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Research Article

Humans are capable of encoding and storing a virtually 
infinite amount of visual information in long-term memory 
(Brady, Konkle, Alvarez, & Oliva, 2008; Voss, 2009). Yet the 
ability to remember this information fluctuates significantly 
across individuals (Friedman & Trott, 2000; Golby et al., 
2005) and from moment to moment within an individual 
(Fernández et al., 1999; Paller & Wagner, 2002; Wagner et 
al., 1998). Is there a way to reliably forecast whether some-
one will remember a particular piece of information by 
monitoring electrophysiological brain signals during a sin-
gle, brief encoding event? If so, can one take advantage of 
these measurements to improve the efficacy of learning by 
identifying items that require additional study?

Cognitive neuroscientists have found several encoding-
related neural signals that differentiate remembered items 
from items that are later forgotten (Friedman & Johnson, 
2000; Paller & Wagner, 2002). Specifically, recordings of 
the electroencephalogram (EEG) and averaged event-
related potentials (ERPs) have provided two excellent can-
didates. First, a larger sustained positivity is observed at 
frontal electrodes during encoding for items that are later 
remembered than for items that are later missed (Friedman 
& Trott, 2000; Paller, Kutas, & Mayes, 1987; Paller, McCarthy, 

& Wood, 1988). Second, alpha-band activity is more sup-
pressed during encoding for items that are later remem-
bered than for those that are later missed (Hanslmayr, 
Spitzer, & Bauml, 2009; Klimesch et al., 1996).

Even though these two neural measures of the quality of 
memory encoding are well established, it is unclear whether 
they can be utilized in real time to predict whether a stimu-
lus will be remembered. Indeed, the typical convention is to 
average hundreds of trials worth of data to derive reliable 
ERPs because the single-trial EEG has a lower signal-to-
noise ratio (Luck, 2005; Woodman, 2010). However, it is 
unknown whether electrophysiological memory effects are 
of sufficient magnitude to predict subsequent memory after 
a single visual stimulus is encoded. If one can establish that 
these electrophysiological signals reliably forecast later rec-
ognition after a single stimulus presentation, then it may be 
possible to use them to monitor the moment-to-moment 
fluctuations in memory-encoding ability.
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Abstract
Although people are capable of storing a virtually infinite amount of information in memory, their ability to encode 
new information is far from perfect. The quality of encoding varies from moment to moment and renders some 
memories more accessible than others. Here, we were able to forecast the likelihood that a given item will be 
later recognized by monitoring two dissociable fluctuations of the electroencephalogram during encoding. Next, 
we identified individual items that were poorly encoded, using our electrophysiological measures in real time, and 
we successfully improved the efficacy of learning by having participants restudy these items. Thus, our memory 
forecasts using multiple electrophysiological signals demonstrate the feasibility and the effectiveness of using real-time 
monitoring of the moment-to-moment fluctuations of the quality of memory encoding to improve learning.
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Currently, it is not known how the frontal positivity 
and the occipital alpha power are related to each other. 
These two signals have been studied only indepen-
dently. Each separate line of work suggests that the 
electrophysiological signal indexes the depth of encod-
ing of the to-be-remembered stimuli (Hanslmayr et al., 
2009; Hanslmayr & Staudigl, 2014; Otten, Henson, & 
Rugg, 2001). So perhaps they measure the same mecha-
nism. However, because no study has examined these 
two signals simultaneously, it is unclear whether they 
index the same or different aspects of memory encod-
ing. If the signals index different mechanisms necessary 
for successful encoding, then these two signals should 
account for unique variance, and we should be able to 
improve predictive power by combining the two inde-
pendent brain signals.

Experiment 1

In Experiment 1, we determined whether the two electro-
physiological measures index the same or separable 
mechanisms operating at encoding. Experiment 1 also 
served the broader goal of establishing the feasibility of 
using these measures to forecast the later recognition of 
a particular stimulus, the question addressed directly in 
Experiment 2.

Method

Participants. Using a preliminary data set, we esti-
mated that we needed to collect data from 20 participants 
across 500 trials. After consenting to procedures approved 
by the Vanderbilt University Institutional Review Board, 
23 individuals (10 males, 13 females; 18–32 years old) 
participated in exchange for $30. All volunteers self-
reported that they were neurologically normal, had nor-
mal or corrected-to-normal visual acuity, and were not 
color-blind. Three participants were excluded from anal-
yses because they did not complete the session.

Stimuli and procedures. The stimuli and tasks are 
illustrated in Figure 1. The stimuli were adapted from a 
published set of photographs (Brady et al., 2008). During 
the encoding task, participants were sequentially pre-
sented with 500 pictures of real-world objects with short 
breaks every 50 pictures. They were instructed to study 
each item while holding central fixation so that they 
could later perform a recognition memory test. Partici-
pants initiated each trial by pressing a button on a game 
pad. After a 1,250-ms pre-encoding period, in which the 
screen was blank except for a central fixation dot, a pic-
ture was presented for 250 ms. The picture was followed 
by a 1,000-ms encoding period, during which the com-
puter screen remained blank. After the encoding task, we 

measured participants’ resting-state EEG activity when 
their eyes were open and closed for 15 min. Then, we 
tested participants’ memory for the pictures.

The recognition memory test started with the onset of 
a central fixation dot. Participants initiated each test trial 
by pressing a button on the game pad. They were 
instructed to maintain central fixation without blinking 
until each trial was over. Following a 1,250-ms blank 
period, a picture of a real-world object was presented at 
the center of the screen (new and old pictures were ran-
domly interleaved across trials). After 1,250 ms, a blue 
and a red dot appeared, one on each side of the picture. 
Participants indicated whether they remembered seeing 
this picture during the study phase by pressing one of 
three buttons on the side of the game pad indicated by 
the position of the dot. The red dot indicated which 

Pre-encoding
1,250 ms

Stimulus
250 ms

Encoding Task

Encoding
1,000 ms

Recognition Memory Test 

Fixation
1,250 ms

Stimulus
1,000 ms

Test
Until Response

Do you remember 
this picture?

Yes
100%

80%

No
100%

80%

a

b
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Fig. 1. Sample trial sequence from (a) the encoding task and (b) the 
recognition memory test in Experiment 1. In the encoding task, a fixa-
tion point was followed by a picture of a real-world object and then a 
blank interval for encoding. After completing all encoding trials, par-
ticipants performed the recognition memory test, in which they used 
buttons on a game pad to indicate with 100%, 80%, or 60% confidence 
whether or not they had seen a picture during encoding. The position 
of the red and blue dots (to the left or right of the stimulus) indicated 
which side of the game pad to use in making their response.
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buttons to press if they remembered seeing the picture, 
and the blue dot indicated which buttons to press if they 
did not. Of the three buttons on each side, the outermost 
indicated 100% confidence in their judgment, the middle 
button indicated 80% confidence, and the inner button 
indicated 60% confidence (see Fig. 1). The sides on 
which the red and blue dots appeared were randomized 
from trial to trial.1 After the response, the trial was over, 
and participants were provided with a self-determined 
interval to rest their eyes and blink. Participants were 
tested on 500 studied pictures and 250 new pictures.

Data acquisition and analysis. EEG data were 
recorded using a right-mastoid reference and were reref-
erenced off-line to the average of the left and right mas-
toids. We used the international 10-20 electrode sites (Fz, 
Cz, Pz, F3, F4, C3, C4, P3, P4, PO3, PO4, O1, O2, T3, T4, 
T5, and T6) and a pair of custom sites, OL (halfway 
between O1 and OL) and OR (halfway between O2 and 
OR). Eye movements were monitored using electrodes 
placed 1-cm lateral to the external canthi for horizontal 
movement and an electrode placed beneath the right eye 
for blinks and vertical eye movements. The signals were 
amplified with a gain of 20,000, band-pass filtered from 
0.01 to 100 Hz, and digitized at 250 Hz. Trials accompa-
nied by horizontal eye movements (> 30 µV mean thresh-
old across observers) or eye blinks (> 75 µV mean 
threshold across observers) were rejected before further 
analyses.

To measure the ERPs preceding memory encoding, we 
time-locked waveforms to the button-press response that 
initiated a trial and examined the waveforms recorded 
from −1,250 ms to 0 ms relative to the onset of the pic-
ture. These EEG epochs were baseline-corrected to the 
mean EEG amplitude measured −400 to 0 ms before the 
beginning of the measurement epoch of interest.

To examine EEG activity during memory encoding, we 
time-locked waveforms to the onset of memory stimuli and 
examined the EEG recording from 0 to 1,250 ms following 
the onset of each memory stimulus. These EEG epochs 
were baseline-corrected to the mean EEG amplitude −400 
to 0 ms relative to the stimulus onset. For presentation pur-
poses, we needed to concisely summarize the relationship 

between our electrophysiological measures and behavior. 
As a result, the pre-encoding and encoding signals for each 
epoch were binned and averaged based on recognition per-
formance in the memory test. The EEG activity recorded as 
the participants viewed the items that were later recognized 
with 100% confidence were binned as high-confidence hit 
trials, and those recorded as the participants viewed the 
items that were later recognized at lower confidence levels 
(80% and 60%) were binned as low-confidence hit trials. 
The EEG segments recorded as the participants viewed the 
items that were later missed were binned as miss trials. 
These binned averages also allowed us to confirm that our 
findings replicated previous reports of the traditional mean 
amplitudes across these types of trials.

To examine the oscillatory responses, we measured 
frequency content during the same pre-encoding and 
encoding epochs described above on a trial-by-trial basis. 
Spectral decomposition with a fixed window size of 400 
ms and a window overlap of 380 ms was performed 
using the spectrogram.m function in MATLAB (The 
MathWorks, Natick, MA) for each single-trial EEG epoch 
to obtain the time-frequency representation of the signal. 
Then, the resultant time-frequency representation for 
each epoch was sorted into the appropriate high confi-
dence, low confidence, or miss bin.

Results

Behavioral results. For studied objects, participants 
recognized 63% of the stimuli with 100% confidence and 
14% of the stimuli at 80% or 60% confidence. Participants 
failed to recognize the remaining 23% of the stimuli. 
They successfully rejected 76% of new objects that they 
had not studied during the encoding phase. Table 1 
reports the proportions of trials used to derive the 
receiver-operating-characteristic (ROC) curves in this 
experiment. The mean area under the ROC curve (AUC) 
was .82. These results demonstrate that, on average, par-
ticipants performed the memory task accurately.

Traditional ERP and EEG analysis. Using tradi-
tional ERP and EEG analyses, we found that frontal wave-
forms exhibited a sustained positivity of larger amplitude 

Table 1. Results of Experiment 1: Mean Proportion of Responses on the Recognition Memory Test

Response

Item type “100% old” “80% old” “60% old” “100% new” “80% new” “60% new”

Old .63 (.03) .08 (.01) .06 (.01) .07 (.02) .08 (.02) .07 (.01)
New .10 (.02) .07 (.01) .07 (.01) .35 (.05) .24 (.03) .17 (.04)

Note: Standard errors are given in parentheses. Proportions indicate participants’ confidence in their old/new 
judgment.
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for high-confidence items than for low-confidence and 
miss items (Fig. 2a; see also Fig. S2 in the Supplemental 
Material available online). We quantified the sustained 
frontal positivity as the mean amplitude in the time win-
dow 200 ms to 1,000 ms after the onset of each studied 
item at the midfrontal channel (i.e., channel Fz) where 
the effect was maximal. An analysis of variance (ANOVA) 
confirmed that this subsequent memory effect was highly 
significant, F(2, 38) = 15.34, p < .001, ηp

2 = .45, and was 
driven by more positive amplitudes in response to the 
high-confidence items than to both low-confidence items, 
t(19) = 3.30, p < .01 (95% confidence interval, or CI, for 
the difference = [0.45, 1.99 µV], Bayes factor = 15.5), and 
miss items, t(19) = 5.75, p < .001 (95% CI for the differ-
ence = [1.30, 2.78 µV], Bayes factor = 2,349.0). These 
observations are supported by other work that has exam-
ined such differences using conventional mean ERP anal-
yses (Friedman & Johnson, 2000).

We worried that the mean amplitude differences might 
be driven by the more jittered onset times across partici-
pants because of the smaller number of trials for the low-
confidence (14% of trials) and miss items (23% of trials) 
than for the high-confidence items (63% of trials). If this 
were the case, the amplitude of the frontal positivity mea-
sured with the fewest trials (i.e., low-confidence items) 
should be the lowest because of the largest variability of 
onset times. However, the fact that the mean amplitude for 
low-confidence items was significantly higher than the 
mean amplitude for miss items, t(19) = 2.11, p < .05 (95% CI 

for the difference = [0.01, 1.63 µV], Bayes factor = 1.6) rules 
out this simple explanation.

Next, we examined the oscillatory activity during the 
encoding period. As shown in Figure 2b (see also Fig. S4 
in the Supplemental Material), the EEG during the encod-
ing period showed a clear suppression of occipital alpha 
power following the onset of the to-be-remembered 
items (Hanslmayr & Staudigl, 2014). Occipital alpha 
power was quantified as the mean power between 8 and 
12 Hz in the time window 400 to 1,250 ms after the onset 
of the study items at a right occipital channel (i.e., chan-
nel O2; but this was similar across occipital channels; 
see the Supplemental Material). An ANOVA confirmed 
that the occipital alpha power varied as a function of 
participants’ later recognition, F(2, 28) = 4.88, p = .01, 
ηp

2 = .20. High-confidence items exhibited lower occipital 
alpha power than low-confidence items, t(19) = 2.12, p < 
.05 (95% CI for the difference = [0.01, 1.55 µV2], Bayes fac-
tor = 1.6) or miss items, t(19) = 2.80, p = .01 (95% CI for the 
difference = [0.24, 1.69 µV2], Bayes factor = 5.7). The only 
other oscillation that was related to participants’ later 
recognition was a low-frequency frontal effect underly-
ing the aforementioned frontal positivity (see Fig. S5 in 
the Supplemental Material).

No pre-encoding ERPs or oscillations were predictive 
of successful memory encoding in our paradigm (see the 
analyses, Fig. S1, and Fig. S3 in the Supplemental 
Material). This demonstrates that the memory effects 
were not simply due to tonic changes in brain activity 
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Fig. 2. Electroencephalogram results of Experiment 1: mean amplitude at the Fz site (a) and mean alpha power at the O2 site (b) 
during the encoding task. Gray shading indicates the time window over which data were averaged to quantify the amplitude of each 
event-related potential. The data points used to plot the curves in (b) represent the alpha power observed within a 400-ms sliding 
window that had a 20-ms step size. The values on the x-axis represent the front ends of these time windows.
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that were present prior to the presentation of the pic-
tures. Instead, these signals reflect the ability of the brain 
to encode accurate representations of the items immedi-
ately following their presentation.

Forecasting later recognition of an object. How 
would one forecast the later recognition of an item based 
on the electrophysiological signals of memory encoding? 
Our approach in this experiment was to compute mea-
sures of successful memory encoding given the magni-
tude of the frontal positivity and the strength of 
occipital-alpha-power suppression for each trial. We cal-
culated the AUC and the proportion of high-confidence 
responses to provide diverse measures of successful 
memory encoding (also see the Supplemental Material, 
where we show the same pattern using the da metric of 
performance). We first sorted the stimuli based on the 
magnitude of each memory-encoding signal. Then, we 
computed the memory metrics in each quintile bin (i.e., 
each bin contained 20% of the trials). These measures 
estimated the strength of encoded memory given the 
magnitude of the electrophysiological signals.

When we sorted trials by the amplitude of the frontal 
positivity, there was a monotonic increase in the strength 
of encoded memory as a function of its magnitude (Fig. 
3a). We observed a significant increase in the AUC from 
the first quintile (M = .79) to the fifth quintile (M = .84), 
F(4, 76) = 9.63, p < .001, ηp

2 = .34; Fig. 3b), and the likeli-
hood of a high-confidence response showed a similar 
increase, from 58% in the first quintile to 68% in the fifth, 
F(4, 76) = 14.15, p < .001, ηp

2 = .43 (Fig. 3c). When we 
sorted trials by the magnitude of the occipital alpha power, 
there was a highly significant monotonic decline in the 
memory strength as a function of the alpha power (Fig. 
3d). We observed a significant decrease in the AUC from 
the first quintile (M = .84) to the fifth quintile (M = .79), 
F(4, 76) = 8.97, p < .001, ηp

2 = .32 (Fig. 3e), and the likeli-
hood of a high-confidence response showed a similar 
decrease, from 68% in the first to 58% in the fifth quintile, 
F(4, 76) = 6.38, p < .001, ηp

2 = .26 (Fig. 3f). These results 
demonstrate the reliability of both the frontal positivity 
and the occipital alpha power as predictors of subsequent 
recognition memory when measured on each trial.

To test for independence between the frontal positiv-
ity and the occipital alpha power, we examined the cor-
relation between the two signals across trials within each 
participant. Although the correlation coefficient was reli-
ably different from zero (M = −0.06), t(19) = −4.33, p < 
.001 (95% CI = [−0.08, −0.03], Bayes factor = 132.1), the 
relationship accounted for less than 0.3% of the variance 
(see Fig. S6 in the Supplemental Material for the scatter 
plots).2 This negligible correlation between the two elec-
trophysiological signals suggests that they index disso-
ciable aspects of memory encoding.

If these signals index different encoding mechanisms, 
then combining these measures on each trial should 
result in an increase in our ability to forecast later memory 
performance. To test this, we sorted each trial into a two-
dimensional array using the frontal positivity and the occipi-
tal alpha power as two orthogonal axes. As Figure 4 shows, 
for the trials with the highest frontal positivity and the 
lowest occipital alpha power, the AUC and the likelihood 
of a high-confidence response were .85 and 74%, respec-
tively. In contrast, for the trials with the lowest frontal 
positivity and the highest occipital alpha power, the AUC 
and the likelihood of high-confidence response were .78 
and 56%, respectively. Thus, our ability to predict later 
memory improved substantially when we combined the 
two electrophysiological signals.

Discussion

In Experiment 1, we showed that the frontal positivity 
and the occipital alpha power indexed dissociable mech-
anisms of memory encoding that could predict whether 
a given stimulus would be remembered. Next, we asked 
the following two questions. First, what encoding mecha-
nisms do our electrophysiological measures of memory 
encoding reflect? One hypothesis is that they index the 
difficulty of encoding determined by the physical proper-
ties of a stimulus (e.g., a bright object might be easier to 
remember than a dim object). Alternatively, they might 
reflect the variance in the quality of endogenous mem-
ory-encoding processes. Second, can we select individual 
items that were poorly studied using our neural mea-
sures, target such items for remedial study, and improve 
the efficacy of the learning period?

Experiment 2

In Experiment 2, participants studied 800 pictures while 
we recorded their EEG. Immediately following the initial 
study phase, we used the amplitudes of the two neural 
signals to categorize the pictures as either poorly studied 
or well-studied. Participants then restudied half of the 
poorly studied and well-studied items. If the frontal posi-
tivity and the occipital alpha power are stimulus-driven 
measures, then the restudy EEG signals should continue 
to reflect the poorly studied and well-studied categories 
to the same degree. However, if the two signals reflect 
the endogenous variance of memory encoding, then the 
amplitudes of restudy EEG signals should track later rec-
ognition memory performance, instead of the categories 
defined during the initial study phase. Additionally, if our 
EEG-based memory forecasting is useful in identifying 
objects that are poorly studied, and thus need additional 
studying, then we should expect that the benefit of 

 at VANDERBILT UNIVERSITY LIBRARY on August 6, 2015pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


Real-Time Memory Monitor 1031

restudying is greater for poorly studied items than for 
well-studied items.

Method

Participants. A new group of 20 participants (12 males, 8 
females; 18–32 years old) volunteered. They met the same 
criteria and were compensated as in Experiment 1.

Stimuli and procedures. The initial study phase was 
similar to the encoding phase of Experiment 1, except 
that participants studied 800 pictures instead of 500. 
Approximately 5 min after the initial study phase, the par-
ticipants completed a restudy phase, in which they restud-
ied half of the poorly studied and half of the well-studied 
items, as defined by the EEG signals recorded during the 
initial study phase. We defined the well-studied items as 
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Fig. 3. Results of Experiment 1: receiver-operating-characteristic (ROC) curves and performance on the recognition memory test for the 
frontal positivity at the Fz site (top row) and the occipital alpha power at the O2 site (bottom row). For each signal, graphs show the ROC 
curve (a, d), the area under the ROC curve (AUC; b, e), and the likelihood of a high-confidence response (c, f), separately for each quintile. 
Quintile 1 contained the trials associated with the lowest 20% of the signals, and Quintile 5 contained those associated with the highest 20% 
of the signals. Error bars show standard errors of the mean.
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those that elicited the largest 40% of all frontal positivities 
and the lowest 40% of occipital-alpha-power measurements. 
The poorly studied items were defined as those that elicited 
the smallest 40% of all frontal positivities and the highest 
40% of occipital-alpha-power measurements. The pictures 
were presented in the same format as in the initial study 
phase. On average, participants restudied 58 poorly studied 
pictures and 56 well-studied pictures during restudy. After 
the restudy phase, participants’ resting-state EEG with eyes 
open and eyes closed was recorded for 15 min. Then, they 
performed the recognition memory test, which was identi-
cal to that in Experiment 1 except that participants were 
tested on five categories of pictures: poorly studied baseline 
pictures (58 pictures on average), well-studied baseline pic-
tures (56 pictures on average), poorly studied restudy pic-
tures (58 pictures on average), well-studied restudy pictures 
(56 pictures on average), and 160 new pictures.

Results

Participants recognized 80% of the well-studied restudy 
items, 80% of the poorly studied restudy items, 52% of 
the well-studied baseline items, and 44% of the poorly 
studied baseline items with 100% confidence. Of the 
remaining items, they recognized 9% of the well-studied 
restudy items, 10% of the poorly studied restudy items, 
18% of the well-studied baseline items, and 21% of the 
poorly studied baseline items with moderate confidence 
(60% or 80%). Participants successfully rejected 73% of 
new items. Table 2 reports the proportion of trials used 

to derive the ROC curves. The AUC values were .76 for 
well-studied baseline items, .73 for poorly studied base-
line items, .88 for well-studied restudy items, and .88 for 
poorly studied restudy items. These results demonstrate 
that participants learned the pictures reasonably well and 
benefitted from restudy.

Figure 5 shows the amplitude of the frontal positivity 
and the occipital alpha power during the initial study 
phase (Figs. 5a and 5b) and during the restudy phase 
(Figs. 5c and 5d) elicited by poorly studied, well-studied, 
and new items. The difference in the sustained frontal 
positivity between well-studied and poorly studied items 
was significant, t(19) = 2.59, p < .05 (95% CI for the dif-
ference = [0.20, 2.00 µV], Bayes factor = 3.8), but much 
reduced during the restudy phase. The difference in the 
occipital alpha power was much reduced and not signifi-
cant in the restudy phase, t(19) = 1.57, p > .1 (Bayes fac-
tor in favor of the null hypothesis = 1.44). These findings 
are inconsistent with what we should have observed if 
the neural signals were due to the physical characteristics 
of the stimuli and consistent with the signals tracking the 
endogenous state of the participant during encoding.

Table 2 and Figure 6 show performance from the final 
recognition test. First, we replicated the results from 
Experiment 1. That is, we found that for baseline (i.e., not 
restudied) items, memory strength was significantly 
weaker for the items that elicited a low frontal positivity 
and high occipital alpha power (i.e., poorly studied 
items) than those that elicited a high frontal positivity and 
low occipital alpha power (i.e., well-studied items)—for 
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the AUC: t(19) = 2.63, p < .02 (95% CI for the difference = 
[0.01, 0.06 µV], Bayes factor = 4.1); for the likelihood of 
high-confidence responses: t(19) = 4.22, p < .0001 (95% 
CI for the difference = [4, 13%], Bayes factor = 105.0). 
More critically, recognition performance was essentially 
identical across the two types of restudied items—for the 
AUC: t(19) = 0.24, p > .8 (Bayes factor in favor of the null 
hypothesis = 4.5); for the likelihood of high-confidence 
responses: t(19) = 0.23, p > .8 (Bayes factor in favor of the 
null hypothesis = 4.5); there was a significant interaction 
between item category (poorly studied vs. well-studied) 
and study condition (baseline vs. restudy), F(1, 19) = 8.8, 
p < .01, ηp

2 = .32, for the AUC and F(1, 19) = 13.48, p < 
.01, ηp

2 = .42, for the likelihood of high-confidence 
responses. In fact, the restudy effect in terms of the likeli-
hood of high-confidence responses was 1.3 times larger 
for poorly studied items than for well-studied items (27% 
vs. 35% change, respectively).

Next, we addressed the possibility that the lack of dif-
ference between recognition accuracy for well-studied and 
poorly studied items following restudy was simply due to 
a ceiling effect that eliminated the true difference that 
would otherwise be observed. In other words, maybe the 
restudy benefit was larger for poorly studied items than for 
the well-studied items because every restudied stimulus 
was relearned maximally. If so, there should be no vari-
ability left in recognition performance to be explained by 
the electrophysiological signatures measured during the 
restudy phase. To address this possibility, we classified the 
restudied items as poorly restudied and well-restudied on 
the basis of the signals recorded during the restudy phase. 
Again, we found that well-restudied items had a signifi-
cantly higher memory strength (M = .92) than poorly 
restudied items (M = .89) for the AUC, t(19) = 2.3, p < .05 
(95% CI for the difference = [0.02, 0.52], Bayes factor = 2.2) 
and that this was also the case for the likelihood of high-
confidence responses (well-restudied items: M = .85, 
poorly restudied items: M = .78), t(19) = 2.9, p = .01 (95% 
CI for the difference = [2, 12%], Bayes factor = 6.9). This 
indicated that not all the restudied items were encoded to 
ceiling. Instead, the variability in the encoding quality for 
restudied items was still distinguishable using the frontal 

positivity and the occipital alpha power. Therefore, the sig-
nificant interaction between study condition and item cat-
egory does not appear to be due to a ceiling effect for 
restudied items obscuring a potential difference.

Discussion

In Experiment 2, we discriminated between exogenous 
and endogenous explanations of the variability in our 
electrophysiological indices of memory encoding. Our 
results indicate that both the frontal positivity and the 
occipital alpha power heavily reflect endogenous variabil-
ity in memory-encoding processes. There appears to be 
only a hint of exogenous contribution to the difficulty of 
encoding on these electrophysiological signals, evidenced 
by a small but preserved difference in the frontal positivity 
for poorly studied and well-studied items during the 
restudy phase. Furthermore, by having participants restudy 
the items that were classified as poorly studied by our 
electrophysiological signals, we were able to dramatically 
enhance the efficacy of learning. Thus, these results pro-
vide theoretical insight as to the nature of the frontal posi-
tivity and the occipital alpha signals of memory encoding, 
and they provide a clear demonstration of the practicality 
of our EEG-based learning intervention.

General Discussion

People’s ability to encode new information fluctuates 
from moment to moment. It would be extremely valuable 
if it could be identified in real time when people are not 
encoding information into memory to the best of their 
ability. Numerous studies have successfully identified 
neural signals sensitive to success in later recognition 
memory tests. However, no study so far had examined 
the usefulness of such signals in forecasting the later rec-
ognition of each studied stimulus and used this forecast 
to improve learning as people study.

In Experiment 1, we simultaneously measured two 
electrophysiological signals that differentiated later rec-
ognized items from later missed items, the sustained 
frontal positivity and the occipital alpha power. We found 

Table 2. Results of Experiment 2: Mean Proportion of Responses on the Recognition Memory Test

Response

Item type “100% old” “80% old” “60% old” “100% new” “80% new” “60% new”

Well-studied baseline .52 (.05) .13 (.01) .05 (.01) .08 (.01) .15 (.02) .07 (.02)
Poorly studied baseline .44 (.05) .15 (.02) .06 (.01) .11 (.02) .17 (.03) .07 (.02)
Well-studied restudy .80 (.05) .07 (.01) .02 (.01) .03 (.01) .05 (.02) .03 (.02)
Poorly studied restudy .80 (.04) .08 (.02) .02 (.01) .03 (.01) .05 (.02) .02 (.01)
New .09 (.03) .11 (.02) .06 (.01) .29 (.04) .33 (.03) .12 (.02)

Note: Standard errors are given in parentheses. Proportions indicate participants’ confidence in their old/new judgment.
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that these signals revealed a reliable and dissociable abil-
ity to predict subsequent memory, and combining them 
improved their predictive power. These findings support 
the hypothesis that dissociable cognitive subprocesses 
underlie the frontal positivity and the occipital alpha 
power and that these subprocesses conjunctively deter-
mine the efficacy of memory encoding.

In Experiment 2, we used the two brain signals to 
identify items that needed restudying during the learning 
episode, which allowed us to intervene and improve our 
participants’ recognition memory. Here, we hypothesized 
that restudying items that were initially poorly studied 
(i.e., forecasted to be recognized at a low rate) would 
lead to a greater enhancement of overall recognition 
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memory than restudying initially well-studied items (i.e., 
forecasted to be recognized at a high rate). We indeed 
found that restudying the poorly studied items led to a 
benefit of restudying that was 30% larger than the benefit 
for restudying initially well-studied items. This restudy 
effect, along with the much-reduced difference in the 
brain signals in the restudy phase between poorly stud-
ied and well-studied items, suggests that the encoding 
quality read out by the two brain signals is due to inter-
nal fluctuations in the ability of participants to store infor-
mation in memory, rather than to low-level variability of 
the stimuli themselves.

Our findings have broad theoretical and practical 
implications. Our evidence that the modulations of both 
the frontal positivity and the occipital alpha power reflect 
endogenous variability in memory encoding is in line 
with previous studies suggesting that both signals are 
sensitive to the depth of processes brought to bear on 
to-be-remembered information (Hanslmayr et al., 2009; 
Hanslmayr & Staudigl, 2014; Otten et al., 2001). Notably, 
our correlational analysis revealed that the two measures 
account for dissociable variance in memory performance. 
What might each neural correlate represent? Fernández 
and colleagues (1999) showed that the characteristics of 
the frontal positivity closely resembled the local-field 
potentials recorded at the hippocampus but not at the 
rhinal cortex. This observation suggests that the frontal 
positivity reflects the hippocampus-dependent encoding 
processes, such as formation of source memories for later 

recollection (see Diana, Yonelinas, & Ranganath, 2007, 
for a review). As for the suppression of the occipital 
alpha power, one might hypothesize that it reflects a 
higher level of arousal. However, if that were the case, 
one would expect alpha suppression to be evident even 
before the stimuli appeared. The fact that the alpha 
power suppression was stimulus-locked, not preceding 
the stimulus, suggests that this effect was specific to the 
memory encoding itself. One potential explanation 
offered by Klimesch (2012) is that the sustained alpha-
band suppression indicates successful access to informa-
tion already stored in long-term memory, thus indicating 
better associative learning. To better characterize the 
functional differences of the two neural signals, it is criti-
cal to experimentally dissociate these two signals in 
future studies.

Note that we are not claiming that the two electro-
physiological measures we used are the only signals 
that predict successful memory encoding. Previous 
studies that utilized different experimental procedures 
have shown that other electrophysiological signals dif-
ferentiated later-recognized items from later-forgotten 
items (Addante, Watrous, Yonelinas, Ekstrom, & 
Ranganath, 2011; Dube, Payne, Sekuler, & Rotello, 2013; 
Karis, Fabiani, & Donchin, 1982; Osipova et al., 2006; 
Otten, Quayle, Akram, Ditewig, & Rugg, 2006; Otten, 
Quayle, & Puvaneswaran, 2010). Therefore, it will also be 
important for future studies to systematically examine 
what determines the usefulness of each signal in 
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predicting successful memory encoding. This will be 
critical for using these signals in the real world to 
improve learning.

From a practical perspective, our findings demonstrate 
the feasibility of monitoring the moment-to-moment fluc-
tuations of encoding in real time using noninvasive elec-
trophysiology. The relative ease and cost effectiveness of 
acquiring EEG data compared with other neural signals 
(e.g., blood-oxygen-level-dependent responses in func-
tional MRI) means that the present measurements and pro-
cedure could quickly translate into real-world applications. 
The fact that our analysis required only two recording 
electrodes to successfully forecast subsequent memory 
performance is an additional advantage. The results from 
Experiment 2 demonstrate one way to utilize this electro-
physiology-based forecasting to efficiently improve an 
individual’s subsequent memory by measuring activity in 
real time as people learn new information.

Similar approaches of monitoring the quality of encod-
ing have been attempted by assessing learners’ subjective 
judgments about the quality of learning (i.e., judgments 
of learning; Metcalfe, 2009). Although some studies 
showed that judgments of learning can be a reliable mea-
sure of successful learning in certain situations (Nelson & 
Dunlosky, 1991; Underwood, 1966), other studies showed 
that the reliability of such meta-memory judgments var-
ied wildly depending on the specific task or the subject 
population (Daniels, Toth, & Hertzog, 2009; Kornell & 
Bjork, 2007; Maki, 1998; Serra & Metcalfe, 2009; Townsend 
& Heit, 2011). Using neural signals as predictors of encod-
ing quality could potentially bypass such problems. The 
methods developed here could be particularly advanta-
geous for individuals who exhibit conditions that impair 
learning (e.g., dyslexia or attention-deficit hyperactivity 
disorder).

Author Contributions

K. Fukuda designed and conducted the research and analyzed the 
data. K. Fukuda and G. F. Woodman wrote the manuscript.

Acknowledgments

We thank Stephan Lindsay, Chad Dube, and anonymous review-
ers for helping us to improve the manuscript.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with 
respect to their authorship or the publication of this article.

Funding

This work was supported by grants from the National Institutes 
of Health (R01-EY019882 and P30-EY08126) and the National 
Science Foundation (BCS-0957072).

Supplemental Material

Additional supporting information can be found at http://pss 
.sagepub.com/content/by/supplemental-data

Open Practices

All data have been made publicly available via Open Science 
Framework and can be accessed at https://osf.io/8bqaj/. The 
complete Open Practices Disclosure for this article can be found 
at http://pss.sagepub.com/content/by/supplemental-data. This 
article has received a badge for Open Data. More information 
about the Open Practices badges can be found at https://osf.io/
tvyxz/wiki/1.%20View%20the%20Badges/ and http://pss.sagepub 
.com/content/25/1/3.full.

Notes

1. This procedure was followed to remove the potential con-
found of lateralized response-related potentials (e.g., the later-
alized-readiness potential) from the recognition effect (i.e., the 
old/new effect).
2. To achieve a normal distribution for the occipital alpha power, 
we log-transformed the alpha power before examining its correla-
tion with the frontal positivity. The correlational analysis using the 
raw alpha power revealed the same result.
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SUPPLEMENTAL INFORMATION 

 
Traditional ERP analysis of the pre-encoding period. The ERP data recorded during 
pre-encoding period were binned in the same manner described in the Method section, 
forming High Confidence (HC), Low Confidence (LC), and Miss (Miss) bins. Figure S1 
shows the ERP responses for each bin across the entire set of 19 channels. As can be 
seen in Figure S1, the ERP responses for all the bins were overlapping across all the 
channels. These plots show that pre-encoding ERPs did not differentiate the quality of 
memory encoding for the upcoming study item at any channel, not just the channels that 
were the focus in the main text.  
 
Traditional ERP analysis of the encoding period.  In contrast to the pre-encoding 
ERPs, Figure S2 shows the ERP responses during encoding period did discriminate 
between the High Confidence (HC), Low Confidence (LC), and Miss (Miss) bins.  
Specifically, there was a larger sustained positivity in the HC bin (from approximately 
200ms-1000ms after the onset of the stimulus) than for the other bins. This effect was 
observed across frontal and central channels (i.e., a broad frontocentral distribution). 
The effect was statistically significant at channels F3, F4, Fz, C3, C4, and Cz (ps < 
.001). 
 
Time-frequency analysis of the pre-encoding period.  To determine if oscillations 
prior to stimulus onset could predict if subjects would remember it, we performed a time-
frequency analysis of the pre-encoding EEG signals in the same manner as described 
in the Method section. Here, we focused on the contrast between HC items and Miss 
items. Figure S2 shows the results of paired t-tests at each time-frequency data point at 
each scalp channel. As can be seen, there is no frequency band that showed a 
consistent statistical pattern at nearby electrodes. This suggests that either the pre-
encoding EEG does not exhibit the quality of memory encoding for the upcoming study 
item in our paradigm, or that such an effect is extremely focused in time and frequency 
band.  
 
Time-frequency analysis of the encoding period.  Here we show the scalp 
distribution of time-frequency effects measured during encoding. As Figure S4 shows, 
the analysis revealed two distinctive time-frequency signals across the scalp channels. 
First, there was a sustained increase in the power across the lowest frequencies (0-3hz) 
that was maximally observed at frontal channels. To statistically evaluate this effect, we 
calculated the mean power from 0-3hz at Fz channel in the time window of 260ms to 



1250ms for High Confidence, Low Confidence, and Miss bins. An ANOVA revealed a 
highly significant main effect of confidence bin (ps < .001, see Figure S5 for an 
example). This effect was observed at electrode F3, F4, Fz, C3, C4, and Cz. This was 
consistent with the sustained frontal positivity of the averaged ERPs described in the 
main text.  
 
We sought to verify that this low-frequency signal was, in fact, the frontal positivity 
measured in the ERP analysis. We examined the correlation between the activity 
measured on High Confidence and Miss trials using the amplitude of the frontal 
positivity and the power of the frontal low-frequency oscillations. As expected, we 
observed a strong positive correlation (r = .55, p =.01), buttressing the observation that 
these two signals had identical scalp distributions. Second, there was a sustained 
decrease in the power of alpha power that was maximally observed at occipital 
channels as discussed in the main manuscript. This effect was significant across 
channels P3, P4, Pz, PO3, PO4, O1, O2, OL, OR, T5, and T6 (ps < .001). 
 
Individual-subject correlations between the frontal positivity and occipital alpha.  
In Figure S6, we show the correlations between the amplitude of the frontal positivity 
and the log of the occipital alpha power for each of the individual subjects in 
Experiments 1, with each point representing an individual study event. These plots 
demonstrate that the mean correlation (r = -0.06) was not due to a mixture of strongly 
positive and negative correlations from individual subjects. 
 

Analyzing behavioral results using the da metric. We further confirmed our 
behavioral results using the sensitivity measure da. This metric has the advantage that 
it allows standard deviations for true memory and false memory distributions to vary 
independently (Dube, Rotello, & Pazzaglia, 2013; Wixted & Mickes, 2010). In 
Experiment 1, we first sorted trials by the amplitude of the frontal positivity. We 
observed a significant increase in da, from 1.40 to 1.75 (F(4,76)=11.74, p < .001, ηp

2 = 
.38) from the first pentile to the fifth pentile. When we sorted trials by the magnitude of 
the occipital alpha power, we observed a significant decrease in da, from 1.74 to 1.38 
from the first pentile to the fifth pentile (F(4,76)=8.50, p < .001, ηp

2 = .31). Together with 
other metrics of memory strength reported in the main manuscript, these results 
demonstrate the reliability of both the frontal positivity and the occipital alpha power as 
predictors of subsequent recognition memory when measured on each trial. In 
Experiment 2, we replicated the results from Experiment 1. That is, we found that for 
baseline items (i.e., not restudied), the memory strength was significantly weaker for the 
items that elicited a low frontal positivity and high occipital alpha power (i.e., poorly 
studied items) than the those studied with high frontal positivity and low occipital alpha 
power (i.e., well-studied items) (t(19) = 2.83, p =.01, 95% CI of difference = .05 ~ .33, 
Bayes factor = 6.0 for da, t(19) = 4.22, p <.0001). More critically, recognition 
performance was essentially identical across the two types of restudied items (t(19) = 
0.87, p >.3, Bayes Factor in favor of the null = 3.2 for da,), leading to a significant 
interaction between item category (poorly studied versus well studied) and study 
condition (baseline versus restudy) (F(1,19) = 4.7, p < .05, ηp

2 = .20 for da).  
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Figure captions 
 
Figure S1. The distribution of ERP responses during pre-encoding period across scalp. 
The panel shows the distribution of ERP responses across 19 channels during pre-encoding period. The 
top row shows F3, Fz, and F4 channels from the left to right, the second row shows T3, C3, Cz, C4, and 
T4 channels from the left to right, the third row shows P3, Pz, and P4 from the left to right, the forth row 
shows T5, PO3, PO4, and T6 channels from the left to right, and the bottom row shows OL, O1, O2 and 
OR channels from the left to right. X-axis shows the time elapsed from the button press to initiate a trial. 
Y-axis shows the amplitude of the response with negative up and positive down. The red, green and blue 
lines show the ERP response for high-confidence hit (HC), low-confidence hit (LC), and miss (Miss) trials, 
respectively. 
 
Figure S2. The distribution of ERP responses during encoding period across scalp. 
The panel shows the distribution of ERP responses across 19 channels during encoding period. The 
channel labels are described in Figure S1. X-axis shows the time elapsed from the onset of the stimulus. 
Y-axis shows the amplitude of the response with negative up and positive down. The red, green, and blue 
lines show the ERP response for high-confidence hit (HC), low-confidence hit (LC), and miss (Miss) trials, 
respectively. 
 
 
Figure S3. The distribution of time-frequency signals during the pre-encoding period. The panel shows the 
result of paired t-test (p < .05, uncorrected) between HC and Miss conditions across entire scalp channels 
for pre-encoding period. The channel labels are described in Figure S1. X-axis shows the time elapsed 
from the button press to start a trial. Y-axis shows the frequency (0-50hz). The color value at each time-
frequency data point (i.e. 400ms time window starting from the time value indicated on the X-axis) 
indicates the p-value of the paired t-test.  
 
Figure S4. The distribution of time-frequency signals for memory encoding during the encoding period.  
The panel shows the result of paired t-test (p < .05, uncorrected) between HC and Miss conditions across 
entire scalp channels for encoding period. The channel labels are described in Figure S1. X-axis shows 
the time elapsed from the button press to start a trial. Y-axis shows the frequency (0-50hz). The color 
value at each time-frequency data point (i.e., 400ms time window starting from the time value indicated on 
the X-axis) indicates the p-value of the paired t-test. The green and pink box highlights an example of the 
frontal low-frequency signal (0-3hz), and that of the occipital alpha (8-12hz) signal.  
 
 
Figure S5. The frontal low-frequency power.  The average power from 0-3hz at Fz channel. The red, 
green, and blue lines indicate the power measured from high-confidence hit (HC), low-confidence hit (LC), 
and miss (Miss) items. X-axis reflects the time elapsed after the stimulus onset. Of note, each time point 
reflects the 400ms window whose time value corresponds with the beginning of the window. The gray box 
highlights the time window that corresponds to that of the frontal positivity.  
 
Figure S6. Individual scatterplots showing the relationship between the amplitude of the frontal positivity 
and the occipital alpha power across subjects. Each scatterplot shows the frontal positivity (x-axis) and 
the log-transformed occipital alpha power (y-axis) for an individual. As can be seen, the correlations 
between the two electrophysiological measures are negligibly weak though reliably negative.
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Figure S2 
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Figure S5 
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Figrure S6 
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