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Medial–Frontal Stimulation Enhances Learning in
Schizophrenia by Restoring Prediction Error Signaling
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Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville,
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Posterror learning, associated with medial–frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disor-
ders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninva-
sively passing direct current through human medial–frontal cortex, we could enhance the event-related potential related to learning from
mistakes (i.e., the error-related negativity), a putative index of prediction error signaling in the brain. Following this causal manipulation
of brain activity, the patients learned a new task at a rate that was indistinguishable from healthy individuals. Moreover, the severity of
delusions interacted with the efficacy of the stimulation to improve learning. Our results demonstrate a causal link between disrupted
prediction error signaling and inefficient learning in schizophrenia. These findings also demonstrate the feasibility of nonpharmacologi-
cal interventions to address cognitive deficits in neuropsychiatric disorders.
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Introduction
Theories of learning and goal-directed behavior seek to explain
how success and failure are used to improve future decisions
(Sutton and Barto, 1998; Haggard, 2008). Central to these theo-
ries is the concept of prediction error. A prediction error signal is
generated when outcomes deviate from predictions, leading to
the updating of values associated with available actions (Walton

et al., 2004; Brown and Braver, 2005; Behrens et al., 2007; Matsu-
moto et al., 2007; Alexander and Brown, 2011). Prediction errors
are thought to be computed by the midbrain dopamine system
and signaled to the medial–frontal cortex where they are used to
adjust stimulus–response mappings (Schultz and Dickinson,
2000).

The error-related negativity (ERN) serves as a putative elec-
trophysiological signature of the prediction error signal in the
brain (Holroyd and Coles, 2002; Frank et al., 2005; Jocham and
Ullsperger, 2009; Gehring et al., 2012). The ERN is observed over
medial–frontal cortex as a negative potential following behav-
ioral errors relative to correct responses. It is thought to reflect a
mismatch between the actual response and the predicted re-
sponse, with the size of the ERN proportional to the magnitude of
this mismatch (Holroyd and Coles, 2002; Frank et al., 2005; Jo-
cham and Ullsperger, 2009; Gehring et al., 2012). The precise
neuropharmacological basis of the ERN is currently debated (Jo-
cham and Ullsperger, 2009; Gehring et al., 2012). For example,
the ERN may be solely determined by the midbrain dopamine
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Significance Statement

When there is a difference between what we expect to happen and what we actually experience, our brains generate a prediction
error signal, so that we can map stimuli to responses and predict outcomes accurately. Theories of schizophrenia implicate
abnormal prediction error signaling in the cognitive deficits of the disorder. Here, we combine noninvasive brain stimulation with
large-scale electrophysiological recordings to establish a causal link between faulty prediction error signaling and learning deficits
in schizophrenia. We show that it is possible to improve learning rate, as well as the neural signature of prediction error signaling,
in patients to a level quantitatively indistinguishable from that of healthy subjects. The results provide mechanistic insight into
schizophrenia pathophysiology and suggest a future therapy for this condition.
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system (Holroyd and Coles, 2002), or another neurotransmitter
may give rise to the ERN, which causes a dopaminergic response
in the basal ganglia (Frank et al., 2005).

Faulty prediction error signaling has been suggested to be
central to schizophrenia (Corlett et al., 2007; Murray et al., 2008;
Fletcher and Frith, 2009) associated with a broad range of clinical
symptoms. Reduced ERN amplitude has been linked to the neg-
ative (Bates et al., 2002; Morris et al., 2011; Foti et al., 2012;
Mathalon and Ford, 2012) and positive symptoms (Bates et al.,
2002; Mathalon et al., 2002) of schizophrenia. For example, the
dysfunction of the neural mechanisms, thought to compute pre-
diction error and signal this computation to the cortex, may un-
derlie the discounting of rewarding events giving rise to negative
symptoms, such as impairments in motivation and anhedonia
(Gold et al., 2012). Moreover, faulty predictions about the world
result in discrepancies between the expected and observed out-
comes, which may serve as input for delusions and paranoia, core
features of positive symptoms (Hemsley, 2005; Corlett et al.,
2010; Corlett and Fletcher, 2012).

Here we sought to establish the first causal link between disrupted
prediction error signaling and learning rate deficits in schizophrenia.
We also sought to improve the performance of patients by increasing
the ERN through the exogenous modulation of cortical activity. To
achieve these goals, we delivered transcranial direct-current stimu-
lation (tDCS) over the medial–frontal cortex (Fig. 1A). We applied
20 min of anodal tDCS because this duration and current-flow di-
rection have been shown to increase activity, with effects lasting up to
5 h in duration (Reinhart and Woodman, 2014, 2015a, b; Reinhart et
al., 2015). Each subject completed anodal and sham conditions on
different days with order randomized across subjects, and subjects
being blind to the stimulation conditions (for details and control
analyses, see Materials and Methods). Immediately following stim-
ulation, we recorded subjects’ response-locked ERN while they per-
formed a learning task that allowed us to measure prediction error
signaling in the brain (Fig. 1B) (Holroyd and Coles, 2002; Reinhart
and Woodman, 2014). We used a 700 ms deadline and randomly
interleaved stop signals to stretch stimulus–response learning across
the first 25–30 trials, and reliably measure the ERN.

Materials and Methods
Subjects. We recruited individuals who met the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition criteria for schizophrenia
from outpatient psychiatric facilities in Nashville. Diagnoses were con-
firmed with structured clinical interviews (Structured Clinical Interview
for DSM-IV Axis I Disorders) (First et al., 1995). All patients were med-
icated. Symptoms were assessed with the Brief Psychiatric Rating Scale
(Overall and Gorham, 1962), the Scale for the Assessment of Positive
Symptoms (Andreasen, 1984), and the Scale for the Assessment of Neg-
ative Symptoms (SANS) (Andreasen, 1983). Subjects were excluded if
they met any of the following criteria: substance use within the past 6

months, neurological disorders, history of head injury, inability to fixate,
and excessive sleepiness. All subjects had normal color vision, and nor-
mal or corrected-to-normal visual acuity. All subjects gave written in-
formed consent approved by the Vanderbilt Institutional Review Board
and were financially compensated for their participation.

We first performed a power calculation to estimate the necessary sam-
ple size from a pilot study of 10 subjects who received sham and anodal
stimulation on different days. We pooled mean differences and SDs of
our dependent variables across stimulation conditions to conservatively
estimate Cohen’s d effect size based on paired samples two tailed t tests
(accuracy: d � 2.34, reaction time [RT]: d � 1.50, ERN: d � 1.51). We
found that a sample size of 18 subjects would be sufficient to detect effects
of the same magnitude with 80% power at the p � 0.05 significance level.

In the present study, analyses were conducted on 19 patients with
schizophrenia (11 male, 8 female), and 18 demographically matched
healthy subjects (10 male, 8 female). Seventeen patients completed both
anodal and sham conditions, 1 patient completed only anodal, and 1
patient completed only sham. All 18 healthy subjects completed both
anodal and sham conditions. However, the same patterns of effects were
observed across all dependent variables when our analyses were restricted
to the 17 patients and 18 control subjects who participated in both stim-
ulation conditions. Subjects in each group were matched on age, gender,
and handedness (for demographic information, see Table 1).

Stimuli and procedure. Each subject was exposed to 20 min of anodal
and sham tDCS on different days, with order randomized across subjects
(see below for details about the stimulation) (Fig. 1A). Immediately fol-
lowing stimulation, we recorded the subject’s event-related potentials
while they performed a feedback-based, learning task. During this task,
the subjects needed to learn which button to press on a handheld game-
pad when each possible target color was presented. Subjects needed to
respond within a 700 ms response deadline unless the target was followed
by a stop signal (Fig. 1B).

Each trial began with the presentation of a central fixation point (0.37°
square, 30 cd/m 2, 800 –1200 ms). Next, a colored-square target (1° � 1°,
10° from the center of screen along the horizontal meridian, 700 ms)
appeared to the left or right of fixation. The target appeared in one of two

Figure 1. tDCS model and task. A, Schematic of tDCS montage, and the modeled distribution of current flow during anodal stimulation on top and front views of a 3D reconstruction of the cortical
surface. B, The reinforcement learning task requiring subjects to map the color of the target (red vs blue, magenta vs green, or purple vs yellow) to a button on a handheld gamepad.

Table 1. Demographic informationa

Patients Controls Statistical test p

Age, years 43.1 (7.76) 38.2 (10.78) t � 1.59 0.12
Gender, n �2 � 0.003 0.96

Female 8 8
Male 11 10

Years of education 12.6 (1.98) NA
Duration of illness, years 22.6 (7.86) NA
SAPS, total 16.8 (15.37) NA
SANS, total 31.7 (16.92) NA
BPRS 18.6 (10.60) NA
CPZ dose equivalent 425.05 (250.73)

mg/kg/d
NA

aData are mean (SD). t� independent two-tailed t test. SAPS, Scale for the Assessment of Positive Symptoms; SANS,
Scale for the Assessment of Negative Symptoms; BPRS, Brief Psychiatric Rating Scale; NA, not applicable.
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possible colors on each trial; the details of the color assignment across
days and subjects are described below. On half of the trials, the target was
to the left of fixation, and the target was to the right of fixation on the
remainder of the randomly interleaved trials. On 33% of all trials, a stop
signal was presented following the target (a central square subtending
0.66°, with 0.08° line width, 30 cd/m 2), informing subjects to withhold
their response. These stop-signal trials were randomly interleaved with
target-only trials. Six stop-signal delays (the stimulus-onset asynchrony
between the onset of the target and the onset of the stop signal) were
sampled with equal probability: 60, 120, 180, 240, 300, and 360 ms. After
presentation of the stop signal, stimuli remained on the screen until
700 ms had elapsed from target onset. The intertrial interval was
1000 –1200 ms, randomly jittered with a rectangular distribution.
Session duration was �1 h.

Consistent with previous learning manipulations (Holroyd and Coles,
2002; Reinhart and Woodman, 2014), subjects were required to learn
which of two buttons on the handheld gamepad corresponded to which
target color. Between testing days (i.e., stimulation conditions), the
target colors changed. This required subjects to relearn the stimulus–
response mapping on each day. On any given testing day, target stimuli
could appear in 1 of 3 pairs of colors (red, x � 0.612, y � 0.333, 15.1
cd/m 2 and blue, x � 0.146, y � 0.720, 6.41 cd/m 2; magenta, x � 0.295
y � 0.153, 19.3 cd/m 2 and green, x � 0.281, y � 0.593, 45.3 cd/m 2; or
purple, x � 0.245 y � 0.126, 9.3 cd/m 2, and yellow, x � 0.408, y � 0.505,
54.1 cd/m 2). The color pairs and the color-to-button mappings were
randomized across days, with the order of each color-to-button mapping
randomized across subjects.

We presented feedback at the end of every trial so that subjects could
learn the stimulus–response mappings across trials. Feedback occurred
1000 ms after the 700 ms response window had lapsed, and its probability
was fully deterministic. Feedback was a centrally presented outline of a
circle (0.88° diameter, 0.13° thick) or cross (0.88° length, 0.13° thick)
lasting for 1000 ms, with the meaning of these symbols (i.e., correct vs
incorrect) randomized across conditions and subjects. Subjects were not
informed of the stimulus–response mappings, and had to determine the
optimal response strategy on a trial-and-error basis. Subjects were in-
structed, and motivated by feedback on every trial, to learn the correct
stimulus–response mappings while also responding as quickly as possi-
ble, and inhibiting their responses to the randomly interleaved stop
signals.

tDCS. We applied tDCS using a battery driven, constant current stim-
ulator (Mind Alive) and pair of conductive rubber electrodes (active:
19.25 cm 2 reference: 52 cm 2). The electrodes were placed in saline-
soaked sponges and held in place by a headband. The reference electrode
was placed on the center of the right cheek to avoid confounding effects
from other brain regions (Tseng et al., 2012; Reinhart and Woodman,
2014). The cheek electrode was placed diagonally, 3 cm from the cheilion
(lip corner at rest) along an imaginary line connecting the cheilion to the
ipsilateral condylion (palpable when the jaw is moved) (Fig. 1A). Anodal
stimulation was applied for 20 min, at 1.5 mA intensity, over medial–
frontal cortex (site FCz, from the International 10 –20 System). The du-
ration, intensity, and direction of current flow that we used has been
shown to effectively enhance the performance of healthy subjects, as well
as increase the amplitude of specific event-related potential waveforms
(Reinhart and Woodman, 2015a). Comparable stimulation protocols
have been shown to create an excitatory (anodal) effect lasting up to 5 h
(Reinhart and Woodman, 2014). We always allowed at least 48 h between
testing days to avoid carryover effects from the previous brain stimula-
tion exposure (Monte-Silva et al., 2013).

Each subject completed two stimulation conditions, anodal and a
sham control, on different days. The order of the conditions was ran-
domized across subjects. The sham tDCS condition followed the same
procedure as the anodal tDCS in which stimulation was delivered for 20
min, but stimulation only lasted 30 s, ramping up and down at the be-
ginning, middle, and end of the 20 min period, resulting in the same
tingling and itching sensations associated with active tDCS. Debriefing
questions confirmed that subjects were blind to the presence of stimula-
tion. In addition, all subjects confirmed experiencing a mild tingling or
itching sensation during the sham condition. To rule out potential con-

founding factors related to the order in which stimulation was presented,
we examined whether stimulation order (i.e., anodal followed by sham vs
sham followed by anodal) was introducing bias and having a hidden
effect on our dependent variables. We found no effect of stimulation
order on ERN amplitude, RT, or accuracy (F � 1.122, p � 0.304), dem-
onstrating the effectiveness of the order randomization method we used
across subjects.

Electroencephalography. We recorded the electroencephalogram
(EEG) with an amplifier from SA Instrumentation and using a 0.01–100
Hz bandpass filter. We used nonpolarizable tin electrodes embedded in
an elastic cap (Electrocap International). The electrodes were positioned
based on the International 10 –20 System (Fz, Cz, Pz, F3/F4, C3/C4,
P3/P4, PO3/PO4, T3/T4, T5/T6, O1/O2) and included 2 nonstandard
sites (OL, midway between O1 and T5; and OR, midway between O2 and
T6). Signals were referenced online to the right mastoid electrode and
sampled at 250 Hz. Signals were then rereferenced offline to the average
of the left and the right mastoids (Nunez and Srinivasan, 2006).

Horizontal eye position was monitored by recording electro-
oculogram from bipolar electrodes placed at the outer canthi of each eye.
Vertical eye position and blinks were monitored with bipolar electrodes
placed above and below the left orbit. Periorbital electrodes detected eye
movements and a two-step ocular artifact rejection method was used.
Individual trials were excluded from analyses and subjects were excluded
if too many trials (�25%) were lost or their averaged horizontal electro-
oculogram exhibited any deviations �3 �V (Woodman and Luck, 2003).
The average rejection of trials during the learning period of the task (i.e.,
the first 50 trials from the start of the experiment) was 19.2% for patients
and 11.4% for healthy controls.

Data analysis. For the ERN analyses, the continuous EEG data were
time-locked to the button-press onset, and baseline corrected to the
interval from 200 to 50 ms before response (Gehring et al., 2012). The
ERN amplitude was measured from the central midline electrode (i.e.,
Cz) using a time window from �50 to 150 ms relative to the response
onset. We calculated amplitude of the voltages as the mean of the differ-
ence wave subtracting error trials from correct trials (Gehring et al.,
2012). All statistical analyses were performed on unfiltered data. Of note,
we were unable to measure the feedback-related negativity due to exces-
sive (�3 �V) electro-oculogram activity following feedback stimuli on
�30% of all trials in patients with schizophrenia. However, unlike the
ERN, the feedback-related negativity is not consistently impaired in
schizophrenia (Morris et al., 2008). Indeed, some studies have shown
that the feedback-related negativity is fully intact in patients relative to
healthy comparison subjects (Morris et al., 2011).

Current-flow model. We used our standard procedures for generating a
forward model of tDCS current flow previously described in detail (Re-
inhart and Woodman, 2015a) and grounded in established methods (De
Lucia et al., 2007; Wagner et al., 2007; Sadleir et al., 2010; Bikson et al.,
2012). Constructing the model involved the following: (1) MRI segmen-
tation, (2) electrode placement, (3) generation of a finite element model,
and (4) computation. We used the MNI T1-weighted MRI reference
brain from the CURRY 6.0 multimodal neuroimaging software (Com-
pumedics Neuroscan). A combination of automated and manual seg-
mentation tools was used to obtain tissue masks, including Gaussian
filters, and morphological and Boolean operations implemented in
MATLAB (The MathWorks). We used realistic volumetric head geome-
tries with a numerical solver finite element method to better capture
realistic sulci and gyri anatomy of the cortical surface, improving the
overall accuracy of the model solution. Volumetric mesh was generated
from the segmented data (�140,000 vertices, �800,000 tetrahedral ele-
ments). Segmented compartments and their respective isotropic electri-
cal conductivities (in S/m) included the following: skin (0.33), skull
(0.0042), and brain (0.33). The production of meshes involved dividing
each mask into small contiguous elements, which allowed us to then
numerically calculate the current flow.

The forward computation using a finite element model was implemented in
SCIRun (available as open source software: http://software.sci.utah.edu). We
simulated current flow with a bipolar electrode configuration, including the an-
ode (19.25 cm2) centered over FCz and the cathode (52 cm2) centered over the
right cheek between the zygomaticus major and the condylion. Current density
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corresponding to 1.5 mA total current was applied at the anodal electrode, and
ground was applied at the cathodal electrode.

To determine the distribution of electrical potential inside the human
tissues, the Laplace equation:

�� � 	� �� �
 � 0

(�, potential; �, conductivity) was solved, and the following boundary
conditions were used. Inward current flow � Jn (normal current density)
was applied to the exposed surface of the anode. The ground was applied
to the exposed surface of the cathode. All other external surfaces were
treated as insulated. Plots show the cortical current density distribution
(Fig. 1A). It is important to emphasize that our tDCS modeling solution
is not intended as a strong claim about the exact location of current flow
during stimulation. Rather, our model serves as a working hypothesis
for where the trajectory of electrical field passes through the brain
given our specific tDCS montage. In addition, this model offers re-
searchers potential target locations for future investig-
ation into prediction error processing using techniques, such as hu-
man neuroimaging or animal neurophysiology.

Statistical analysis. Analyses were focused on the first 50 trials of the
experiment in which subjects learned the stimulus–response mapping
assignment for the day. We used mixed-model ANOVAs with the
between-subjects factor of group (patients vs controls), and the within-
subjects factors of stimulation (anodal vs sham), and time (bin 1 vs bin 2
vs bin 3 vs bin 4 vs bin 5). Separate bin-wise analyses were performed for
each dependent variable of RT, accuracy (in percentage correct), and
ERN amplitudes averaged into 5 bins of 10 trials each (i.e., bin 1 con-
tained trials 1–10, bin 2 contained trials 11–20, etc.). We specifically
chose an average bin size of 10 trials to generate ERNs with good signal-
to-noise ratios, given previous work showing that 6 trials is sufficient to
accurately quantify a stable and reliable response-locked ERN (Pontifex
et al., 2010). More importantly, the 10-trial wide analysis bins allowed us
to model the evolution of the error potentials (i.e., the ERNs) during
learning, consistent with previously established methods (Holroyd and
Coles, 2002; Reinhart and Woodman, 2014), most notably the seminal

work by Holroyd and Coles (2002) on the re-
inforcement learning theory of the ERN. Inter-
actions were parsed with follow-up ANOVAs
where appropriate. We adjusted p values using
the Greenhouse-Geisser � correction for non-
sphericity when the sphericity assumption was
violated (Jennings and Wood, 1976).

Results
Our results from patients with schizo-
phrenia at baseline are consistent with the
hypothesized impairment in learning de-
pendent on prediction error signaling.
Figure 2 shows the neural and behavioral
events related to learning during the pe-
riod of the experiment in which subjects
were determining the optimal response
strategy of the task.

We observed no measurable ERN in
patients (error vs correct trials, F(1,17) �
1.052, p � 0.319) and reduced ERN am-
plitude in patients relative to controls
(F(1,17) � 4.916, p � 0.041) (Fig. 2A,B).
The behavioral changes in the patients
largely mirrored the ERN impairments we
observed, and provided further evidence
for impaired prediction error calculations
in the brains of patients. Specifically, pa-
tients were dramatically slower to respond
(F(1,17) � 10.099, p � 0.006) and less ac-
curate (F(1,17) � 27.241, p � 0.001) com-
pared with controls (Fig. 2C,D). These

behavioral results from the sham condition show that patients
with schizophrenia struggled to learn rapidly from their mistakes.
By recording subjects’ event-related potentials, we demonstrated
that the inability of patients to rapidly learn a new task was due, in
part, to disrupted error-related electrophysiology, consistent
with the hypothesis that abnormal prediction error signaling in
schizophrenia underlies the dysfunctional use of errors to im-
prove future decisions.

If medial–frontal brain regions play a critical role in learning
driven by prediction error signaling, the electrical stimulation of
these regions should augment the neural and behavioral events
associated with this learning. Figure 2 shows that anodal tDCS
over medial–frontal cortex had a strong positive effect on the
neural and behavioral indices of learning. First, for patients, an-
odal stimulation boosted ERN amplitude (error vs correct trials,
F(1,17) � 6.509, p � 0.021), leading to a significantly larger ERN
after stimulation relative to the sham (F(1,17) � 4.494, p � 0.049)
(Fig. 2A,B). Similarly, for controls, the ERN was larger following
stimulation (F(1,17) � 4.968, p � 0.040). However, there was no
group difference in the stimulation-induced ERN enhancements
(stimulation � group interaction, F(1,17) � 0.871, p � 0.364) (for
an explanation of this finding, see Discussion). Second, the im-
pact of medial–frontal tDCS on subjects’ behavior showed a tight
correspondence with the effects we observed on the error-related
electrophysiology. There were sizable improvements in behavior
following stimulation in the patients (RT, F(1,17) � 8.467, p �
0.010; accuracy, F(1,17) � 10.850, p � 0.004) and controls
(RT, F(1,17) � 10.182, p � 0.005; accuracy F(1,17) � 17.892, p �
0.001), with no stimulation � group interaction on RT (F(1,17) �
1.315, p � 0.267) or accuracy (F(1,17) � 0.091, p � 0.767) (Fig.
2C,D). Third, the anodal stimulation eliminated the significant

Figure 2. Strengthening prediction error electrophysiology and behavior in schizophrenia using electrical stimulation over
medial–frontal cortex. A, Mean ERN amplitude shown across healthy controls (HC) and patients with schizophrenia (SZ) for sham
(white) and anodal (gray) stimulation conditions. B, Response-synchronized difference waves (i.e., the ERN) derived from error-
minus-correct trials shown at central midline electrode sites (Cz) across subject groups (solid line indicates controls; dotted line
indicates patients) and stimulation conditions. Topographical maps represent the spatial distribution of the ERN, based on the
�50 to 150 ms periresponse analytic window (pale yellow shading) of the error-minus-correct difference waves. C, Mean RT
shown across subject groups and stimulation conditions. D, Mean percentage correct accuracy shown across subject groups and
stimulation conditions. Error bars indicate �1 SEM.
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between-group differences we observed at
baseline, such that patients in the anodal
condition were quantitatively indistin-
guishable from controls in the sham con-
dition in terms of ERN amplitude (F(1,17)

� 2.432, p � 0.137), RT (F(1,17) � 0.477,
p � 0.499), and accuracy (F(1,17) � 2.833,
p � 0.111). These results show that medi-
al–frontal tDCS can induce lasting effects
on the ERN and learning. Further, the
beneficial effects induced by anodal stim-
ulation in the patients were sufficient to
temporarily equate the ERN and the
learning rates between the patients and
the healthy individuals at baseline.

We obtained similar results when cal-
culating peak ERN amplitudes in patients
based solely on error-trial data, with the potentials measured
from �50 to 150 ms periresponse. The similarity included the
group � time interaction on ERN amplitude (F(4,136) � 4.451,
p � 0.004), the stimulation � time interaction on ERN ampli-
tude in patients (F(4,68) � 5.677, p � 0.005), and the effect of the
mean rate parameters of the ERN amplitudes between stimula-
tion conditions in patients (t(34) � 4.179, p � 0.01). Thus, our
findings regarding the ERN generalize to multiple measures of
this component.

The results presented in Figure 2 provide evidence for a
causal link between aberrant prediction error signaling over
medial–frontal cortex and learning deficits in schizophrenia.
However, to examine the neural and behavioral dynamics of
learning, we performed a more precise quantification of our
dependent variables, charting their evolution over the course
of learning. Specifically, we sorted the data into 10 trial-wide
bins from the start of the experiment, consistent with funda-
mental work on reinforcement learning theory of the ERN
(Holroyd and Coles, 2002) (for details, see Materials and
Methods). Importantly, reducing the bin size allowed us to
model the neural and behavioral dynamics as learning pro-
gressed in the task, and to test the prediction of this learning
theory of the ERN in patients with schizophrenia that when
the ERN is abnormal, learning should also be abnormal.

The findings at baseline (i.e., the sham condition) support
the view that patients with schizophrenia exhibit dysfunc-
tional prediction error signaling dynamics during learning.
First, the ERNs from patients in the sham condition were
severely blunted across learning trials relative to controls (Fig.
3). This was confirmed statistically by the absence of a main
effect of time on ERN amplitude in patients (F(4,68) � 0.644,
p � 0.577), and a significant group � time interaction on ERN
amplitude (F(4,136) � 4.898, p � 0.002). Second, we observed
that learning in patients was impaired in the sham condition
(Fig. 3). Behavioral gains associated with learning were re-
duced in patients relative to controls, evidenced by significant
interactions of group � time on RT (F(4,136) � 3.909, p �
0.008) and accuracy (F(4,136) � 3.725, p � 0.045).

Figure 3 shows that anodal stimulation in patients trans-
formed their ERN amplitude function during learning and
caused their rates of learning to accelerate, matching those of
healthy controls in the sham condition. These observations
were supported by interactions of stimulation � time on ERN
amplitude (F(4,68) � 6.592, p � 0.001) and RT (F(4,36) � 6.438,
p � 0.003), with accuracy also at a trend level (F(4,68) � 2.484,
p � 0.079) in the patients. The latter accuracy result was likely

due to the extent of behavioral learning exhibited by patients
in the sham condition (for a detailed explanation, see
Discussion). Moreover, we obtained similar findings when
controlling for trial number differences between time bins.
That is, because learning inevitably involves improvements in
accuracy, the ERNs produced across learning involve progres-
sively fewer error trials. Thus, to rule out the alternative hy-
pothesis that trial number differences accounted for the ERN
changes during learning, we randomly selected error trials to
exclude from the more heavily represented bins until no sig-
nificant differences were present in the trial numbers across
time bins 1–5. The critical interaction of stimulation � time
on ERN amplitude remained significant (F(4,68) � 4.535, p �
0.010), strengthening the conclusion that medial–frontal
stimulation improved prediction error signaling and learning
rates in patients with schizophrenia.

Next, by modeling these learning data with a logarithmic
function (Logan, 1988), we found that anodal stimulation rela-
tive to sham increased the mean rate parameters of the ERN
(t(34) � 5.352, p � 0.01), RT (t(34) � 3.616, p � 0.01), and accu-
racy (t(34) � 2.128, p � 0.041) in patients. These findings mirror
results obtained using Rescorla-Wagner reinforcement-learning
models to track the development of certainty over the course of a
probabilistic learning task in healthy adults (Klein et al., 2007).
Most important, the significant differences in learning dynamics
between patients and controls observed at baseline were no lon-
ger present after patients received anodal stimulation (ERN
F(4,68) � 1.218, p � 0.309, RT F(4,68) � 2.113, p � 0.116, accuracy
F(4,68) � 0.720, p � 0.536) compared with the controls in the
sham baseline. This suggests that 20 min of stimulation to medi-
al–frontal cortex was sufficient to elevate patients with schizo-
phrenia to the functioning of their healthy control counterparts
in terms of neural prediction error signaling and behavioral sig-
natures of learning speed.

To determine the effectiveness of the brain stimulation proto-
col to strengthen prediction error signaling and learning in
schizophrenia, we examined the differences in each subject’s
learning rate data across stimulation conditions. We found that
the majority of patients and controls exhibited clear stimulation-
induced improvements during learning. This was shown by sig-
nificantly faster growth rates of ERN amplitude, RT, and
accuracy in patients (13 of 17, each t � 2.357, p � 0.031) and
controls (15 of 18, each t � 2.486, p � 0.024) after anodal tDCS
relative to sham. These results demonstrate the reliability of me-
dial–frontal stimulation to enhance prediction error signaling in
the brain and learning rate in the individual.

Figure 3. Modeling the effects of schizophrenia and medial–frontal brain stimulation on prediction error electrophysiology and
behavior during reinforcement learning. Mean ERN amplitude, RT, and percentage correct accuracy sorted into 10 trial-wide bins
from the start of the experiment shown across healthy controls (HC) and patients with schizophrenia (SZ) from the sham (black)
and anodal (blue) stimulation conditions. Circles represent empirical results. Lines indicate modeling results: solid line indicates
controls; dotted line indicates patients. Error bars indicate �1 SEM.
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If prediction error signaling dysfunction is a central feature in
the pathophysiology of schizophrenia, then we should be able to
determine significant relationships between prediction error sig-
naling and the clinical symptoms in schizophrenia. Models of
schizophrenia propose that the primary impairment in the illness
is a disruption of prediction error signaling related to dopamine
(Corlett et al., 2006, 2007; Frank, 2008; Fletcher and Frith, 2009;
Waltz et al., 2009), leading to behavioral motivation based on
faulty associations and contingencies (Kapur, 2003; Smith et al.,
2006). The ERN has been linked to reward processing, dopamine,
and the computation of prediction error (Goldman-Rakic, 1999;
Holroyd and Coles, 2002). Consistent with these hypotheses, our
results at baseline show that patients exhibited abnormal ERN
amplitude during the learning task (see Figs. 2, 3). But these
hypotheses also predict that ERN abnormalities during learning
in schizophrenia should be related to negative clinical symptoms,
such as impairments in motivation and anhedonia (Morris et al.,
2011; Mathalon and Ford, 2012; but see Mathalon et al., 2002).

We found that negative symptom severity predicted the ab-
normal ERN amplitude changes across learning in patients with
schizophrenia during the baseline condition. Table 2 shows the
two-tailed, Pearson correlation results from comparing the
learning rate parameters of ERN amplitude in the sham condi-
tion against each measure of clinical symptoms and illness dura-
tion. The total score on the SANS (R(17) � �0.740, p � 0.0004)
and the individual scores for the negative symptom of affective
flattening (R(17) � �0.657, p � 0.003) and anhedonia asociality
(R(17) � �0.495, p � 0.037) show that patients with the highest
levels of negative symptoms showed the lowest rates of growth in
ERN amplitude (i.e., less negative potential between error and
correct trials across learning) (Fig. 4A–C). The ERN-SANS cor-
relation remained significant after correcting for multiple com-
parisons using the Benjamini–Hochberg correction procedure
(Benjamini and Hochberg, 1995) with a false discovery rate as
low as 5%. This pattern of findings is consistent with evidence of
poor internal representation of motivational information (Ursu
et al., 2011) and disruption of prediction error computation
(Krawitz et al., 2011) in schizophrenia. Patients with strong neg-
ative symptoms likely suffer from selective impairments in moti-
vation to seek out rewarding activities (Gold et al., 2012). Our
results suggest that the putative index of reward prediction error
signaling (i.e., the ERN) is sensitive to selective motivational im-
pairments in schizophrenia.

Figure 4A–C provides evidence for brain–symptom relation-
ships important to our understanding of the etiology of schizo-
phrenia. However, it is also critical to understand whether certain
clinical symptoms of schizophrenia predispose a patient to the
benefits of our electrical brain stimulation regimen. Accordingly,
we asked whether patients’ clinical data collected at baseline
could predict the effectiveness of the medial–frontal tDCS. We
correlated each patient’s tDCS-induced ERN modulation (i.e.,
anodal-minus-sham logarithmic learning rate values) with their
data on illness duration, individual clinical symptoms, and total
clinical symptom scores. As shown in Table 2, we found that
patients with the sharpest rates of growth in ERN amplitudes
following stimulation were those with the lowest level of positive
symptoms scores for delusions (R(17) � �0.804, p � 0.00005)
(Fig. 4D). This correlation remained significant after correcting
for multiple comparisons using a false discovery rate of 1%. The
clinical ratings were obtained for each patient before study par-
ticipation. As a result, we could not determine the causal effects of
tDCS on the specific symptoms, such as whether anodal stimula-
tion caused an amelioration of delusions in patients. However,
the strong negative relationship between delusions at baseline
and the later tDCS-induced ERN enhancements during learning
does suggest important information about individual differences
in patients’ delusions and the effectiveness of the medial–frontal
stimulation protocol that we have developed to boost prediction
error signaling and learning rate.

To rule out the possibility that the patterns of effects observed
in the patients were due to antipsychotic medications, we exam-
ined whether any of our dependent measures varied as a function
of medication dose. We calculated chlorpromazine (CPZ) equiv-
alent dosages for all patients and correlated it with ERN ampli-
tude, RT, and accuracy across the learning period of the task for
the sham and anodal stimulation conditions. We found that CPZ
dose was not associated with any of the dependent measures (all
r � 0.307, p � 0.231). These findings are consistent with previous
reports showing that antipsychotic medication leads to mild im-
provement in cognitive symptoms of schizophrenia (Keefe et al.,

Table 2. Correlational analysisa

Sham ERN tDCS-induced � ERN

R p R p

Illness duration 0.093 0.714 0.256 0.304
SAPS �0.031 0.902 0.035 0.892

Hallucinations �0.296 0.233 �0.175 0.488
Bizarre behavior �0.018 0.944 �0.274 0.271
Delusions 0.157 0.535 �0.804 0.00005*
Positive formal TD �0.043 0.864 0.078 0.757

SANS �0.740 0.0004* �0.174 0.490
Affective flattening �0.657 0.003* �0.150 0.552
Alogia �0.424 0.080 0.074 0.770
Avolition apathy �0.137 0.589 �0.128 0.612
Anhedonia asociality �0.495 0.037* �0.330 0.182
Attention �0.277 0.265 0.077 0.762

BPRS �0.288 0.246 �0.214 0.393
aThetwo-tailedPearsoncorrelationresultsshowthebrain-symptomrelationshipsbetweenindividualpatientERNlearning
rates, and clinical symptom scores and illness duration. Learning rate parameters were taken from logarithmic model fits
based on ERN amplitude dynamics during learning in the sham, baseline condition (left columns), and the change in ERN
amplitude dynamics during learning from sham to anodal conditions (right columns). TD, thought disorder.

*Significant.
Figure 4. Brain-symptom relationships. Scatter plots represent the relationships between
individual patient ERN learning rates and the total score on the SANS (A), and the individual
scores for affective flattening (B), alogia (C), and delusions (D). Learning rate parameters were
taken from logarithmic model fits based on ERN amplitude dynamics during learning in the
sham, baseline condition (A–C) or the change in ERN amplitude dynamics during learning from
sham to anodal conditions (D).
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2007), instead of being the source of the impairments in patients.
Of note, CPZ equivalent dose is associated with dopamine recep-
tor binding, which is particularly relevant for the study of predic-
tion error signaling, given the links between the brain’s
computation of prediction error and dopamine (Schultz and
Dickinson, 2000), and ERN amplitude and dopamine (Holroyd
and Coles, 2002; Jocham and Ullsperger, 2009; Gehring et al.,
2012).

Discussion
In this study, we demonstrated the effectiveness of noninvasive brain
stimulation targeting medial–frontal cortex to boost prediction er-
ror signaling in patients with schizophrenia. This manipulation en-
abled patients to more effectively learn from their mistakes. At
baseline, the patients’ learning was severely impaired, consistent
with work showing degraded frontocortical circuitry (Dolan et al.,
1995; Sanders et al., 2002) and abnormal prediction error signaling
(Corlett et al., 2007; Murray et al., 2008; Fletcher and Frith, 2009) in
schizophrenia. However, after 20 min of electrical stimulation over
these compromised frontal regions, we were able to temporarily nor-
malize the ERN measure of prediction error signaling and learning
rate in our laboratory task.

It might seem counterintuitive that, at baseline, patients with
schizophrenia showed some evidence of learning as measured
with behavior, albeit slowed, without a corresponding increase in
ERN amplitude across the same experimental trials (Fig. 2), given
the putative role of the ERN in learning (Holroyd and Coles,
2002). However, theories of the ERN and learning (Barto, 1995;
Houk et al., 1995; Brown et al., 1999; Holroyd and Coles, 2002;
Yin and Knowlton, 2006) propose that the midbrain dopamine
system generates the prediction error signal, conveying informa-
tion to the basal ganglia and frontal cortex. Once in frontal cor-
tex, the prediction error signal is used by anterior cingulate cortex
to facilitate the development of adaptive motor programs. It is at
this relatively late stage of information processing underlying
learning that ERN production is hypothesized to occur (Holroyd
and Coles, 2002). The present findings are consistent with the
idea that the ERN represents neural processes occurring down-
stream from the subcortical effects that drive much of the im-
provement in task performance in the laboratory, with the
prediction error signal of the ERN used to further tune stimulus–
response mappings at the cortical level. Thus, the differential
effects of subject group on ERN and learning behavior at baseline
are not only unsurprising but also suggest several testable hy-
potheses regarding the source of prediction error signals in the
human brain. Future work will be needed to further test the hy-
pothesis that the computations of value by the adaptive critic
implemented by the basal ganglia are to some extent functionally
intact in schizophrenia, as the behavioral evidence of learning
from our patients at baseline indicates.

Although it is clear that some amount of learning is possible
when a minimal ERN is concurrently measured, the most striking
results of the present study were those showing that medial–
frontal stimulation caused significant enhancements of the ERN
and learning rate in patients with schizophrenia. These findings
can be interpreted with respect to the known striocortical loops
involved in learning. The striosome compartments in the basal
ganglia constitute the main input into the midbrain dopamine
system (Graybiel et al., 1994; Graybiel and Kimura, 1995) and
comprise the substrate for temporal difference error computa-
tion (Barto, 1995; Houk et al., 1995; Brown et al., 1999; Holroyd
and Coles, 2002). The only cortical regions with robust projec-
tions to the striosomes come from the caudal orbitofrontal ante-

rior insular cortex and the medial–frontal prelimbic anterior
cingulate cortex (Eblen and Graybiel, 1995). Thus, anterior cin-
gulate activity can influence the midbrain dopamine system,
which can then form an iterative loop to drive activity in anterior
cingulate cortex and other areas. This corticostriatal loop idea is
important because it helps explain how our medial–frontal stimula-
tion might have indirectly influenced the midbrain system (e.g., pro-
ducing greater dopaminergic disinhibition) by first modulating
medial–frontal areas, such as anterior cingulate cortex.

There are several lines of evidence supporting the interpreta-
tion that the medial–frontal stimulation we used here modulated
synaptic transmission in the corticostriatal loop involving the
midbrain dopamine system and regions of medial–frontal cortex.
First, it is widely recognized that tDCS is a method for guiding
neuroplasticity, including synaptic plasticity, and modulating
cortical functions of the brain (Nitsche et al., 2008). Second, an-
imal work has shown that electrical stimulation of the medial–
prefrontal cortex and the anterior cingulate cortex can cause
bursting activity in midbrain dopamine cells (Gariano and
Groves, 1988; Tong et al., 1996). Third, evidence from computa-
tional modeling (Servan-Schreiber et al., 1990) and neurophysi-
ology (Yang and Seamans, 1996) has shown that the strength of
dopaminergic input into the prefrontal cortex can change the
gain of synaptic transmission in prefrontal cortex. That is, a low-
ering of dopaminergic input to the apical dendrites of Layer V
pyramidal cells reduces the gain of the pyramidal cell, which per-
mits a broader range of input to drive the cell (Yang and Seamans,
1996). Interestingly, these are precisely the neurophysiological
events hypothesized to underlie ERN generation (Holroyd and
Coles, 2002; Gehring et al., 2012). In the case of anodal stimula-
tion, it seems likely that the medial–frontal tDCS caused a rapid
reduction in gain on error trials, allowing the anterior cingulate
cortex to perform a more efficient search for an optimal motor
controller over a larger range of controller inputs. However, it is
also possible that anodal stimulation boosted gain on error trials,
yielding improvements in learning behavior through more con-
fident predictions, thus producing larger prediction error signal
expressed as higher-amplitude ERNs. These hypotheses are not
mutually exclusive. The flexibility of motor selection and the
confidence in predictions may be simultaneously enhanced by
tDCS. Moreover, the dopaminergic changes following tDCS may
depend on the starting point of the individual and follow an inverted
U-shaped function, in which some individuals are pushed further up
the curve toward a more optimal state, whereas higher performers
are pushed down. Additional research will be useful for clarifying the
relevance of this corticostriatal loop for the medial–frontal stimula-
tion effects we observed.

Our results are consistent with the view that patients with
schizophrenia and healthy individuals exist along a wellness spec-
trum and do not differ categorically from one another (Raine,
2006; Modinos et al., 2010; Woodward et al., 2011; Choi et al.,
2012). We found that the medial–frontal tDCS resulted in a sim-
ilar enhancement of the ERN and learning rate in patients with
schizophrenia and healthy subjects. As evidence for a continuum
view, we found no stimulation � group interactions throughout
our analyses, exactly as predicted if the nature of the mechanisms
implementing prediction error signaling and learning were not
qualitatively different across patients and controls. This contin-
uum view to understanding schizophrenia symptoms is consis-
tent with the principles of the National Institute of Mental Health
research domain criteria (Insel et al., 2010).

Our results add to the progress on brain-symptom relationships
in clinical science. Over the last half century, efforts to understand
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the etiology of schizophrenia have been dominated by research fo-
cused on the neurobiological bases of the clinical heterogeneity of the
disorder. However, establishing brain-symptom correlations has
been a challenge due to a variety of factors, including underpowered
samples, measurements with low reliability and validity, medication
confounds, and correlation-causation uncertainty. Here, we worked
to minimize these conceptual and methodological obstacles by per-
forming power analyses (see Materials and Methods), using one of
the most reliably documented electrophysiological abnormalities in
schizophrenia (i.e., the ERN) (Gehring et al., 2012), ruling out the
possibility of antipsychotic medication confounds (see Materials
and Methods), and using a causal neuroscientific technique. As a
result, we found that negative symptom severity predicted faulty
prediction error signaling as measured by reductions in ERN learn-
ing dynamics at baseline, consistent with previous work (Morris et
al., 2011; Mathalon and Ford, 2012; but see Mathalon et al., 2002).
Additionally, we report, for the first time, that the severity of psy-
chotic delusions may exclude such patients from fully experiencing
the positive cognitive benefits of medial–frontal stimulation. This
result provides critical information for translational scientists fo-
cused on optimizing tDCS protocols for cognitive enhancement in
individual patients.
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