
May 4, 2015 15:0 World Scientific Review Volume - 9in x 6in Purdue page 1

Chapter 1

Similarity Judgments: From Classical to Complex Vector

Psychological Spaces

Albert Barque Duran, Emmanuel M. Pothos, James M. Yearsley, James
A. Hampton

Department of Psychology, City University London, London, UK

Jerome R. Busemeyer

Department of Psychological and Brain Sciences, Indiana University,

Bloomington, IN, USA

Jennifer S. Trueblood

Department of Cognitive Science, University of California, Irvine, CA,

USA

This chapter reviews progress with applications of quantum theory in
understanding human similarity judgments. We first motivate and sub-
sequently describe the quantum similarity model (QSM), which was pro-
posed by Pothos, Busemeyer and Trueblood [2013], primarily as a way
to cover the empirical findings reported in Tversky [1977]. We then show
how the QSM encompasses Tversky’s [1977] results, specifically in rela-
tion to violations of symmetry, violations of the triangle inequality and
the diagnosticity e↵ect. We next consider a list of challenges of the QSM
and open issues for further research.

1. Background and motivations for a new model

Similarity judgments play a central role in many areas of psychology [e.g.
Goldstone, 1994; Medin, Goldstone & Gentner, 1993; Pothos, 2005, Slo-
man & Rips, 1998]. Consequently, they have received much attention [e.g.
Goodman, 1972], especially in relation to Tversky’s [1977] findings, which
have been a major focus of subsequent theoretical work on similarity judg-
ments.

One traditional way to understand similarity uses a geometric approach,
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whereby similarity is assumed to correspond to a function of the distance
between concepts in a psychological space. According to this approach,
stimuli or concepts are represented as points in a multidimensional psycho-
logical space, with similarity being a decreasing function of distance in that
space. The origin of the debate, criticism and the several attempts to em-
pirically refute this approach all relate to the fact that similarity measures
based on distance must obey various properties, called the metric axioms,
that all distances (and simple related measures) are subject to. The most
famous demonstration that human similarity judgments are inconsistent
with these properties is due to Tversky [1977]. The importance and the
impact of Tversky’s paper come from the fact that his findings questioned
the fundamental properties of any model of similarity based on distance in
psychological space. Specifically, Tversky’s approach was to provide empir-
ical tests of the metric axioms, regardless of the specifics of the similarity
approach. Showing, as he did, that the metric axioms are inconsistent with
human similarity judgments, he concluded that human similarity judgments
cannot be modelled with any distance-based approach.

Specifically, Tversky [1977] reported violations of (1) minimality: iden-
tical objects are not always judged to be maximally similar; (2) symmetry:
the similarity of A to B can be di↵erent from that of B to A; (3) the trian-
gle inequality: the distance between two points cannot exceed the sum of
their distances to any third point; (4) a diagnosticity e↵ect: the similarity
between the same two objects can be a↵ected by which other objects are
present. In the next four sections we elaborate on all these findings and we
consider some notable previous theoretical e↵orts to account for Tversky’s
[1977] challenges. Note we do not consider minimality, since most models
(including the QSM) can become consistent with violations of minimal-
ity through some process of noise in how representations are specified and
compared.

1.1. Asymmetries

If similarity is determined by distance, then how could it be the case that
the similarity between two objects depends on the order in which the ob-
jects are considered? Directionality can arise from the fact that the rele-
vant stimuli are not (always) simultaneously presented. For example, the
temporal ordering of the stimuli can impose directionality structure in the
similarity comparison. Alternatively, directionality can be conveyed in a
syntactical way, e.g., if an observer is asked to evaluate sentences like “A is
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similar to B”. Whenever this happens, there is a potential for asymmetry.
This can be readily seen in the kind of task Tversky [1977] employed to
explore putative violations of symmetry. He asked participants to choose
which they preferred between these two statements: “North Korea is similar
to Red China” and “Red China is similar to North Korea” (for simplicity
we will use only Korea and China). Most participants preferred the former
to the latter statement (this demonstration involved several other pairs of
counties and was generalized to other kinds of stimuli). This result implied
that the similarity of Korea to China (expressed as sim(Korea, China)) is
higher that of China to Korea (expressed as Sim(China, Korea)), and thus
revealed a violation of symmetry in similarity. Tversky’s interpretation
about why such asymmetries arise related to di↵erences between the two
stimuli in the extent of featural knowledge combined with di↵erential weight
given to the features specific to each concept (the parameters ↵ and b in
his model, see below). But, asymmetries in similarity judgments can also
arise in other ways: Polk et al. [2002] proposed that they can also be the
result of di↵erences in the frequency of occurrence of one of the compared
stimuli (a higher similarity was observed when comparing a low frequency
stimulus with a high frequency one). Even before Tversky’s [1977] work,
Rosch [1975] had proposed similarity asymmetries can arise when a less
prototypical stimulus is compared to a more prototypical one.

Asymmetries are di�cult to reconcile with the idea of similarity-as-
distance. Some kind of mechanism that can produce asymmetries, in some
circumstances, in a more natural way is clearly desirable. We will see below
that a quantum approach provides such a mechanism.

1.2. The triangle inequality

Tversky [1977] also considered how similarity judgments can lead to viola-
tions of the triangle inequality, another one of the metric axioms. In his
paper, he states that (p.329) “the perceived distance of Jamaica to Russia
exceeds the perceived distance of Jamaica to Cuba, plus that of Cuba to
Russia - contrary to the triangle inequality.” We can assume that perceived
distance is either the same or approximately the same as dissimilarity, so
that consistency with the triangle inequality requires.

Dissimilarity(Jamaica, Russia)

 Dissimilarity(Jamaica, Cuba) + Dissimilarity(Cuba, Russia)
(1)

Regarding the implications from this statement for similarity, we need
a function that takes us from dissimilarity to similarity (or at least some
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indication of its properties) and Tversky does not provide this. Instead,
he says “...the triangle inequality implies that if A is quite similar to B,
and B is quite similar to C, then A and C cannot be very dissimilar from
each other. Thus, it sets a lower limit to the similarity between A and C

in terms of the similarities between A and B and between B and C.” But,
this expression is too vague to lead to a quantitative constraint. If one
assumed that similarity is just the negative of dissimilarity, then one could
write

Sim(A,C) � Sim(A,B) + Sim(B,C) (2)

but such an expression leaves us with some problems (e.g., we would
need another function to take a negative, unbounded similarity measure
to something that corresponds to e.g. similarity ratings; assuming the
latter are closer to psychological similarity, in itself another assumption).
No doubt some readers will find it unsatisfactory that a discussion, which
is overall about similarity, actually is restricted to claims only about dis-
similarity. But, for our purposes it is not necessary to resolve these is-
sues, since we can easily formulate our discussion in terms of the inequal-
ities based on dissimilarities above. With these points in mind, Tver-
sky’s example was as follows. Consider A = Russia and B = Jamaica;
Dissimilarity(Russia, Jamaica) is high. Consider also C = Cuba. But
Dissimilarity(Russia, Cuba) is low (these countries are similar because of
political a�liation) and Dissimilarity(Cuba, Jamaica) is also low (these
countries are similar because of geographical proximity). Thus, Tversky’s
example suggests that

Dissimilarity(Russia, Jamaica)

> Dissimilarity(Russia, Cuba) + Dissimilarity(Cuba, Jamaica)
(3)

which suggests a violation of the triangle inequality. Interestingly, more
elaborate theories of similarity, specifically developed to address Tversky’s
[1977] findings, do not always deal with violations of the triangle inequality
straightforwardly (we will consider Krumhansl’s, [1978] theory shortly, in
Section 1.4.4).

1.3. Diagnosticity

The diagnosticity e↵ect, a particular type of context e↵ect, is another major
finding from Tversky [1977]. Participants were asked to identify the coun-
try most similar to Austria, from a set of alternatives including Hungary,
Poland, and Sweden. Participants typically selected Sweden. However,
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when the alternatives were Hungary, Sweden, and Norway, participants
typically selected Hungary. Thus, the same similarity relation (e.g., the
similarity between Sweden and Austria or the similarity between Hungary
and Austria) appears to depend on which other stimuli are immediately rel-
evant, showing that the process of establishing a similarity judgment may
depend on the presence of other stimuli, not directly involved in the judg-
ment. Tversky’s [1977] explanation was that the diagnosticity e↵ect arises
from the grouping of some of the options. For example, when Hungary
and Poland were both included, their high similarity made participants
spontaneously code them with their obvious common feature (both were
Communist bloc countries at the time), which, in turn, increased the sim-
ilarity of the other two options, (Austria and Sweden) which were both
Western democracies.

1.4. Previous theoretical formalisms

In the following sections we consider some significant previous theoretical
e↵orts to account for Tversky’s [1977] challenges. Such e↵orts have the same
objective, but can vary widely in their assumptions, implementation, and
structure, thus sometimes making it hard to identify their key distinguish-
ing characteristics. Consideration of these previous theoretical approaches
motivates our own proposal for a new approach, based on quantum theory.

1.4.1. Extensions of the geometric model

Let us first repeat the point that simple extensions of geometric models of
similarity are unsatisfactory. In standard models [e.g. Shepard, 1980], the
similarity between two entities A and B is given by

Sim(A,B) = exp(�c.distance(A,B)) (4)

where c is a constant. Clearly, such a function of similarity obeys symme-
try. This basic definition could lead to an asymmetric similarity measure
with the introduction of a directionality parameter, p

AB

, indexed in a way
to indicate that it may have a di↵erent value depending on whether we
are considering the similarity of A to B or the similarity of B to A (see
Nosofsky [1991], for these ideas). However, without a scheme for motivat-
ing particular values of the directionality parameter, this proposal cannot
be said to explain asymmetry in similarity judgments a priori (even if it
can post hoc reproduce the empirical results).
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The basic geometric scheme also fails in the case of diagnosticity, since
there is no mechanism by which to augment the computation of similarity
for two entities by information for other, assumed relevant, objects. One
could augment a basic similarity scheme with attentional weights, which
could vary depending on contextual influences [cf. Nosofsky, 1984]. How-
ever, an approach like this would be incomplete without a precise under-
standing of how attentional weights can change, across di↵erent contexts.
Overall, this simple extension of geometric models is a straw man and it is
unsurprising that it fails. We will shortly see Krumhansl’s [1978; see also
Nosofsky, 1991] proposal.

1.4.2. Extensions of the geometric model

Tversky’s [1977] Contrast Model proposed that

Sim(A,B) = ✓f(A \B)� ↵f(A�B)� �f(B �A) (5)

where ✓,↵,� are constant parameters, A\B denotes the common features
between A and B, A�B the features of A which B does not have and B�A

the features of B which A does not have [see also Bush & Mosteller, 1951;
Eisler & Ekman, 1959]. Such a scheme can predict violations of symmetry
if A has more features than B and the parameters ↵,� are di↵erent to each
other and suitably set (e.g., ✓ > 0,↵ = 1,� = 0 , allows the emergence
of asymmetries from Tversky’s contrast model, in the predicted direction).
For example, regarding the Korea-China example, Tversky assumed that
China has more features than Korea, because the average observer will
know more about China than Korea. First we must assume that ↵ > � in a
directional judgment of similarity, so that distinctive features of the subject
are more relevant than the distinctive features of the referent. Then, the
similarity of Korea to China would be fairly high (a minimal negative con-
tribution from ↵f(A�B) , since Korea has very few features which China
does not have). However, in comparing China to Korea, there is now a
larger contribution from ↵f(A�B), which lowers the overall similarity re-
sult. Thus, according to Tversky’s similarity model, China is predicted to
be less similar to Korea than Korea is to China. Tversky’s model of similar-
ity is appealing, but still involves two independent parameters, which must
have appropriate values to account for violations of symmetry. For example,
if instead of assuming ↵ > �, we assume the reverse, then the model fails
to predict the right direction for symmetry violation in the Korea-China
example; There are some similarities between the ↵,� parameters in Tver-
sky’s similarity model and the directionality ones above [Nosofsky, 1991],
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in the sense that both kind of parameters are about defining a ‘preferred’
direction in similarity comparisons (that is, a direction that leads to higher
similarities).

So, why did Tversky [1977] set the contrast model parameters one way,
as opposed to another? Tversky’s [1977] assumption was that when assess-
ing Sim(A,B) then A is the subject and B is the referent and so “...the
features of the subject are weighted more heavily than the features of the
referent” [p. 333, Tversky, 1977]. This allows one to set ↵ > � , which
enables possible violations of symmetry, as long as the compared objects
di↵er in the number of distinctive features. While this assumption seems
reasonable, it is also one which does not follow naturally from the rest of
Tversky’s [1977] model. Moreover, it is hard to logically exclude the al-
ternative assumption (which leads to the exact opposite prediction), i.e.,
that it is the referent’s features which are more heavily weighted. It is this
assumption which basically allows the prediction of the asymmetry in a spe-
cific direction, so the extent to which it can be justified a priori goes hand
in hand with our perception of whether the contrast model can explain the
China, Korea asymmetry in an a priori way.

Tversky’s [1977] contrast model provides the same elegant account for
both the triangle inequality and the diagnosticity e↵ect, in terms of how
di↵erent contexts lead to the emergence of di↵erent diagnostic features (but
see Krumhansl [1978], for some criticisms, relating to how weights are as-
signed to features, with varying contexts; her theory is considered in Section
1.4.4 below). His explanation for these empirical results is theoretically ap-
pealing, but some concerns can be expressed regarding the number and
precise form of the emerging diagnostic features. In closing the discussion
for Tversky’s [1977] model, it is perhaps worth remarking that this detailed
scrutiny of his work, so as to motivate the need for a new model (the quan-
tum model), should not detract from the fact that his theory has had a
profound and lasting influence on the similarity literature, probably more
so than any other similarity theory.

1.4.3. Classical probability theory

In this section we consider whether classical (Bayesian) probability theory
can provide an account of Tversky’s [1977] challenges. It has to be said
that classical probability theory is not obviously relevant to human similar-
ity judgments. Nevertheless, cognitive models based on classical probability
theory have been extremely successful in recent years [e.g., Gri�ths et al.,
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2010; Oaksford & Chater, 2009; Tenenbaum et al., 2011] so it is worth ex-
ploring possible extensions in relation to similarity. The similarity between
two instances could be modeled as the joint probability of both instances
together,

Prob(A ^B) (6)

Such a joint probability could be understood in terms of statements cor-
responding to both instances being concurrently true or in terms of the ease
of having both thoughts together. We stress that our aim here is not to de-
velop an operational model of similarity based on classical probability the-
ory! Rather, we look at the Quantum Similarity Model and consider which
operations are analogous in classical probability theory. The Quantum Sim-
ilarity Model basically models similarities as conjunctive probabilities (the
ease of having a thought about the first between two compared concepts
and then the second). So, without worrying too much about operational
details, we consider whether a similar approach might work with classical
probability theory. However, the joint probability operator is symmetric in
classical probability, so that

Prob(A ^B) = Prob(B ^A) (7)

and so this scheme fails to account for violations of symmetry in similarity.
Note that one could say that

Prob(A ^B|order1) 6= Prob(B ^A|order2) (8)

but such a scheme o↵ers a trivial solution to the problem of asymmetry (it
is equivalent to the directionality parameter one above). Alternatively, one
could model the similarity between two instances in terms of a conditional
probability function, which can be asymmetric. In other words, one could
postulate that

Sim(A,B) = Prob(A|B) 6= Prob(B|A) = Sim(B,A) (9)

However, such a scheme does not work. Consider the paradigmatic Korea-
China example again, from Tversky [1977], and assume that

Sim(Korea, China) = Prob(China|Korea) (10)

so that the similarity process involves assessing the probability of the
second predicate given knowledge of the first (note, something like
Prob(China|Korea) could be interpreted as the conditional probability of
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thinking about China, given that we have been thinking about Korea).
Then,

Sim(Korea,¬China) = Prob(¬China|Korea)

= 1� Prob(China|Korea) = 1� Sim(Korea|China)
(11)

Since Sim(Korea|China) is assumed to be high, it follows that
Sim(Korea|¬China) has to be low. The latter conclusion seems reason-
able, as all the predicates which satisfy ¬China would, on average, have
a low similarity to Korea (there are more countries which are dissimilar to
Korea than ones which are similar). However, this approach can also lead
to paradoxical predictions. Consider

Sim(Alaska,¬China) = Prob(¬China|Alaska)

= 1� Prob(China|Alaska) = 1� Sim(Alaska, China)
(12)

Therefore, following this set of equalities in the reverse order,
as Sim(Alaska, China) is very low, it must be the case that
Sim(Alaska,¬China) is very high. However, such a prediction seems coun-
terintuitive.

Of course, classical probability theory is a sophisticated computational
framework and it is possible that a satisfactory account of symmetry vi-
olations (and the rest of Tversky’s [1977], challenges) can emerge. Our
purpose here was to assess whether a basic classical probability model is
consistent with violations of symmetry. This appears not to be the case.
Moreover, it is not clear how this basic classical probability model could be
extended in the case of the other relevant empirical results. A critic might
note that (classical) probability theory has nothing to do with similarity
judgments and this entire section is misguided. Nevertheless, the Quan-
tum Similarity Model does exactly this: it provides a formalism in which
probabilities (corresponding to the ease of having sequences of thoughts)
lead to similarity judgments. Indeed, we think that approaching similarity
judgments as probabilities (defined in a suitable way) is a worthwhile en-
deavor, insofar that this provides a framework for exploring commonalities
between similarity and probabilistic inference [Shafir et al., 1990; Tversky
& Kahneman, 1983].

1.4.4. Krumhansl’s distance-density model

Krumhansl’s [1978, 1988] distance-density model provides a principled ex-
tension to the basic geometric model of similarity. Her proposal rests on
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the assumption that alternatives lying within dense subregions of psycho-
logical space are subject to finer discrimination than alternatives lying in
less dense subregions. With regards to similarity judgments, this implies
that a pair of points a given distance apart in a dense region would have
a lower similarity (greater psychological distance) as compared to an iden-
tical pair of points in a less dense region. More specifically, the distance
between two points A and B in psychological space should be a↵ected by
the local density around each point, D(A) and D(B). The local density
around a point reflects the number of other points within a certain radius.
Thus,

d0(A,B) = d(A,B) + aD(A) + bD(B) (13)

where d(A,B) is the standard geometric distance, a and b are parameters
that reflect the weight given to each density, and d0(A,B) is the modified
distance measure, as a↵ected by local densities. As with Tversky’s [1977]
similarity model, it is immediately clear that if a = b then

d0(A,B) = d(A,B) + a(D(A) +D(B)) = d0(B,A) (14)

that is, unless a 6= b no violations of symmetry are predicted. But, also as
with Tversky’s model, setting the parameters in di↵erent ways (e.g., a, b > 0
, as in the original formulation of the model, versus a, b < 0) predicts
asymmetries in di↵erent directions. In order to account for asymmetries,
Krumhansl [1978] adopted an assumption equivalent to that of Tversky
[1977], that is, that the density of one object influences the comparison
more than the density of the other.

In the particular case of the Korea-China example, for a violation of
symmetry to occur, one would need to assume that the local density around
China is di↵erent from the local density around Korea. Krumhansl [1978]
suggested that prominent objects are likely to have many features and so
these objects are likely to share features with a greater number of other
objects, as compared to objects with fewer features. Therefore, prominent
objects are more likely to exist in denser regions of psychological space.
Krumhansl’s [1978] logic is perhaps intuitive, but it does raise some ques-
tions. For example, why should prominent objects (with more features)
share a greater number of features with other objects? These additional
features could be distinctive, as indeed is implied in Tversky’s [1977] anal-
ysis.

Krumhansl’s [1978] explanation for the triangle inequality is based on
the idea that similarity judgments emphasize dimensions and features that
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objects have in common. As a result, stimuli which are far apart in the
overall psychological space may be close to each other in a low dimensional-
ity subspace, corresponding to the common dimensions between the stimuli.
For example, Russia and Cuba are similar in the subspace of Communism,
which corresponds to their common dimension. Krumhansl [1978, p.12]
notes “Subspaces defined by obvious stimulus dimensions would seem to be
likelier projections than subspaces not corresponding to such dimensions”
and goes on to observe that such a scheme may be able to account for
similarity relations inconsistent with the triangle inequality. However, this
explanation involves some ad hoc assumptions. For example, why is simi-
larity assessed in a subspace (such an assumption does not follow from her
density model, nor is employed elsewhere; cf. Ashby & Perrin, [1988], why
is the appropriate subspace determined in such a way etc. (these issues are
similar to the corresponding criticism for Tversky’s [1977] account).

The density model is easily consistent with the diagnosticity ef-
fect [Krumhansl, 1978, 1988]. Recall, the distance between two con-
cepts increases as the density of one object increases. For example,
Sim(Hungary,Austria) would change depending on the D(Hungary)
term, which is the density around Hungary. If we add Poland to the choice
set, D(Hungary) increases, the e↵ective distance between Hungary and
Austria also increases, and so the similarity between the two countries de-
creases. A perhaps unsatisfactory aspect of Krumhansl’s [1978] account for
the diagnosticity e↵ect is that it fails to capture the (reasonable) intuition
that di↵erent comparisons do evoke di↵erent relevant features (in Tversky’s
[1977], approach) or perspectives (in the quantum approach).

1.4.5. Ashby & Perrin’s general recognition theory

Ashby and Perrin’s [1988] general recognition theory is an established prob-
abilistic approach to similarity for perceptual stimuli, also based on repre-
sentations in a psychological space. In brief, the theory can readily account
for violations of symmetry in similarity judgments of perceptual stimuli.
Each time a stimulus is perceived it can correspond to a di↵erent point
in psychological space, according to a particular probability distribution.
Psychological space is divided into response regions, such that within each
response region it is optimal to make a particular response. Thus, similar-
ity between two stimuli depends on the extent to which the distribution of
perceptual e↵ects for the first stimulus overlaps with the optimal response
region for the second stimulus. Formally, for a pair of two-dimensional



May 4, 2015 15:0 World Scientific Review Volume - 9in x 6in Purdue page 12

12 A. Barque Duran et al.

stimuli A and B,

Sim(A,B) =

ZZ

RB

f
A

(x, y)dxdy (15)

where R
A

is the region in the x, y perceptual plane associated with response
R

B

and f
A

(x, y) is the probability density function for the distribution of
perceptual e↵ects of stimulus A (note that similarity is actually defined as
a function of the above integral, but this is not relevant here). As Ashby
and Perrin [1988] note, such a scheme can lead to violations of symmetry in
a number of ways. For example, if stimulus B is associated with a greater
response region than A then, in general, Sim(A,B) > Sim(B,A) and if the
perceptual e↵ects distribution for A has a greater variability than X, then
it is also the case that Sim(A,X) > Sim(X,A) .

As Ashby and Perrin [1988] observed, these intuitions can be related
to the Korea-China example. First, because for many observers Korea
will be a ‘more vague and poorly defined concept’ (p.133), the representa-
tion of Korea in psychological space will have a greater variability. Sec-
ond, they argued that the response region for Korea would be smaller
than that of China, because Korea is very similar to many other coun-
tries. According to general recognition theory, both these factors predict
that Sim(Korea, China) > Sim(China,Korea) . But there are some prob-
lems with this account. Whether Korea or China is more similar to other
countries is unclear. Ashby and Perrin [1988, p.133] note that “...for many
people North Korea is very similar to several other countries.” But, recall,
Krumhansl [1978, p.454] made the exact opposite assumption, “If promi-
nent countries...are those stimuli having relatively many features, then these
objects have features in common with a larger number of di↵erent ob-
jects...”. In other words, Krumhansl [1978] assumed that it is China, not
Korea, which is similar to a greater number of other countries. Thus, Ashby
and Perrin [1988] and Krumhansl [1978] make the exact opposite assump-
tion, regarding whether it is Korea or China which is similar to a greater
number of other countries. This shows the fickle nature of this assumption
and how it can be (fairly easily) made one way or another, so that the
corresponding models can describe an asymmetry in similarity judgments
in the predicted direction and, equally easily, in the opposite direction as
well.

Regarding the triangle inequality, Ashby and Perrin [1988] show how
one can manipulate the perceptual e↵ects distributions, so that two stimuli
can be dissimilar to each other and yet both similar to a third stimulus,
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hence violating the triangle inequality. Such a situation can clearly be
mapped to Tversky’s [1977] Russia-Cuba-Jamaica example. One weakness
of Ashby and Perrin’s [1988] demonstration is that it appears to assume
(see their Figure 4, p.133; one distribution circular on a plane, the other
two elliptical, if one considers a suitable cross-section of the distributions)
asymmetric and inequivalent perceptual e↵ects distributions for the three
stimuli. In the case of simple perceptual stimuli, presumably their form
can be manipulated to produce arbitrary perceptual e↵ects distributions.
However, it is unclear whether such an assumption is reasonable in the case
of, for example, comparisons between Russia, Cuba, and Jamaica. Why
would the distributions for such countries have a di↵erent shape?

Regarding the diagnosticity e↵ect, Ashby and Perrin’s [1988] model can
account for context e↵ects on similarity judgments, in terms of how the
presence of an additional stimulus C can modify the response region rel-
evant in computing the similarity between two other stimuli, A and B.
Specifically, the similarity between two stimuli A and C is

Sim(A,C) =

ZZ

RC

f
A

(x, y)dxdy (16)

Suppose that a third stimulus B is introduced near stimulus C. This means
that the response region R

C

is decreased, since a part of what used to be
R

C

is now the response region for R
B

. Therefore, the integral

Sim(A,C) =

ZZ

New RC

f
A

(x, y)dxdy (17)

sums probability weight over a smaller area and so Sim(A,C) is reduced.
But, such a reduction of similarity between A and C is predicted regardless
of where exactly a stimulus intermediate to A and C is introduced, as long
as it is in between (in psychological space) A and C, and so leads to a
reduction in the response region for C. In other words, with such a scheme,
a ‘diagnosticity’ e↵ect can emerge for stimuli without a corresponding nat-
ural grouping of some stimuli in psychological space, in contrast with the
intuition in Tversky’s [1977] empirical demonstration.

A more general issue with general recognition theory is that it is not a
theory best suited for dealing with conceptual stimuli (a limitation which
Ashby & Perrin, 1988, themselves acknowledged). For example, the argu-
ment for asymmetry in the Korea-China example or the diagnosticity e↵ect
also assumes that the decision boundary between response regions is op-
timal. Perhaps such an assumption is valid for perceptual stimuli studied
across multiple repetitions but it is questionable as to whether it applies
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for one-shot similarity judgments between previously unencountered ob-
ject pairs (Ashby & Perrin [1988], say that in one-shot cases additional
assumptions can be made regarding the form of perceptual e↵ects distribu-
tion). Moreover, the notion of confusability itself does not apply to most
conceptual stimuli. Ashby and Perrin [1988] recognized this and provided
a generalization to their similarity function, so that the overlap integral
also includes a weighting term. Crucially, their generalized similarity func-
tion still implies that similarity depends on the proximity of the perceptual
e↵ects distributions, and this proximity is likely to be low for many con-
ceptual object pairs (since it is rarely the case that we can confuse one
real-world object for another, even for objects which are quite similar, such
as apples and pears). Thus, the general recognition theory guides us to a
prediction of universally low similarity in the case of pairs of conceptual
objects. Overall, the key strength of general recognition theory is that a
researcher can produce predictions regarding the classification of simple,
perceptual stimuli, on the basis of precise manipulations of the perceptual
e↵ects distribution for each stimulus. In such cases, the general recognition
theory is probably the best of the available theories. However, applying this
approach to the case of conceptual stimuli, such as the ones in Tversky’s
[1977] challenges, leads to di�culties.

We complete our short review by a (fairly obvious, we hope) qualifica-
tion: our review was extremely selective, focusing primarily on the formal
models, which have emerged as major candidates for explaining the key
findings from Tversky [1977]. It is important to bear in mind that there
have been other, influential theoretical perspectives for these results, not
based on theory specified in mathematical terms [especially in relation to
asymmetries, e.g., Bowdle & Gentner, 1997; Bowdle & Medin, 2001; see
also Gleitman et al., 1996]. Moreover, there has been extensive work on
various relevant methodological aspects of how asymmetries in similarity
and the other relevant e↵ects are demonstrated [e.g., Aguilar & Medin,
1999]. Note, however, most researchers currently do accept the reality of
most of these e↵ects.

2. The Quantum Similarity Model (QSM)

Next, we present an alternative model for similarity judgments based on
Quantum Probability (QP) theory [Pothos et al., 2013; Pothos & True-
blood, 2015]. QP theory is a theory for how to assign probabilities to
events [Hughes 1989; Isham 1989], alternative from classical probability
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theory. We call QP the rules for how to assign probabilities to events from
quantum mechanics, without any of the physics. QP has the potential to
be relevant in any area of science, where there is a need to formalize uncer-
tainty. Regarding psychology, clearly, a major aspect of cognitive function
is the encoding of uncertainty and therefore QP is potentially applicable in
cognitive modeling. QP theory and classical probability theory are founded
from di↵erent sets of axioms and so are subject to alternative constraints.
The use of QP for modeling cognitive processes follows on from a num-
ber of recent attempts to describe various phenomena in psychology, and
the social sciences more generally, using non-classical models of probabil-
ity. Certain types of cognitive processing, in situations where it appears
there may be incompatibility between the available options [Busemeyer et
al, 2011], may be better modeled using QP theory.

The QSM follows the recent interest in the application of QP theory
to cognitive modeling. Applications of QP theory have been presented in
decision making [White et al., 2014; Busemeyer, Wang, & Townsend, 2006;
Busemeyer et al., 2011; Bordley, 1998; Lambert, Mogiliansky, Zamir, &
Zwirn, 2009; Pothos & Busemeyer, 2009; Trueblood & Busemeyer, 2011;
Yukalov & Sornette, 2010]; conceptual combination [Aerts, 2009; Aerts &
Gabora, 2005; Blutner, 2008]; memory [Bruza, 2010; Bruza et al., 2009],
and perception [Atmanspacher, Filk, & Romer, 2004]. For a detailed study
on the potential of using quantum modeling in cognition see Busemeyer
and Bruza [2011] and Pothos and Busemeyer [2013].

A unique feature of the QSM is that, whereas previous models would
equate objects with individual points or distributions of points, in the quan-
tum model objects are entire subspaces of potentially very high dimension-
ality. This is an important generalization of geometric models of similarity,
as it leads to a naturally asymmetric similarity measure. We first present
an outline of the QSM and its main features. Subsequently, we consider
again the violations of symmetry, triangle inequalities and the diagnostic-
ity e↵ect, from Tversky [1977], and how the QSM helps provide relevant
explanations.

2.1. A new psychological space

Representations in QP theory are based on a multidimensional space. These
representations are geometric ones, but such that the represented entities
(stimuli, concepts, etc.) are not just single points in a geometric space,
but rather entire subspaces. This provides a very natural approach to the
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problem of capturing di↵erences in knowledge: the more you know about
something (stimuli, concepts, etc.) the greater the dimensionality of the
subspace for that entity. Thus, QT theory provides a unique, novel way to
approach representation, that extends previous e↵orts both in psychology
[Shepard, 1987] and generally [cf. Kintsch, 2014]. Furthermore, the idea
of an overlap between vectors and subspaces as a measure of similarity has
a long history in psychology [Sloman, 1993]; QP theory provides a more
principled approach to this idea.

The QSM is based on a Hilbert space H, which is a complex vector
space (with some additional properties), that represents the space of pos-
sible thoughts. The overall space can be divided into (vector) subspaces
representing particular concepts. Imagine a concept A. The subspace cor-
responding to this concept is associated with a projection operator P

A

.
Note that, in general, suitable spaces for modeling similarity judgments
would be of very high dimensionality. However, in specific experimental
situations, low dimensionality spaces usually provide adequate approxima-
tions.

In quantum models, in general, the current state of the system is given
by a density operator ⇢ on H or, where simplifying conditions apply, a state
vector. In psychological applications, including in the QSM, the state of
the system corresponds to whatever a person is thinking at a particular
time. More specifically, in the QSM, the relevant state is the mental state
of a participant, just prior to a similarity judgment. Note, the state vector
will often be at an angle to the various subspaces in the Hilbert space and
it is determined by, for example, the experimental instructions; in other
cases, the state vector may represent the expected degree of knowledge of
participants. By projecting this current state onto the di↵erent subspaces
of the relevant Hilbert space and then computing the squared length of the
projected vector, we have a measure of the consistency between the state
vector and the other entities represented in our quantum space. Below,
(Figure 1) we will see a graphical illustration for how to compute these
operations.

The QSM is a departure from classical geometric representation
schemes. It o↵ers a rigorous framework for associating concepts with sub-
spaces and it provides us with representational flexibility, in that there are
no constraints in the number of features one can employ for representing
di↵erent concepts (within the same application, once can have subspaces
varying greatly in dimensionality). Note, in a classical representational ap-
proach based on psychological spaces, each object must be represented with
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the same number of dimensions (all the available ones).
Consider next how to compute the similarity between two concepts in

the QSM. The similarity between two concepts A and B is computed as

Sim(A,B) = Tr(P
B

P
A

⇢P
A

) (18)

where ⇢ is the mixed knowledge state of the system; if the knowledge state
is pure, ⇢ = | i h |, the expression for similarity reduces to

Sim(A,B) = |P
B

P
A

| i |2 (19)

One of the important parts of the model is how to specify the current state
of system or the knowledge state vector, as we called it before. We discuss
this shortly.

We are going to follow the China-Korea example from Tversky [1977]
to explain how the subspaces of the Hilbert space should be specified in our
model. China would correspond to a subspace of the relevant knowledge
space and Korea would correspond to another subspace. A subspace could
be a ray spanned by a single vector, or a plane spanned by a pair of vectors,
or a three dimensional space spanned by three vectors, etc. In this example,
we represent China as a subspace spanned by two orthonormal vectors,
|v1i and |v2i, that is, the China subspace is two-dimensional and |v1i and
|v2i are basis vectors for the China subspace. All the vectors of the form
a |v1i + b |v2i where |a|2 + |b|2 = 1 (as is required for a state vector in
quantum theory) represent the concept of China. The concept of China
itself is about lots of things. For example, when we think about China we
think about culture, food, language, etc. To represent China as a subspace
means that all these thoughts and properties, of the form a |v1i+ b |v2i, are
consistent with this concept and are contained within the China subspace.
Here, we can see a key feature of the QSM, and at the same time, some
commonalities with other models of psychological similarity, that is, that
concepts correspond to regions of psychological spaces [Ashby & Perrin,
1988; Grdenfors, 2000; Nosofsky, 1984]. Further, imagine that we want to
represent the idea that we have a greater knowledge for China than for
Korea. We would represent China as a two dimensional space (we have
a greater range of thoughts/properties/statements) and Korea as a one
dimensional space.

Let us note that a thought of the form

| i = a |v1i+ b |v2i (20)

is neither about |v1i nor |v2i, but rather reflects the potentiality that the
person will end up definitely thinking about |v1i or |v2i. In QP theory we



May 4, 2015 15:0 World Scientific Review Volume - 9in x 6in Purdue page 18

18 A. Barque Duran et al.

cannot assign definite meaning to superposition states such as a |v1i+b |v2i.
This is a result of the Kochen-Specker theorem. If |a| > |b|, this means
that the person has a greater potential to think of |v1i than |v2i. The
mathematical expression for the concept of China would be a projector
denoted as

P
China

= |v1i hv1|+ |v2i hv2| (21)

Therefore, the mathematical expression of the collection of thoughts about
China | i is that

P
China

|Thoughti = |Thoughti (22)

so, the collection of these vectors represents, in the QSM, the range of
thoughts consistent or part of the concept. For example, if we think about
Chinese food, then

| i = |Chinese Foodi (23)

and

P
China

| i = P
China

|Chinese Foodi = |Chinese Foodi (24)

showing that this is a thought included in the China concept. How are
we to determine the set of appropriate vectors, properties, or dimensions,
especially given that di↵erent subsets of properties of a particular concept
are likely to correlate with each other? This is an issue common to all
geometric approaches to similarity. Recent work, especially by Storms and
collaborators [e.g., De Deyne et al., 2008], shows that this challenge can
be overcome, for example, through the collection of similarity information
across several concepts or feature elicitation. Then, the relatedness of the
properties will determine the overall dimensionality of the concept.

In the next section we discuss how to compute similarity in our QSM.

2.2. Computing similarity

In QP theory, to examine the degree to which the state vector is consistent
with the subspace we need to employ a projector. We need (1) a particular
subspace, which is China in our case and (2) a suitable knowledge state
vector (or, more generally, a density matrix). A projector can be repre-
sented by a matrix, which takes a vector and projects it (lays it down) onto
a particular subspace. In other words, (2) has to be projected into (1). Let
us illustrate this in Figure 1, where we can see how we project vector B

onto vector A; note, both vectors are unit length. We represent in red the
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projection, which would be another vector that corresponds to the part of
B which is contained in A.

Mathematically, this is denoted by |Ai hA|Bi, noting that P
A

= |Ai hA|
is the projector onto the A ray. Indeed, the notation |Ai hA|Bi indicates a
multiplication between a vector and an inner product. But, from elemen-
tary geometry we have that the inner product between two real vectors is
hA|Bi = |A|.|B|. cos(✓), where ✓ is the angle between the two vectors (see
also Sloman, 1933]. If the two vectors are normalized, then hA|Bi = cos(✓).

Fig. 1. Illustration of the projection of vector B onto vector A.

Let us follow the same procedure following the China example above.
The projector onto the China subspace is denoted by P

China

. Then, to
compute the part of the vector | i that is contained in the China subspace
we need to compute the projection P

China

| i. To compute the probability
that the state vector is consistent with the corresponding subspace, we need
to compute the length of the projection squared. The probability that a
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thought is consistent with the China concept equals

|P
China

| i |2 = h |P
China

| i (25)

If the state vector is orthogonal to a subspace, then the probability is 0.
This can also be written as

p(China) = hChinai
⇢

= Tr(P
China

⇢) (26)

if the initial state is a density matrix ⇢, instead of a pure state | i. Thus, the
probability that the initial knowledge state is consistent with the concept
China is given as a measure of the overlap between the knowledge state and
the subspace.

The QSM proposes that the similarity between two concepts is deter-
mined by the sequential projection from the subspace corresponding to the
first concept to the one for the second concept. In other words, making a
similarity judgment or comparison is a process of thinking about the first
of the compared concepts, followed by the second. The similarity between
Korea and China may therefore be written as,

Sim(Korea, China) = Tr(P
China

P
Korea

⇢P
Korea

) (27)

or

Sim(Korea, China) = |P
China

P
Korea

| i |2 (28)

depending on whether the initial state is a density matrix ⇢ or a pure state
| i.

2.3. Reproducing asymmetries

As just noted, in the QSM, similarity between two concepts A and B is
defined as Sim(A,B) = |P

B

P
A

| i |2, that is, a process of thinking about
concept A first and concept B second. Critically, the term |P

B

P
A

| i |2
depends on four factors. First, how the initial state is set. In the case of
comparing two concepts, we think the most plausible assumption is that  
is set so that it is neutral/unbiased, between A and B. Second, similarity
judgments are often formulated in a directional way [Tversky, 1977]. When
this is the case, we suggest that the directionality of the similarity judgment
determines the directionality of the sequential projection, i.e., the syntax
of the similarity judgment matches the syntax of the quantum computa-
tion. Thus, there is a mechanism which potentially allows asymmetries in
similarity judgments, when the projectors corresponding to the compared
concepts do not commute (this will be the case, in general). Third, of
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course it depends on the angle between the subspaces. Finally, it depends
on the relative dimensionality of the subspaces for concepts A and B (recall,
greater dimensionality means greater knowledge).

In this section we are interested in how asymmetries can emerge from the
QSM. We compare |P

Korea

P
China

| i |2 and |P
China

P
Korea

| i |2, noting
that in both cases, the state vector is set so that it is neutral between the
concepts compared, China and Korea. Note that

|P
Korea

P
China

| i |2 = |P
Korea

| 
China

i |2|P
China

| i |2 (29)

and

|P
China

P
Korea

| i |2 = |P
China

| 
Korea

i |2|P
Korea

| i |2 (30)

where | 
China

i = P
China

| i /|P
China

| i | and | 
Korea

i are normalized
(length=1) vectors in the corresponding subspaces. Note also that, by
assumption, |P

Korea

| i |2 = |P
China

| i |2, which is the condition that the
mental state vector is unbiased between the two concepts. Then, the simi-
larity between Korea and China vs. China and Korea reduces to comparing

|P
China

| 
Korea

i |2 (similarity of Korea to China) (31)

and

|P
Korea

| 
China

i |2 (similarity of China to Korea) (32)

But, in the former case, we project a vector to a higher dimensionality
subspace, than in the latter. Thus, in the former case, there is more oppor-
tunity, so to say, to preserve the vector’s amplitude. Thus, in the former
case, the projection will (on average) have greater length.

In Figure 2, we illustrate the relevant subspaces and projections. The
green line corresponds to a one-dimensional subspace (Korea), the blue
plane to a two-dimensional subspace (China), and the black line to the
state vector (set in such a way that it is neutral between the two subspaces,
as postulated by the QSM). The length of the first projection corresponds
to a solid red line and, by assumption, is the same regardless of whether
we project to the ray or onto the plane. But, the length of the second
projection, illustrated as a yellow line, di↵ers depending on whether it is to
a ray or to a plane, so that when this second projection is onto the plane,
it is longer. Panel (a) shows a process of thinking about Korea first and
then China, that is, P

China

P
Korea

;

Sim(Korea, China) = |P
China

P
Korea

| i |2 (33)
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which is the squared length of the yellow line. Analogously for panel (b).
This illustrates how

|P
China

P
Korea

| i |2 > |P
Korea

P
China

| i |2 (34)

that is, the square of the yellow line in panel (a) is greater than the square
of the yellow line in panel (b).

Fig. 2. Illustration for how to compute Sim(Korea, China) and Sim(China, Korea)
using the QSM.

As extensively discussed in Pothos et al. [2013], the QSM thus allows
a prediction of asymmetry in the case of the Korea, China example (and,
obviously, all cases where there is a di↵erence in degree of knowledge) to
emerge naturally. As we noted above, in order to generate these asymme-
tries we need some principle for fixing the initial state. Usually we will
(partly) fix the initial knowledge state by demanding that it is unbiased,
that is, that there is equal prior probability that the initial state is consis-
tent with either, say, Korea or China. Such an assumption is analogous to
that of a uniform prior in a Bayesian model. Then, it is straightforward to
show that

Sim(Korea, China) ⇠ |P
China

| 
Korea

i |2 (35)

whereby the vector | 
Korea

i is a normalized vector contained in the Korea
subspace. Therefore, the quantity |P

China

| 
Korea

i |2 depends on only two
factors, the geometric relation between the China and the Korea subspaces
and the relative dimensionality of the subspaces.
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2.4. Reproducing violations of the triangle inequality

The QSM leads to violations of the triangle inequality in a way similar to
how Tversky [1977] suggested such e↵ects arise. As our representations are
subspaces, di↵erent regions in the overall space end up reflecting the fea-
tures characteristic of the corresponding concepts. We will follow another
of Tversky’s experiments as an example (Figure 3). We have a Hilbert
space with Russia (in blue), Cuba (in red) and Jamaica (in green). All of
Russia, Cuba, and Jamaica are represented as one dimensional subspaces,
for simplicity. The region between Russia and Cuba will overall reflect the
property of communism, noting that both countries are consistent with this
property. Next, we can imagine a di↵erent region to the communist one
containing Cuba and Jamaica. The shared characteristic of Cuba and Ja-
maica is their geographical proximity (they are both in the Caribbean), so
this second region will likewise correspond to this property. It should be
hopefully straightforward to then see how, if Cuba is on the boundary of
the communism and Caribbean regions in psychological space, we can have
Cuba highly similar to Russia (represented as (1) in dashed lines in Figure
3), Cuba highly similar to Jamaica (represented as (2)), but Russia and
Jamaica dissimilar from each other (represented as (3)), thus violating the
triangle inequality, i.e., producing

Dissimilarity(Russia, Cuba)+Dissimilarity(Cuba, Jamaica)

< Dissimilarity(Russia, Jamaica)
(36)

2.5. Reproducing diagnosticity

The diagnosticity e↵ect is central in the debate on whether distance-based
similarity models are adequate or not and in this section we will show how
the QSM can accommodate context when computing similarity judgments.

Sometimes what we think just prior to a comparison may be relevant to
the comparison itself. Therefore, when computing the similarity of A and B

we have to take into account the influence of some contextual information,
C. As in all other computational examples we have seen, in the QSM C has
to be represented by a subspace. Following Tversky’s [1977] diagnosticity
e↵ect experiment, this information C could correspond to the alternatives
in the task he employed. The similarity between A and B should then be
computed as,

Sim(A,B) = |P
B

P
A

| 0i |2 = |P
B

| 0
A

i |2|P
A

| 0i |2 (37)
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Fig. 3. An illustration of how the QSM can accommodate Tversky’s [1977] finding,

which is often interpreted as a violation of the triangle inequality.

where | 0i = | 
C

i = P
C

| i /|P
C

| i | is no longer a state vector neutral
between A and B, but rather one which reflects the influence of information
C. If we minimally assume that the nature of this contextual influence is
to think of C, prior to comparing A and B, then

Sim(A,B) = |P
B

P
A

| 0i |2 = |P
B

P
A

(P
C

| i)/|P
C

| i ||2

= |P
B

P
A

P
C

| i |2/|P
C

| i |2
(38)

In other words, if we first think about A and then about B when making a
similarity comparison between A and B, then in the context of some other
information C should involve an additional first step of first thinking about
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C. Computationally, we prefer to employ |P
B

P
A

P
C

| i |2, since

|P
B

P
A

P
C

| i |2 = |P
B

P
A

| 
C

i |2|P
C

| i |2 = |P
B

| 
AC

i |2|P
A

| 
C

i |2|P
C

| i |2
(39)

where | 
C

i = P
C

| i /|P
C

| i | and | 
AC

i = P
A

| 
C

i /|P
A

| 
C

i |. There-
fore, the similarity comparison between A and B is now computed in re-
lation to a vector which is no longer neutral, but contained within the C

subspace. Depending on the relation between subspace C and subspaces A
and B, contextual information can have a profound impact on a similarity
judgment.

As we have done in the previous sections, we present an illustration (Fig-
ure 4) of how the diagnosticity e↵ect arises from the QSM, using Tversky’s
[1977] example. As we explained in a previous section, in his experiment
participants had to identify the country most similar to a particular target,
from a set of alternatives, and the empirical results showed that pairwise
comparisons were influenced by the available alternatives. Specifically, par-
ticipants were asked to decide which country was most similar to Austria,
amongst a set of candidate choices. When the alternatives were Sweden,
Poland, and Hungary, most participants selected Sweden (49%), so imply-
ing that Sim(Sweden,Austria) was the highest (panel (a) in Figure 4) .
When the alternatives where Sweden, Norway, and Hungary, Hungary was
selected most frequently (60%), not Sweden (14%). Thus, changing the
range of available alternatives can apparently radically change the similar-
ity between the same two alternatives. Tversky’s [1977] explanation for this
result was that the range of alternatives led to the emergence of di↵erent
diagnostic features (either ‘Eastern European’ countries or ‘Scandinavian’
countries), which in turn impacted on the similarity judgment. Analo-
gous demonstrations were provided with schematic stimuli. Figure 4 shows
a plausible QSM arrangement for Austria, Sweden, Poland, Norway and
Hungary and the corresponding projections that lead to the diagnosticity
e↵ect.

The QSM is able to reproduce the main empirical findings from Tver-
sky’s [1977] diagnosticity e↵ect experiment and this approach also leads
to qualitative predictions about when the e↵ect is likely to be present or
absent, based on the geometric relationships between the stimuli in psycho-
logical space. Nevertheless, regarding the emergence of the diagnosticity
e↵ect, the QSM involves a number of assumptions worth evaluating in de-
tail. These assumptions concern mainly the way the context items influence
the similarity judgment and the role of the initial knowledge state.
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Fig. 4. An illustration of how QSM can account for the results from Tversky’s [1977]
diagnosticity experiment. The order of projection on panel (a) is such that we start from

the context elements, Poland (arbitrarily chosen first in the illustration), then Hungary,
then Sweden, then Austria. If we were computing a similarity without context, we would
just have a projection from Sweden to Austria, to correspond to the similarity of Sweden

(first projection) to Austria. Analogously for panel (b).

Let us first consider how the diagnosticity e↵ect emerges in the QSM.
As discussed above, context corresponds to successive projections between
the context elements. When the context elements are grouped together
(as for Hungary, Poland), projecting across them leads to little loss of am-
plitude of the state vector, so that the similarity judgment ends up being
higher. When there is no grouping across any of the possible contexts, then
the e↵ect of context is simply to uniformly scale the similarity judgments.
Thus, context can make the same similarity comparison appear higher or
lower, depending exactly on the grouping of the context elements [Pothos
et al., 2013]. The intuition for how the quantum model produces the di-
agnosticity e↵ect is thus not much di↵erent from that of Tversky’s [1977].
But, in Tversky’s [1977] model, it has to be assumed that diagnostic fea-
tures are ‘invoked’, as a result of grouping, while in the quantum model,
the diagnosticity e↵ect emerges directly from the presence of a grouping.
In the next section, we address some challenges regarding how the QSM re-
produces diagnosticity e↵ects, the kind of novel predictions that the model
can produce and alternative motivations for some of the QSM assumptions.

3. Conclusions, Challenges and Further Directions

The objective of this chapter was to present the QSM and consider how
it can account for Tversky’s [1977] key challenges. The QSM generalizes
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the notion of geometric representations, but the emergent similarity metric
is not distance-based, thus avoiding many of the criticisms Tversky [1977]
made against distance-based similarity models. The QSM can be seen as
an example of a new way of thinking about cognitive modeling, that may
also be applied to constructive judgments [i.e. White et al., 2014], belief
updating and many other analogous areas of research.

The QSM was developed to associate knowledge with subspaces. This
idea of representations as subspaces allows us to capture the intuition that
a concept is the span of all the thoughts produced by combinations of the
basic features that form the basis for the concept. The QSM also helped us
to cover some key empirical results: basic violations of symmetry, violations
of the triangle inequality and the diagnosticity e↵ect, all from Tversky
[1977]. Nevertheless, we o↵er below a list of challenges for the QSM and
open issues for further research (some of which we are in the process of
addressing). It is important to establish whether the QSM model makes
any novel predictions about similarity judgments in particular cases. These
could either take the form of new qualitative e↵ects or of quantitatively
accurate predictions for similarity judgments. Our overall conclusion is
that further work is clearly needed with the QSM, though the new results
are encouraging for the overall potential of the approach.

3.1. Fixing the initial state

One problem with the QSM, as presented, is that it relies on a particular
choice of initial state in order to reproduce the asymmetry/diagnosticity
e↵ects. Even in set-ups where one can partially fix the initial state by
demanding it to be unbiased, this typically leaves some degrees of freedom
unfixed (that is, this requirement does not always produce a unique state
vector; there are equivalent neutral state vectors and it is unclear why one
would prefer one option, as opposed to another). Further research is needed
in terms of determining in a reliable way how to set the knowledge state
vector for a participant or a group of participants. Moreover, we noted that
the state vector could be a↵ected by information relevant to the similarity
judgment. In the diagnosticity e↵ect example, there is a specific procedure
for incorporating relevant e↵ects, but we would like a more general scheme
for how relevant prior information impacts on the state vector.
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3.2. Interpreting the subspaces

More work is needed concerning the interpretation of the dimensions of
the subspaces, which represent each concept (or stimulus, etc.). The di-
mensions of each subspace have to correspond to the independent fea-
ture/characteristics, which collectively capture our knowledge of a concept.
As an example, consider the standard Cartesian xyz coordinate system.
There are many vectors which are in between the xyz coordinates. How-
ever, we can represent all this information, in terms of coordinates just
along the three main axes (xyz) of the overall space. Likewise, when con-
sidering the subspace representing e.g. China, there are going to be many
characteristics which highly correlate with each other. For example, our
knowledge of Chinese art and culture relates to our knowledge of Chinese
language etc. So, for a particular concept, we may have a greater or smaller
number of individual features, but the extent to which the dimensionality
of the corresponding subspace will be greater or smaller depends on the
relatedness of the features. Regarding the emergence of asymmetries in
similarity judgments, this is the main di↵erence between Tversky’s [1977]
thinking and the QSM: the former predicts asymmetries in terms of the
number of features, the latter as some function of the number of indepen-
dent features. It is clearly desirable to empirically examine this di↵erence
in prediction.

3.3. Modeling context e↵ects

One important challenge in developing the QSM is further formalizing the
way in which contextual influences are taken into account. The idea of
incorporating context as prior projections works well, but can the QSM
be extended such that these prior projections can be motivated in a more
rigorous way?

A great focus for further work with the QSM concerns the diagnostic-
ity e↵ect. This e↵ect has proved di�cult to replicate [e.g., see Evers &
Lakens, 2014] and it would be interesting to see whether the QSM could
generate any new predictions, regarding the emergence or suppression of
the diagnosticity e↵ect. We are interested in exploring whether the QSM
model can provide insight into why the diagnosticity e↵ect has proved elu-
sive in its replicability. The diagnosticity e↵ect is also significant because
the quantum formalism, overall, is often said to embody strong contextual
influences. So, perhaps, quantum theory would be particularly suitable for
modeling context e↵ects in similarity judgments? The diagnosticity e↵ect
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does emerge fairly naturally from the QSM, but the mechanisms that allow
this are not the traditional contextual mechanisms in quantum theory (e.g.,
relating to entanglement or incompatibility). The di�culty lies in the fact
that contextual influences in similarity appear to arise depending on the
degree of grouping of some of the options in the relevant choice set. The
QSM is sensitive to the grouping of the context elements, but there is still
a challenge to embed the contextual mechanism in the QSM within a more
rigorous, formal framework.

3.4. Dealing with frequency and prototypicality

An important gap in the QSM concerns how to deal with asymmetries
arising from di↵erences in the frequency of presentation of stimuli [Polk et
al., 2002] or from di↵erences in prototypicality [Rosch, 1975]. This failure
is interesting when we note that there appears to be an obvious way to
include such e↵ects. Presumably what distinguishes a prototypical stimulus
from a non-prototypical one, or a stimulus presented many times from one
presented only infrequently, is the increased potentiality for a participant
to think about this stimulus. It would be interesting to see how the QSM
could account for how di↵erences in frequency/prototypicality can lead to
asymmetries in similarity.

3.5. Analogical similarity judgments

Another important focus concerns so-called analogical similarity judgments
[e.g., Gentner. 1983; Goldstone, 1994; Larkey & Love, 2003]. Analogical
similarity is a vast topic and here we focus on one aspect of it, namely the
idea that, for example, when comparing two people, Jim and Jack, if they
both have black hair, this will increase their similarity, but if Jim has black
hair and Jack has black shoes (and blond hair), this will have less impact
on their similarity. That is, work on analogical similarity recognizes that
objects often consist of separate components. Commonalities on matching
components (e.g., black hair) increase similarity more so than commonal-
ities on mismatching components (e.g., black hair and black shoes). It is
currently unclear whether there is a genuine distinction between cognitive
processing corresponding to basic similarity tasks [as in Tversky, 1977] and
analogical similarity ones (some researchers have suggested that di↵erent
cognitive systems may mediate the two types of judgments; Casale et al.
[2012]). Nevertheless, there have been largely separate corresponding liter-
atures for these two kinds of similarity judgments, with di↵erent objectives.
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We think that the QSM can be extended to incorporate analogical similar-
ity, because quantum theory already has extensive machinery in place for
combining individual components into a whole [cf. Smolensky, 1990]. In-
deed, we have been pursuing an approach based on tensor products [Pothos
& Trueblood, 2015].

Acknowledgements

EMP and JMY were supported by Leverhulme Trust grant RPG-2013-
00. Further, EMP was supported by Air Force O�ce of Scientific Research
(AFOSR), Air Force Material Command, USAF, grants FA 8655-13-1-3044.
JST was supported by NSF SES-1326275. The U.S Government is au-
thorized to reproduce and distribute reprints for Governmental purpose
notwithstanding any copyright notation thereon.

References

1. Aerts, D., & Gabora, L. (2005). A theory of concepts and their combinations
II: A Hilbert space representation. Kybernetes, 34, 192-221.

2. Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical
Psychology, 53, 314-348.

3. Aguilar, C. M., & Medin, D. L. (1999). Asymmetries of comparison. Psycho-
nomic Bulletin & Review, 6, 328-337.

4. Ashby, G. F. & Perrin, N. A. (1988). Towards a Unified Theory of Similarity
and Recognition. Psychological Review, 95, 124-150.

5. Atmanspacher, H., Filk, T., & Romer, H. (2004). Quantum Zeno features of
bistable perception. Biological Cybernetics, 90, 33-40.

6. Blutner, R. K. (2008). Concepts and Bounded Rationality: An Application of
Niestegge’s Approach to Conditional Quantum Probabilities. In L. Accardi,
et al. (eds.), Foundations of Probability and Physics 5, Vol. 1101, pp. 302-10.
American Institute of Physics Conference Proceedings. New-York.

7. Bordley, R. F. (1998). Quantum mechanical and human violations of com-
pound probability principles: Toward a generalized Heisenberg uncertainty
principle. Operations Research, 46, 923-926.

8. Bowdle, B. F. & Gentner, D. (1997). Informativity and asymmetry in com-
parisons. Cognitive Psychology, 34, 244-286.

9. Bowdle, B. F. & Medin, D. L. (2001). Reference-point reasoning and compari-
son asymmetries. In J. D. Moore & K. Stenning (Eds.) Proceedings of the 23rd
Annual Conference of the Cognitive Science Society, pp. 116-121. Psychology
Press.

10. Bruza, P. D. (2010). Quantum Memory. Australasian Science, 31, 34-35.
11. Bruza, P. D., Kitto, K., Nelson, D. & McEvoy, C. L. (2009). Is there some-



May 4, 2015 15:0 World Scientific Review Volume - 9in x 6in Purdue page 31

Similarity Judgments: From Classical to Complex Vector Psychological Spaces 31

thing quantum-like about the human mental lexicon? Journal of Mathematical
Psychology, vol. 53, pp. 362-377.

12. Busemeyer, J. R. & Bruza, P. (2011). Quantum models of cognition and
decision making. Cambridge University Press: Cambridge, UK.

13. Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. (2011). A
quantum theoretical explanation for probability judgment errors. Psychologi-
cal Review, 118, 193-218.

14. Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynamics
of human decision making. Journal of Mathematical Psychology, 50, 220-241.

15. Bush, R. R. & Mosteller, F. (1951). A model for stimulus generalization and
discrimination. Psychological Review, 58, 413-423.

16. Casale, M. B., Roeder, J. L., & Ashby, F. B. (2012). Analogical transfer in
perceptual categorization. Memory & Cognition, 40, 434-449.

17. De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, M. J., Voor-
spoels, W., & Storms, G. (2008). Exemplar by feature applicability matrices
and other Dutch normative data for semantic concepts. Behavior Research
Methods, 40, 1030-1048.

18. Eisler, H. & Ekman, G. (1959). A mechanism of subjective similarity. Acta
Psychologica, 16, 1-10.

19. Evers, E. R. K. & Lakens, D. (2014). Revisiting Tversky’s diagnosticity prin-
ciple. Frontiers in Psychology, Article 875.

20. Grdenfors, P. (2000). Conceptual spaces: the geometry of thought. MIT
Press.

21. Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy.
Cognitive Science, 7, 155-170.

22. Gleitman, L. R., Gleitman, H., Miller, C., & Ostrin, R. (1996). Similar, and
similar concepts. Cognition, 58, 321-376.

23. Goldstone, R. L. (1994). The role of similarity in categorization: providing a
groundwork. Cognition, 52, 125-157.

24. Goodman, N. (1972). Seven structures on similarity. In N. Goodman, Prob-
lems and projects (pp. 437-447). Indianapolis: Bobbs-Merrill.

25. Gri�ths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B.
(2010). Probabilistic models of cognition: exploring representations and in-
ductive biases. Trends in Cognitive Sciences, 14, 357-364.

26. Hughes, R. I. G. (1989). The structure and interpretation of quantum me-
chanics. Harvard University press.

27. Hampton, J. A. (2007). Typicality, graded membership, and vagueness. Cog-
nitive Science, 31, 355-384.

28. Isham, C. J. (1989). Lectures on quantum theory. Singapore: World Scien-
tific.

29. Kintsch, W. (2014). Similarity as a function of semantic distance and amount
of knowledge. Psychological Review, 121, 559-561.

30. Krumhansl, C. L. (1978). Concerning the applicability of geometric models to
similarity data: The interrelationship between similarity and spatial density.
Psychological Review, 85, 445-463.

31. Krumhansl, C. L. (1988). Testing the density hypothesis: comment on Corter.



May 4, 2015 15:0 World Scientific Review Volume - 9in x 6in Purdue page 32

32 A. Barque Duran et al.

Journal of Experimental Psychology: General, 117, 101-104.
32. Lambert-Mogiliansky, A., Zamir, S., & Zwirn, H. (2009). Type indetermi-

nacy: A model of the KT (Kahneman-Tversky) man. Journal of Mathematical
Psychology, 53, 349-361.

33. Larkey, L. B. & Love, B. C. (2003). CAB: Connectionist analogy builder.
Cognitive Science, 27, 781-794.

34. Medin. D.L., Goldstone, R.L., & Gentner, D. (1993). Respects for Similarity.
Psychological Review, 100, 254-278.

35. Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classi-
fication. Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 10, 104- 114.

36. Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and classifica-
tion. Cognitive Psychology, 23, 94-140.

37. Oaksford, M. & Chater, N. (2009). Précis of Bayesian rationality: the prob-
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