppose the original complex vectors A and B are related
by an N � N complex valued unitary transformation matrix UBA so
that B � UBA � A. Then we have the following relations:

B � UBA � A3 (UB � B) � (UB � UBA � UA
	1)�(UA � A).

The positive real vector (UA � A) produces the same probabilities
for events as the complex vector A, the positive real vector (UB �
B) produces the same probabilities for events as the complex
vector B, and the matrix (UB � UBA � UA

	1) is the unitary matrix that
transforms (UA � A) into (UB � B). So we get the same exact answers
using {A, B, UBA} or {(UA � A), (UB � B), (UB � UBA � UB

	1)}, and
the latter only uses the square roots of probabilities. However, the
phases remain important for the unitary transformation because �bj�
� ��uijaj� � ��uij� � �aj�, and this is exactly where the interference
enters the theory.

The unitary transformation can be interpreted as a fully inter-
connected hidden unit neural network: input (UA � A) 3 associa-
tive network (UB � UBA � UA

	1)3 (UB � B) output. Instead of using
logistic hidden units as in a standard connectionist model, the
unitary transformation uses sine-cosine units. We only require that
the output amplitude (UB � B) be explicitly available for awareness
or reporting, and the phase captures implicit memory interference
effects produced by the wave mechanical oscillations of the un-
derlying neural based retrieval system represented by the unitary
operator (Acacio de Barros & Suppes, 2009).

(Appendices continue)
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Appendix B

In this appendix, we aimed to prove the following two propo-
sitions:

1. The conjunction and disjunction fallacies occur only if the
events are incompatible.

2. The simultaneous explanation of both the conjunction
and disjunction fallacies requires the following order constraint:

��PF PB�����2 � ��PB PF�����2.

But before we begin, recall that ��� is a vector within a finite
dimensional vector space defined on a field of complex numbers
(technically, a finite dimensional Hilbert space). PA denotes a
projector on the subspace A which is a Hermitian matrix that
satisfies PA � PA � PA.

Proposition 1: The conjunction and disjunction fallacies oc-
cur only if the events are incompatible.

Proof:
If the events are compatible, then the projectors commute, PB

PF � PF PB, and the interference term equals

��B, �F��B, F� � ���PBP�FPB PF��� � ���PBP�FPF PB���

� 0 because P�FPF � 0.

If the interference term is zero, then the probability of the single
event, shown on the left-hand side of Equation 1, is simply the sum
of the two conjunction probabilities, and so the left-hand side must
be greater than or equal to each individual conjunction probability
on the right-hand side. QED.

We need prove two lemmas before proving the second propo-
sition.

Lemma 1: The interference term for event �F is the negative
of the interference term for event F.

Proof:

1 � ��PF�����2 � ��P�F�����2

� ���PFPB�����2 � ��PFP�B�����2 � �F] �

���P�FPB�����2 � ��P�FP�B�����2 � ��F]

� ���PFPB�����2 � ��P�FPB�����2] �

���PFP�B�����2 � ��P�FP�B�����2] � ��F � ��F�

� ���PB�����2 � ��PF��B���2 � ��PB�����2 � ��P�F��B���2] �

���P�B�����2 � ��PF���B���2 � ��P�B�����2 � ��P�F���B���2] �

��F � ��F� �

��PB�����2 � ���PF��B���2 � ��P�F��B���2] �

��P�B�����2 � ���PF���B���2 � ��P�F���B���2] �

��F � ��F� �

��PB�����2 � 1 � ��P�B�����2 � 1 � ��F � ��F� �

1 � ��F � ��F� 3 ��F � ��F� � 0. QED.

Lemma 2: The following two expressions for the interference
terms are equivalent:

�B � ��B, �F��B, F� � ��B, F��B, �F� �

2 � �Re����PB PF���� � ��PBPF�����2}

�F � ��F, �B��F, B� � ��F, B��F, �B� �

2 � �Re����PF PB���� � ��PFPB�����2}

Proof:
Note that ��B, F��B, �F� � ��B, �F��B, F�� (where � indicates the

conjugate) so that

�B � ��B, �F��B, F� � ��B, F��B, �F� � 2 � Re���B, �F��B, F��

�F � ��F, �B��F, B� � ��F, B��F,�B� � 2 � Re���F, �B��F, B��,

where Re(x) is the real part of the complex number x. It then
follows that

�B � 2 � Re���B,�F��B, F�� � 2 � Re����P�F PBPB PF���� �

2 � Re����P�F PB PF���� �

2 � Re����
I � PF�PB PF���� �

2 � �Re����PB PF���� � ��PBPF�����2}.

A similar argument applies to produce the alternative expression
for �F. QED.

Proposition 2. The simultaneously explanation of both the
conjunction and disjunction fallacies requires the following order
constraint: ��PF PB�����2 � ��PB PF�����2.

Proof:
Recall from Equation 1 the interference term from bank teller

event equals �B � ��B, �F��B, F�  ��B, F��B, �F�, and the
conjunction error requires �B � 	 ��PBP�F�����2. Recall from
Equation 2 that the interference term from the not-feminist event
equals ��F����F, B���F, �B�  ���F, �B���F, B�, and the dis-
junction error requires ��F � 	��P�FPB�����2. Also note from
Lemma 1 that ��F � 	�F. From this last expression, it follows
that 	�F � 	��P�FPB�����2 which then implies that �F �
��P�FPB�����2. Using the new expression for the interference based
on Lemma 2, we see that the two inequalities require that

�F � 2 � �Re����PF PB���� � ��PFPB�����2} �

��P�FPB�����2 � ��PBP�F�����2 �

2 � �Re����PB PF���� � ��PBPF�����2} � �B.

But Re[���PF PB���] � Re[���PB PF���], which implies that
	��PFPB�����2 � 	 ��PBPF�����2, and therefore we require
��PFPB�����2 � ��PBPF�����2. QED.

(Appendices continue)
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Appendix C

According to the vignette version of the memory model, infor-
mation about the story is stored in a memory trace (column) vector
denoted T. A single question A is represented by a probe (column)
vector of the same length, PA, with values assigned to features
related to both the question and the story, and zeros otherwise.
Retrieval strength (echo intensity) to a question is determined by
the inner product between the memory trace vector and the ques-
tion probe vector, IA � [�PA�T�/NA]3. Note that the inner product is
normalized by dividing it by a number, NA, that depends on the
number of nonzero elements in the question probe vector. Fre-
quency or relative frequency judgments are assumed to be propor-
tional to echo intensity (which requires the intensity to be nonneg-
ative). A conjunctive question L and U is represented by a single
conjunctive probe, which is the direct sum (concatenation) of two
minivectors (this is the same as summing two nonoverlapping
vectors). If PL is a row minivector for L with length NL, and PU is
a row minivector for U with length NU, and 0N is a row vector of
N zeros, then PL&U � [PL�PU] � [PL�0NL][0NU�PU] � PL  PU.

The echo intensity of this conjunction probe produces something
akin to an average,


IL&U�1/3 � �PL&U�T�/NL&U � �PL � PU�T�/NL&U �

�PL�T�/NL&U � �PU�T�/NL&U �


NL/
NL � NU� � 
IL�
1/3 � 
NU/
NL � NU� � 
IU�1/3

which is a weighted average �

wL � 
IL�
1/3 � wU � 
IU�1/3,

with weights wL � NL/(NLNU) and wU � NU/(NLNU). The
intensity is the cube [(IL&U)1/3]3 � IL&U, and the cubic function is
monotonically increasing, so the intensity is ordered the same as
(IL&U)1/3.
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