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Zeno’s paradox in decision-making
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Classical probability theory has been influential in modelling decision

processes, despite empirical findings that have been persistently paradoxical

from classical perspectives. For such findings, some researchers have been

successfully pursuing decision models based on quantum theory (QT). One

unique feature of QT is the collapse postulate, which entails that measure-

ments (or in decision-making, judgements) reset the state to be consistent

with the measured outcome. If there is quantum structure in cognition, then

there has to be evidence for the collapse postulate. A striking, a priori pre-

diction, is that opinion change will be slowed down (under idealized

conditions frozen) by continuous judgements. In physics, this is the quantum

Zeno effect. We demonstrate a quantum Zeno effect in decision-making in

humans and so provide evidence that advocates the use of quantum principles

in decision theory, at least in some cases.
1. Introduction
The question of the descriptive and normative foundations of decision-making

has been a focus of scientific inquiry since antiquity. One influential approach

has been classical, Bayesian probability theory. Bayesian principles are sup-

ported by powerful justifications (e.g. the Dutch book theorem) and strong,

entrenched intuition. Bayesian models are considered normative, that is, they

describe how decisions ‘should’ be taken, given the information available.

Although research on rationality typically concerns human decision-making,

Bayesian principles are often motivated from adaptive considerations, that

are equally relevant to human and non-human decision-makers [1].

Bayesian cognitive models have been successful [2]. However, occasionally,

researchers have observed a persistent divergence between Bayesian prescription

and behaviour. These results are most famously associated with the influential

Tversky–Kahneman research tradition (e.g. [3]), where the decision-makers are

humans, but there have also been studies showing other animals, such as maca-

ques, displaying similar violations of Bayesian prescription [4]. These findings

have created deep theoretical divides, with some researchers rejecting entirely a

role for formal probability theory in cognitive modelling.

As long recognized, the Bayesian framework for probabilistic inference is not

the only one. We call quantum theory (QT) the rules for assigning probabilities

from quantum mechanics, without the physics. QT has characteristics, such as

contextuality and interference, which align well with intuition about cognitive

processes. Some researchers have been exploring whether QT could provide an

alternative, formal basis for cognitive theory [5–10]. Note that QT cognitive

models are unrelated to the highly controversial quantum brain hypothesis

[11]. If there is (some) quantum structure in cognition, then cognitive processes

must be consistent with the collapse postulate in QT, which requires that the cog-

nitive state changes when a measurement (e.g. decision) is performed to reflect

the measurement outcome. The idea that decisions can have a constructive influ-

ence is not new [12,13]. However, on the assumption of quantum structure in

cognition, we are led to the striking prediction that intermediate judgements

can inhibit opinion change (in a specific way predicted by QT), even in the pres-

ence of accumulating evidence. In physics, it can be predicted that a continuously

observed unstable particle never decays [14]; this remarkable effect is called the

quantum Zeno (QZ) effect. If a similar effect can be observed in decision-

making, this would provide compelling evidence for a role for QT in cognitive
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theory. Note that it has previously been suggested that a ver-

sion of the QZ effect is present in bistable perception [15];

however, we aim to improve on this by presenting a formalism

more amenable to direct testing.

In our experiments, participants read a story about a hypothe-

tical murder suspect, Smith. Smith was initially considered

innocent by most participants. Then, at each time step, partici-

pants were presented with an (approximately) identically strong

piece of evidence suggesting that Smith was in fact guilty. The

task was designed as a generic situation of opinion change,

from presented information. We develop a QT model for how

the opinion state (regarding Smith’s guilt) changes with evidence,

and we also construct a Bayesian model of the same process,

which matches the QT model in the case of no intermediate

judgements. From the QT model, we extract the surprising

prediction of a QZ effect when intermediate judgements are

made and contrast this with the prediction of the Bayesian model.
:20160291
2. The quantum Zeno prediction in decision-
making

We begin with an idealized model for opinion change in our

experiments, designed to illustrate the effect. Consider a two-

dimensional quantum system, whose state space is spanned

by two orthogonal states I and G, corresponding to the beliefs

that Smith is either innocent or guilty. Presentation of evidence

is represented by a rotation of the state such that an initial state I
evolves towards G, with time (pieces of evidence).

The probability that a measurement of the state will reveal

I, at each of N � 1 judgements at times T/N, 2T/N . . . T
is (assuming a typical time independent Hamiltonian, all

derivations in the electronic supplementary material):

Prob I at time
T
N

^ I at
2T
N

^ . . .

� �
¼ cos2N g

N

� �
: ð2:1Þ

Here g is a dimensionless constant that encodes the effect of the

evidence in the absence of intermediate judgements. As the

number of measurements, N, increases, there is a decreasing

probability that the system will change from I to G. As N!
1, the probability that the system will change state vanishes,

even after large times (number of pieces of evidence). This is

the famous QZ effect [14], often described informally as

proof that ‘a watched pot never boils’. (The name comes from

the (loose) analogy with Zeno’s arrow paradox [16].)
3. The quantum model
The derivation leading to equation (2.1) involves a number of

assumptions that will not hold in realistic decision-making set-

tings. However, we can still predict a weakened QZ effect, as a

slowing down (in a specific way) of the evolution of the

measured opinion state, even under more realistic conditions.

Two assumptions need to be relaxed. First, realistic measure-

ments are not perfectly reliable. For each measurement, there

is a small probability that a participant will incorrectly provide

a response not matching his/her cognitive state. This is proble-

matic when several identical measurements are made, since

error rates may compound. Imperfect measurements require

the use of positive-operator valued measures (POVMs), instead

of projection operators. Instead of freezing as N! 1, some evol-

ution may still occur, but it will depend only on details of the

imperfect measurements [17].
Second, evolution of cognitive variables will not, in gen-

eral, be well modelled by a time independent unitary

evolution. For the situation of interest, we may still assume

the dynamics are approximately unitary (see the electronic

supplementary material for more details). However, it may

be that the weight given by participants to a piece of evidence

depends on its position in the sequence of evidence, implying

a primacy or recency effect. In order to capture this, we must

employ time-dependent unitary evolution.

A form for the time-dependent unitary evolution general

enough for our purposes is [15,18]

U(tm, tn) ¼ exp (�i sxB(tm, tn)),

where sx is one of the Pauli matrices [19]. The function

B(tm, tn) specifies the angle a participant’s cognitive state is

rotated through when presented with pieces of evidence tm

through tn. A form for B(tm, tn) involving two parameters is

proposed in the electronic supplementary material. If tm

is the time of presentation of the mth piece of evidence, then

B(tm, tn) ¼ a
Xn

i¼mþ1

ai e�bði�m�1Þ2 :

Here the ai represents the strengths of the individual pieces of

evidence, as measured in isolation. Thus, the first piece of evi-

dence in a sequence is given a weight approximately a1 the

second is given weight approximately a2e2b, and so on.

Because we expect the cognitive state to tend towards a fixed

point as we accumulate more evidence, it seems natural to

assume that presenting a piece of evidence later in a sequence

should have a smaller effect on the cognitive state than if the

same piece of evidence had been presented earlier. This is func-

tionally equivalent to assuming diminishing returns. However,

other types of order effect have been observed in studies of

belief updating [20], and this form for B(tm, tn) can also

encode a recency effect, depending on the parameter b.

The effect of imperfect judgements is encoded by a simple

POVM operator with one free parameter, e: The parameter e

reflects how error-less measurements are. For example, if a par-

ticipant considers Smith innocent, then the probability of

responding innocent is only 1� e, leaving a probability

to respond guilty of e: Full details are given in the electronic

supplementary material.

Using the above, we can show that:

Prob(I at tjI at 0Þ ¼ ð1� eÞ2cos2ðBð0, tÞÞ
þ eð1� eÞsin2ðBð0, tÞÞ: ð3:1Þ

The above equation allows us to determine e and B(0, t),
from empirical classical data on the probability of judging

Smith’s innocence, assuming innocence initially and vary-

ing the number of pieces of evidence presented (without

intermediate judgements).

We can also use equation (3.1), together with some assump-

tions about the way judgements change the cognitive state

classically, to construct a Bayesian model of the same

decision-making process. We will do this below, but we note

that in the case of no intermediate judgements the QT and

Bayesian models will coincide. This means that we can use

data obtained in the absence of any intermediate judgements

to fix all the parameters in both the QT and Bayesian models.

Our central predictions, of the specific way in which intermedi-

ate judgements affect opinion change, will therefore be

parameter free.

http://rspb.royalsocietypublishing.org/
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4. The quantum Zeno prediction
We are now ready to develop the prediction of a QZ effect in

this decision-making setting. We will show that a participant

deciding Smith’s innocence will be less likely to change his/

her initial opinion as the number of intermediate judgements

increases. In the electronic supplementary material, we com-

pute the probability of judging innocent at each of the

intermediate judgements and the final one (N in total),

given an initial innocence judgement. By analogy with the

physics case, this can be called survival probability [14].

The result is

ProbQ(’survival’, N)

¼ Prob I at
T
N

^ I at
2T
N

^ . . . I at T
� �

¼ ð1� eÞNþ1
YN�1

i¼0

cos2 B
iT
N

,
(iþ 1)T

N

� �� �

þ eð1� eÞN sin2 B
ðN � 1ÞT

N
, T

� �� �

�
YN�2

i¼0

cos2 B
iT
N

,
ðiþ 1ÞT

N

� �� �
þOðe2Þ:

ð4:1Þ

The first term in this expression corresponds to the probability

that the cognitive state is always consistent with innocent, and

all the judgements reflect this. The second term corresponds to

the possibility that the state changes between the second to last

and final judgements, but the participant nevertheless

responds ‘innocent’ due to the imperfect measurements.

Further terms would correspond to more judgements not

matching the cognitive state, or to the state changing back

from innocent to guilty, these terms are negligible compared

with those included in equation (4.1). If e ¼ 0, b ¼ 0 and the

ai’s are equal then equation (4.1) reduces to equation (2.1).
5. Constructing a matched Bayesian model
The QT model assumes that evidence changes the opinion

state (as determined by equation (3.1)), that judgements

may be imperfect and that judgements are constructive. The

third property is the characteristically quantum one, so with

the first two elements, we constructed an alternative,

Bayesian model for survival probability. It is helpful to

denote by IB the event where a participant believes Smith is

innocent, and IR the event where a participant responds that

Smith is innocent, and similarly for guilty.

The expression we are interested in is the Bayesian ana-

logue of equation (4.1); the survival probability after T pieces

of evidence have been presented, given that N judgements

have been made. This is

ProbCð’survival’, NÞ ¼ Prob

�
IR at time T ^ IR at time

ðN � 1ÞT
N

^ . . . IR at time
T
N
jIR at 0

�
:

We want to construct this so that it matches the quantum

expression in the case of no intermediate judgements (N ¼ 1).

We will sketch how to do this here, full details are given in

the electronic supplementary material.

As already noted, because equation (3.1) does not involve

any intermediate judgements it may be interpreted
classically. We can therefore read off

Prob(IB at time tjIB at time 0) ¼ cos2ðBðt, 0ÞÞ,

Prob(GB at time tjIB at time 0) ¼ sin2ðBðt, 0ÞÞ,
Prob(IR at time tjIB at time t) ¼ ð1� eÞ,
Prob(GR at time tjIB at time t) ¼ e

Prob(GR at time tjGB at time t) ¼ ð1� eÞ,
Prob(IR at time tjGB at time t) ¼ e,

(since the probabilities for judgements given cognitive states

do not depend on the time, we may denote them simply as

Prob(IRjIB), etc.). The probabilities involving transitions

from guilty cognitive states to innocent ones are assumed to

be 0. We therefore have our Bayesian survival probability

for the case of no intermediate judgements.

When there are intermediate judgements made we need

to know the appropriate function BC(tm, tn) for the evolution

of the state. The form we have been using for B(tm, tn) for the

QT model is difficult to motivate in the Bayesian case because

the strength of the primacy/recency effect depends on the

time since the last judgement rather than on the total time,

effectively being ‘reset’ after every judgement. This is very

natural from a QT perspective, however, the judgements

are not expected to have such an effect classically. It is there-

fore more plausible to consider a slightly different function in

the classical case, BC (tm, tn), given by

BC(tm, tn) ¼ a
Xn

i¼mþ1

aie
�bði�1Þ2 :

This differs from B(tm, tn) only in the fact that the function

multiplying the evidence strength depends only on how

many pieces of evidence have been presented before it, and

not on whether any intermediate judgements have been

made. Note that BC(0, tm) ¼ B(0, tm) since the quantum and

classical models should agree in the absence of intermediate

judgements. In particular, this means fitting either function to

the data in the absence of intermediate judgements produces

the same set of parameters, a, b for both models.

In fact, we could continue to use the function B(tm, tn) in the

Bayesian analysis if we desire, despite the fact it is poorly

motivated. It turns out that the Bayesian model performs

better when using BC(tm, tn), so we will work exclusively

with this.

We can use the information above to derive a prediction

for the Bayesian survival probability. To do so, we make

two assumptions, first that e is small, and secondly that the

probabilities involving transitions from guilty cognitive

states to innocent ones are negligible. We can then show

(details in the electronic supplementary material)

ProbCð’survival’, NÞ

¼ Prob

�
IR at time T ^ IR at time

ðN � 1ÞT
N

^ . . . IR at time
T
N

����IR at 0

�

¼ ð1� eÞNþ1cos2ðBCð0, TÞÞ

þ e(1� e)N sin2 BC (N � 1)T
N

, T
� �� �

� cos2 BC 0,
(N � 1)T

N

� �� �
þO(e2):

ð5:1Þ
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The main feature of the Bayesian prediction is a reduction

of survival probability with more intermediate judgements,

because of a probability of error at each judgement. This

contrasts sharply with the QT prediction, equation (4.1). We

are now ready to test the Bayesian and QT predictions in a

realistic decision-making scenario.

We noted above that the Bayesian model does not

include constructive influences from intermediate judgements.

Would it be possible to include such influences? One way to do

this might be to regard the memory of having made a previous

judgement of guilt/innocence as additional evidence in favour

of that conclusion. At the very least such an approach would be

ad hoc, but it would also require fine tuning to ensure such a

model reproduced the qualitative features of the QT model.

We will not pursue these ideas further here.
B
283:20160291
6. Experimental investigation
(a) Participants
We ran the same experiment twice (Experiments 1 and 2),

with different samples, solely as a replication exercise. Thus,

we describe the two experiments together. For Experiment 1,

we recruited 450 experimentally naive participants, from

Amazon Turk. Participants were 49% male and 50% female

(1% did not respond to the gender question). Most participants’

first language was English (98%) and the average age was

34.8. For Experiment 2, we recruited 581 experimentally

naive participants from CrowdFlower. Participants were 39%

male and 61% female (less than 1% did not respond to the

gender question). Most participants’ first language was English

(96%) and the average age was 37.4. Apart from the recruit-

ment process, the experimental materials were identical for

both experiments. The experiment lasted approximately

10 min; Amazon Turk participants were paid $0.50 and

CrowdFlower participants $1.00.

(b) Materials and procedure
The experiment was implemented in Qualtrics. Participants

were first provided with some basic information about the

study and a consent form, complying with the guidelines of

the ethics committee of the Department of Psychology, City

University London. If participants indicated their consent to

take part in the study, then they received further instructions

(see below), otherwise the experiment terminated.

Our paradigm extends the one of Tetlock [21], which

was designed to test for primacy effects in decision-making.

After the screens regarding ethics information and consent,

all participants saw the same initial story, regarding Smith,

a hypothetical suspect in a murder (adapted from [21] p. 287):
Mr. Smith has been charged with murder. The victim is Mr. Dixon.
Smith and Dixon had shared an apartment for nine months up
until the time of Dixon’s death. Dixon was found dead in his
bed, and there was a bottle of liquor and a half filled glass on his
bedside table. The autopsy revealed that Dixon died from an over-
dose of sleeping pills. The autopsy also revealed that Dixon had
taken the pills sometime between midnight and 2 am. The prosecu-
tion claims that Smith slipped the pills into the glass Dixon was
drinking from, while the defense claim that Dixon deliberately
took an overdose.
Participants were then given a short set of questions regard-

ing some details of what they had just read, in order to check

that they were engaging with the task. These questions were
intended to reinforce memory of the story details and to

check for participants who were not concentrating on the

experiment. The small number of participants who failed to

correctly answer these questions were excluded from sub-

sequent analysis. Participants were then asked whether they

thought Smith was likely to be guilty or innocent, based on

the information provided in the vignette, and to provide a

brief justification for their response, as a further check that

they were adequately concentrating on the task and to

reinforce memory for the response. After every judgement

in the study, participants also saw a screen reminding them

of their response. The first response is critical, since all quan-

tum model predictions are based on knowledge of the initial

(mental) state. Most participants (Experiment 1: 95%, Exper-

iment 2: 89%) initially assumed innocence, and so we

excluded participants who initially assumed guilt. (Those

participants in fact saw an analogous experimental pro-

cedure, with innocent rather than guilty evidence, however,

the number of participants involved was too small to allow

meaningful conclusions to be drawn.)

Participants were split into six groups. The first group was

presented with 12 pieces of evidence suggesting that Smith was

guilty (participants were told they would only see evidence

presented by the prosecution and not by the defense). Each

piece of evidence was designed (and pilot tested) to be indivi-

dually quite weak (electronic supplementary material,

table S1), but cumulatively the effect was quite strong. In

fact, participants were directly told that each piece of evidence

would be likely to be weak and/or circumstantial. After read-

ing all 12 pieces of evidence, participants were again asked

whether they thought Smith was guilty or innocent, and

again asked to justify their choice. Participants in the other

five groups were shown the same evidence in the same way,

and asked to make the same final judgement, but were also

asked to make intermediate judgements (and justify their

responses). These intermediate judgements were worded in

the same way as the initial and final ones, and were requested

at intervals of either 1, 2, 3, 4 or 6 pieces of evidence. A small

number of participants gave justifications for their judgements

suggesting they were not properly engaging with the task, and

were therefore excluded from the analysis.

The order of presentation of the evidence was partly

randomized. The pieces of evidence were split into four

blocks of three pieces of evidence each. The order of the

blocks was fixed, but the order of the pieces of evidence

within each block was randomized. The reason we randomized

evidence order in this way, rather than say simply randomizing

the order of presentation of all pieces of evidence, is that there

are a total of 12!, or about 480 million, possible orderings of the

evidence, so it is impossible to capture a representative sample

of the orderings by simple randomization.

After the main part of the experiment, participants were

shown the evidence they had encountered and were asked

to rate the strength of each piece on a [1–9] scale (electronic

supplementary material, table S1).
(c) Results and model fits
Empirical assessment involved two steps. First, without inter-

mediate judgements (i.e. at the first judgement made after

having seen some evidence) the data are classical and simply

informs us how opinion changes with evidence. Using

equation (3.1), we can determine e and B(tm, tn) i.e. the

http://rspb.royalsocietypublishing.org/
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parameter specifying the POVMs for Smith’s innocence, guilt

and the function specifying the way evidence alters the opinion

state (the same parameter values are used in both the Bayesian

and QT models). Second, we examined whether the inter-

mediate judgements produce the QZ effect (a slowing down

of opinion change, as predicted by the QT model, equation

(4.1)) or not (in which case the Bayesian model should fit

better). The predictions about intermediate judgements from

the models were assessed after parameter fixing, the first step;

they are a priori and parameter free.

In order to determine B(tm, tn), we need to know the ai’s

for each piece of evidence. These are the parameters indicat-

ing the relative strength of each piece of evidence and they

were fixed directly, using the participant ratings for each

piece of evidence at the end of the task (see the electronic sup-

plementary material on fixing the parameters; electronic

supplementary material, table S1). Unfortunately, due to an

error in the way the experiment was coded, the exact order

in which participants saw the pieces of evidence was not

recorded. Therefore, we set the ai for each piece of evidence

in a given block equal to the average of the reported strengths

for the evidence in that block. This is unlikely to cause

problems, since the order of presentation of evidence was

anyway randomized within blocks.

The best-fit parameters were obtained by minimizing the

sum of the squared deviations between the predictions of

equation (3.1) and the data. For Experiment 1, and considering

the t ¼ 3 data point an outlier, the best fit for equation (3.1) is

obtained with a ¼ 0.091, b ¼ 0.10 and e ¼ 0:030, giving an

R2 of 0.996 and a BIC of 227.8. For Experiment 2, the best-fit

parameters are a ¼ 0.114, b ¼ 0.285 and e ¼ 0:0110, giving

an R2 of 0.99 and a BIC of 223.1. (BICs computed following

[22].) The two parameter sets are not equal for the two exper-

iments, a fact we attribute to sampling variation (the

demographics of Amazon Turk and CrowdFlower are likely

different). The results of the fitting are shown in figure 1.

(Note that throughout this paper, we show error bars corre-

sponding to the 95% highest density interval (HDI) of the

posterior distribution for the relevant probabilities, given an

initial uniform prior [23].)

For small t, Prob(I at tjI at 0) is nonlinear and (extra-

polated) not equal to 1 at t ¼ 0. This result justifies our

assumption of imperfect measurements. The data from the
two experiments show marked differences. In figure 1a, for

large t, Prob(I at tjI at 0) is close to linear with increasing t.
Linearity implies that belief change is proportional to the

number of pieces of evidence, which seems an obvious expec-

tation for a rational participant (while the belief state is far

from guilty). However, it is unclear whether Prob(I at tjI
at 0) eventually becomes linear in figure 1b. Also, more

participants gave an initial judgement of ‘guilty’ in Exper-

iment 2, compared to Experiment 1 (5% versus 11%).

Despite distinct behavioural patterns across Experiments 1,

2, equation (3.1) provided excellent fits in both cases. Note

that the best-fit values of b are positive in both cases, confirm-

ing our expectation of diminishing returns (equivalently,

there is a primacy effect, regarding evidence strength).

Now that the model parameters have been fixed for both

the QT and Bayesian models, we can use equations (4.1) and

(5.1) to compute survival probabilities, for different numbers

of intermediate judgements.

Empirical results for Prob(‘survival’, N ) clearly favour

the QT model (figure 2). The Bayes factors are 3.4 � 105 for

Experiment 1 and 3.2 � 103 for Experiment 2. (Bayes factors

computed following [22].) The classical intuition is reduction

of survival probability with more intermediate judgements,

because of a probability of error at each judgement. For the

QT model, in Experiment 1, we have a clear QZ effect, as sur-

vival probability generally increases with N. In Experiment 2,

behaviour shows a tension between diminishing returns

and QZ. With one intermediate judgement, the resetting of

diminishing returns means that later pieces of evidence are

weighted more strongly than in the case of no intermediate

judgements, hence the dip in survival probability. With

more intermediate judgements, eventually the QZ effect

dominates. The leveling off, or for Experiment 1 the dip

in the survival probability for large N is an effect of the

imperfect judgements.

There is an alternative test of the QT versus Bayesian

models. We can employ equations (4.1) and (5.1) to compute

survival probabilities for the condition where there is a judge-

ment after every piece of evidence (number of pieces of

evidence presented T, and number of judgements N, vary,

but T/N fixed to 1). Again, the data clearly favour the QT

model (figure 3). The Bayes factors in this case are 8.2 � 109

for Experiment 1 and 1.3 � 109 for Experiment 2.
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7. Concluding remarks
Understanding how opinions change (or not) as a result of

accumulating evidence is crucial in many situations. We have

shown here that opinion change depends not just on the evi-

dence presented, but can also be strongly effected by making

intermediate judgements, in the particular way predicted by

the quantum model. Because the QT model was fixed with

classical data, this striking prediction follows from a structural

feature of QT, the collapse postulate and not from parameter

fixing. Our results show that decision theory needs to incorpor-

ate opinion influences from judgements. They also have

practical implications. The employed paradigm has analogies

with realistic (e.g. courtroom) assessment of evidence; if

e.g. witnesses are expected to reach unbiased conclusions,

then the effect of continuous requests for intermediate opinions

should be factored in. Likewise, the advent of interactive news

web sites (e.g. bbc.co.uk) means that readers can express

opinions on news items when reading them, directly and

through social media. We raise the possibility that frequent

expressions of opinion may prevent change in opinion, even

in the presence of compelling contrasting evidence.

More generally, behaviours paradoxical from Bayesian per-

spectives have often been interpreted as boundaries in the

applicability of probabilistic modelling. Strictly speaking this
is not true, since one can always augment Bayesian models

with extra variables or interactions, however, such models

may lack predictive power, or simply be too post hoc. The

QT cognition programme provides an alternative: perhaps

some of these paradoxical findings reveal situations where cog-

nition is better understood using QT. Evidence for the collapse

postulate in decision-making constitutes a general test of the

applicability of quantum principles in cognition and adds to

the growing body of such demonstrations [8].

While this work has focused on human decision-making

similar issues apply to animal decision-making in general.

The adaptive arguments employed to motivate Bayesian prin-

ciples for humans [1,24] apply equally also to non-humans.

Thus, whether Bayesian principles are relevant in animal cog-

nition is an issue of considerable theoretical interest. Is there

evidence for constructive influences in animal decision-

making? A recent study showed that, in the three-door para-

digm, pigeons do not show a bias towards repeating a choice

when that choice was a guess [25], which is in contrast to be-

haviour seen in humans. This suggests perhaps judgements

are less constructive for pigeons than for humans. Clearly,

the available evidence is far too preliminary to enable strong

conclusions. Nevertheless, the demonstration of a QZ effect

for humans raises the possibility that a similar effect exists in

non-human decision-makers. Resolving this question will
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have potentially ground-breaking implications for under-

standing the differences between human and non-human

mental processes.
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