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Human memory is thought to consist of long-term storage and short-
term storage mechanisms, the latter known as working memory.
Although it has long been assumed that information retrieved from
long-termmemory is represented in working memory, we lack neural
evidence for this and need neural measures that allow us to watch
this retrieval into working memory unfold with high temporal
resolution. Here, we show that human electrophysiology can be used
to track information as it is brought back into working memory
during retrieval from long-term memory. Specifically, we found that
the retrieval of information from long-term memory was limited to
just a few simple objects’worth of information at once, and elicited a
pattern of neurophysiological activity similar to that observed when
people encode new information into working memory. Our findings
suggest that working memory is where information is buffered when
being retrieved from long-term memory and reconcile current theo-
ries of memory retrieval with classic notions about the memory
mechanisms involved.
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Humans are capable of storing an essentially limitless amount
of information in long-term memory and can remember

specific pieces of information when needed to guide behavior.
For over a century, researchers have proposed that, when hu-
mans retrieve information from long-term memory, we do this by
bringing the information back into working memory (1–3). This
has become so engrained in the dogma regarding how human
memory works that retrieving information from long-term
memory into working memory is described in introductory text-
books (e.g., refs. 4 and 5). However, although there is behavioral
evidence in line with the notion that information retrieved from
long-term memory is brought back into working memory (ref. 6;
see ref. 7 for a review of additional classic evidence; refs. 8–10), a
direct demonstration that this is occurring in brain is needed. If
we were able to track this cognitive process, we could use it to
understand the fine-grained dynamics of memory retrieval.
In the present study, we took advantage of the fact that

encoding new sensory information into working memory is ca-
pacity limited (11–16). Neuroscientific studies have established
that the encoding of a subset of the available visual information
into working memory can be measured by frequency-specific os-
cillations of subjects’ electroencephalograms (EEGs) (17–20).
Specifically, the magnitude of suppression of alpha-band oscilla-
tions (8–13 Hz) measured across parieto-occipital channels as new
information is held in working memory changes as additional in-
formation is loaded into working memory and hits an asymptote at
a subject’s working-memory capacity estimated from behavioral
performance. We chose this neural correlate of working memory
over other correlates (e.g., the contralateral delay activity in ref.
12) because it allowed the estimation of working-memory load
without necessitating the presentation of to-be-ignored distractors.
Here, we asked whether the neural and behavioral metrics of vi-
sual working-memory storage that have been studied when new
information is presented are also observed when old information
is retrieved from long-term memory.

The basic logic of our approach was simple. If information is
brought back into visual working memory when it is retrieved from
long-term memory, then we should see retrieval marked by the
similar capacity limits and neurophysiological markers that char-
acterize the storage of perceptual information in working memory.
For example, if a subject’s behavior and brain activity indicate that
they can encode no more than three objects’ worth of visual in-
formation from a scene into visual working memory when this
information is first viewed, then even after a detailed represen-
tation of that scene has been built up in long-term memory, we
should find that they retrieve no more than three objects’ worth of
information at a time when trying to remember the scene.

Results
In experiment 1, we first had subjects learn four spatial arrays of
colored squares. We used these simplified scenes so that we
could estimate the amount of information stored and retrieved
from long-term memory. The arrays consisted of one array of
each set size 1, 2, 4, and 8 colored squares (see Fig. 1A for an
example array of four squares). During the learning phase, each
to-be-learned array was presented for eight times in a row, in-
terleaved with new arrays to measure visual working-memory
capacity (as described later in this section), across 25 blocks
(meaning each to-be-learned array was presented 200 times in
total). We used this repeated presentation to ensure that even
the arrays with eight objects were learned. Subjects’ task was to
press one of eight possible color buttons on a handheld game pad
to indicate the color that had appeared at the location probed by
the gray cue at the end of the trial (Fig. 1A). The probe remained
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visible until they responded, and during the period that this
memory probe appeared, we also showed letters at fixation to
serve as labels for each of the to-be-learned arrays (the letters A–D,
for each array, and N for “new” if it was a new, randomly gen-
erated array). Subjects were instructed to learn these labels for
the repeated arrays. As shown in Fig. 1A, recall accuracy reached
ceiling within these 200 trials across all set sizes. Learning these
four arrays took this extended period due to interference created
by our randomly interleaving nonrepeating arrays to measure
subjects’ working-memory capacity for new visual input. Finally,
we tested subjects’memory for the learned arrays with a retrieval
task at the end of the experiment. Each trial of the retrieval task
began with the presentation of the white letter cue for one of the
arrays. Then, 2.4 s after the letter cue, the gray probe appeared
and subjects had to report the color of the object at that location
with a button press, just like in the learning task. Recall that classic
theories of human memory predict that retrieving information

from long-term memory in the final phase of the experiment
should exhibit the similar signatures of working-memory stor-
age that we measure during the temporary storage of new ar-
rays of objects.
During the learning phase of experiment 1, we presented four to-

be-learned arrays repeatedly. Critically, they were interleaved with
nonrepeating unique arrays (i.e., “new arrays”). The new arrays
allowed us to determine each subject’s working-memory capacity
for new visual information by testing their memory for a probe item
after a retention interval of only 1 s. For these new arrays, be-
havioral performance on this working-memory test monotonically
declined as a function of set size [F(3,84) = 406.1, P < 0.001]. The
working-memory load estimates across set sizes increased up to
three objects, and then leveled off, resulting in a significant qua-
dratic effect [t(27) = 22.2, P < 0.001 for K1percept < K4percept; t(27) =
13.6, P < 0.001 for K2 percept < K4 percept; t(27) = 2.1, P < 0.05 for
K4percept > K8percept; Fig. 1C; see SI Results for further discussion].
This is consistent with numerous previous findings that individuals’
visual working-memory capacity is about three to four simple ob-
jects’ worth of information. Our electrophysiological data exhibited
the same capacity-limited signature of storage in working memory
that we saw with the subjects’ behavior (18). As shown in Fig. 1B,
Top, shortly following a transient increase in the parieto-occipital
alpha power reflecting low-level perceptual encoding of the to-be-
remembered stimuli (but see also ref. 21 for an alternative ex-
planation), we observed a strong parieto-occipital alpha-power
suppression that monotonically increased in magnitude up to
the subjects’ working-memory capacity measured behaviorally,
with no further increase thereafter [t(27) = 4.6, P < 0.001 for set
size 1 < set size 4; t(27) = 2.6, P < 0.05 for set size 2 < set size 4;
t(27) = 1.3, not significant (NS) for set size 4 > set size 8, Fig. 1B].
The key prediction derived from the classic memory models is

that the parieto-occipital alpha activity should show the similar
pattern of the capacity-limited power reduction we just observed
elicited by these new arrays when the learned arrays are retrieved
from long-term memory. Although we anticipated that it might
take longer for the capacity-limited set size effect to emerge
because it generally takes longer to retrieve and represent in-
formation from long-term memory based on a sparse retrieval
cue than it does for the visual system to process new inputs, we
did not have a precise prediction as to when it would emerge.
However, what we did predict was that, once the capacity-
defined set size effect emerged, it would be persistent through-
out the retention interval.
To test this prediction, we had subjects perform a retrieval task

after learning was complete as described briefly above. Recall
that, in the retrieval task, we presented letter cues that subjects
learned in association with the learned arrays. Subjects were
instructed to retrieve the array from long-term memory when the
cue was presented so that they could report the color of the
memory probe that would follow (Fig. 1A). As Fig. 1B, Bottom,
shows, the parieto-occipital alpha-power suppression exhibited
the similar capacity-defined set size function that we saw when
these same subjects held information from new arrays in working
memory [t(27) = 3.7, P < 0.001 for set size 1 < set size 4; t(27) =
2.1, P < 0.05 for set size 2 < set size 4; t(27) = 0.5, NS for set size
4 > set size 8]. These findings are consistent with the hypothesis
that the information retrieved from long-term memory is buff-
ered in working memory, thus facing the similar capacity limit as
perceived information.
Behavioral results from the retrieval task further supported the

conclusion that information is brought back into working memory
when retrieved from long-term memory. If the classic idea of re-
trieval from long-term memory into working memory is correct,
then the correct retrieval of the probed item can result from two
types of retrieval (22–24). On some trials, the probed item was
actively represented within working memory at the time the gray
memory probe was presented, making it readily accessible, thus

A

Encoding task

150ms 850ms Recall

A

Retrieval task

150ms 2350ms Recall

0 1000 2000-40

-20

0

20

-20
-15
-10

-5
0

Time after letter cue onset(ms)

Set-size
1 4
2 8

1

2

1

0

2

m
ed

ia
n 

R
T 

(s
ec

)

Set-size

-400 0 400 800
-50

0

50

 A
lp

ha
 p

ow
er

 c
ha

ng
e 

(%
)

-45

-30

-15

0

M
ea

n 
al

ph
a 

po
w

er
 c

ha
ng

e 
(%

)

0
1
2
3
4

V
W

M
 c

ap
ac

ity
 

(K
pe

rc
ep

t)
Set-size
1 2 4 8

Within
WM
All

A

B

R
T 

pr
op

or
tio

n 
(%

)

50
RT (sec)

C

Kpercept/SS
of RTs

10 200

0.5

1

N
ew

 

LT
M

 

Encoding blocks

Set-size
1 4
2 8A

cc
ur

ac
y

1

µV

0 1000 2000
Time after letter cue onset

 (ms)

Time after array onset(ms)

Set-size
1 4
2 8

1 2 4 8

Fig. 1. The experimental paradigm and the results for experiment 1.
(A) Left panel shows example schematics of the encoding and the retrieval
task for set size 4 array in experiment 1. Top Right panel shows the behavioral
result for the encoding of new arrays (New) and old arrays across encoding
blocks as well as retrieval performance for old arrays [long-term memory
(LTM)]. Bottom Right panel demonstrates the schematic of our oscillatory
analysis. The waveform represents an EEG signal obtained from a single trial,
and the gray box indicates the 400-ms-long sliding window used to estimate
the oscillatory activity at the central time point of the sliding window.
(B) Electrophysiological results for the encoding and the retrieval task.
Waveforms on the Left show the modulation of parieto-occipital alpha
power during the encoding task (Top) and the retrieval task (Bottom). The
doted margins indicate the within-subject SEM at a given time point, and the
time value on x axis for the alpha-power suppression reflects the center of
400-ms-long sliding window. The gray boxes indicate the time window with
which the mean alpha-power suppression was calculated. The bar graphs
show the mean alpha-power suppression during corresponding retention
intervals. (C) The top line graph shows the set size function of visual
working-memory (WM) capacity estimates (Kpercept) that were calculated for
each set size based on the encoding performance for nonrepeating (new)
arrays. The bottom left panel depicts the schematic of correct recall RT
analysis for a set size SS array that isolated the correct recall RTs for an item
that was actively represented within WM at the moment of recall prompt
(within-WM RTs, shown in purple) from all correct RTs. K was estimated by
the initial encoding performance for new arrays of the corresponding set
size SS. The line graph on the Right shows the median RTs for within-WM
trials and all trials. The error bars show the within-subject SEM.
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producing fast reaction times (RTs) (within–working-memory RTs).
The other type of trials is that in which the probed item was not
represented within working memory when the memory probe was
presented, and thus, it had to be retrieved from long-term memory
into working memory so that the color can be reported. Thus, the
RTs for such trials will be longer. When we isolated within–working-
memory RTs by using the set size-specific working-memory load
estimate for new perceptual input obtained from the encoding task
(Kpercept), they revealed the classic capacity-defined set size effect
(Fig. 1C, Bottom; Materials and Methods) [t(27) = 8.8, P < 0.001 for
set size 1 < set size 4; t(27) = 5.6, P < 0.001 for set size 2 < set size 4;
t(27) = 0.2, NS, for set size 4 > set size 8]. Taken together, our results
suggest that the amount of information retrieved into working
memory from long-term memory at a given time is limited to three
objects’ worth of information.
Now that we established that information retrieved from long-

term memory is maintained in working memory just like newly
perceived information, we next used our ability to electrophysio-
logically track retrieval from long-term memory to understand the
flexibility of this process. Specifically, in experiment 2, we tested
the hypothesis that subjects can selectively retrieve a subset of a
learned array, and in experiment 3, we tested the hypothesis that
subjects can combine two representations that were learned sep-
arately. After subjects learned arrays of colored squares, as in
experiment 1, we had subjects perform different retrieval tasks in
experiments 2 and 3.
In experiment 2, subjects either retrieved an entire array in-

dicated by a letter cue or a part of the array indicated by an
arrow cue presented together with the letter cue (Fig. 2A). When
subjects retrieved entire arrays of set size 1, 2, and 4 in experi-
ment 2, the parieto-occipital alpha-power suppression showed
the capacity-defined set size function (Fig. 2C), thus replicating
experiment 1. When subjects were cued to retrieve one item
from a set size 4 array, the alpha-power suppression was initially
identical to that for the retrieval of all four items [t(19) = 0.7, NS
for set size 4 whole > set size 4 quad; t(19) = 3.3, P < 0.01 for set
size 1 < set size 4 quad]. However, toward the end of the re-
trieval interval, the level of alpha suppression shifted to be
identical to the level we measured during the retrieval of a set
size 1 array [t(19) = 2.3, P < 0.05 for set size 4 whole > set size
4 quad; t(19) = 1.2, NS for set size 1 < set size 4 quad]. These
findings suggest that the time course of alpha suppression could
be used to measure when the contents of working memory have
been focused on a target memory when multiple memories
compete for retrieval. Our analyses of RT provided converging
evidence for these conclusions drawn from the brain activity as
subjects’ ultimate behavioral response for one-object arrays was
the same as when subjects selected one object from arrays of four
objects [Fig. 2C, Right, t(19) = 18.8, P < 0.001 for set size
4 whole > set size 4 quad; t(19) = 1.1, NS, for set size 1 < set size
4 quad]. These results indicate that individuals initially retrieve
entire arrays of information within working-memory capacity and
then remove the task-irrelevant items from working memory.
This measure of human brain activity is consistent with compu-
tational models of memory that propose long-term memory re-
trieval involves the initial reinstatement of a learned context
when a specific item needs to be remembered (25).
In experiment 3, we presented two letter cues simultaneously

indicating that subjects were to remember two entire arrays (Fig.
2B). When two matching letter cues prompted the retrieval of a
set size 4 array, the parieto-occipital alpha-power suppression
was larger than the retrieval of a set size 2 array. However, when
two different letter cues prompted the simultaneous retrieval of
two set size 2 arrays, the alpha-power suppression was initially
identical to that for the retrieval of one set size 2 array [t(19) =
1.0, NS for set size 2 additive > set size 2; t(19) = 4.7, P < 0.001 for
set size 2 additive < set size 4; Fig. 2D], but it grew larger toward
the end of the retrieval interval [t(19) = 2.5, P < 0.05 for set

size 2 additive > set size 2; t(19) = 2.0, P = 0.06 for set size
2 additive < set size 4; Fig. 2D]. A RT analysis corroborated this
finding [t(19) = 7.4, P < 0.001, for set size 2 + 2 > set size 2; t(19) =
4.9, P < 0.001, for set size 2 + 2 < set size 4 quad]. These results
indicate that, with our electrophysiological measures, we can
track the additional time it takes to combine two separately
learned representations in working memory. The method that we
introduce here appears to provide a much-needed tool with
which to precisely measure memory retrieval dynamics in a host
of other tasks and subject populations.

Discussion
Our results provide direct electrophysiological evidence for the
classic theoretical proposal that information retrieved from long-
term memory is represented in capacity-limited working memory.
In doing so, our results also effectively rule out three alternative
explanations, as we discuss next.
The first potential alternative explanation that we considered

is that the parieto-occipital alpha-power suppression indexes the
degree to which subjects relied on automatic activation of stim-
ulus–response mappings acquired through extensive training
(26–30). It is worth considering because we trained subjects to
produce a given set of manual responses for a specific stimulus
(e.g., when they saw the letter cue “A,” they could have activated
a certain set of responses). Although it seems plausible, at least
four aspects of our data are inconsistent with this account. First,
the parieto-occipital alpha-power suppression showed the capacity-
limited set size effect such that there was no further suppres-
sion of the alpha power once working-memory capacity was
reached (i.e., at set size 4) despite the increase in the number of
responses associated with the stimulus (i.e., set size 8). Second,
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we saw similar capacity-limited set size function for stimuli on
which subjects received no training (i.e., new arrays presented
during encoding task). These results are inconsistent with the
automaticity account as there was not opportunity to learn specific
responses for these new arrays. Third, in the retrieval task of ex-
periment 2, the parieto-occipital alpha-power suppression was
significantly greater for the first second of retrieval when partici-
pants tried to retrieve one item from a set size 4 array than when
they retrieved a set size 1 array. The automaticity account has
difficulty in explaining this result because, in both cases, the
number of responses that are associated with the retrieval cue is 1.
Fourth, in the retrieval task of experiment 3, the parieto-occipital
alpha-power suppression was no different for the first 2 s of re-
trieval when participants tried to retrieve two set size 2 arrays and
one set size 2 array. Again, this result cannot be explained by the
automaticity account because it would predict greater alpha-power
suppression for the retrieval of two set size 2 arrays due to the
increased number of responses to activate. Taken together, our
interpretation that the degree of the parieto-occipital alpha-power
suppression reveals the dynamic process of representing a limited
amount of visual information in working memory regardless of the
origin of the information (i.e., perceived through vision input or
retrieved from long-term memory).
Second, the parieto-occipital alpha-power suppression might

index the spatial extent of visual field from which task-relevant
information was processed instead of the amount of information
represented in visual working memory. Although the working-
memory load correlated with the spatial extent of task-relevant
visual field in experiment 1, our results from experiments 2 and
3 directly contradict with this alternative explanation. In these
latter experiments, the arrow cue concurrently presented with the
letter cue at the beginning of the trial unambiguously predicted
the spatial extent of the task-relevant visual field. However, in
experiment 2, the magnitude of the alpha-power suppression was
not differentiated between whole and partial retrieval of set size
4 arrays for the first second of the retention interval even though
the spatial extent of task-relevant visual field was drastically dif-
ferent. In addition, in experiment 3, the alpha-power suppression
was statistically identical for the first 2 s of the retention interval
when individuals retrieved one set size 2 array subtending one
visual hemifield or two set size 2 arrays subtending two hemifields.
These results clearly demonstrate the dissociation between the
parieto-occipital alpha-power suppression and the spatial extent of
the task-relevant visual field.
The third potential alternative explanation that we considered

is that participants might have engaged in configural learning
that allowed them to chunk each array of colored squares into
one configural representation (7, 31–34). This is plausible given
that what participants had to learn were simply spatial configu-
rations of colored squares. However, the capacity-defined set
size effect of the parieto-occipital alpha-power suppression
challenges this idea because the configural learning explanation
would predict that each array, regardless of its set size, should be
learned as one configuration. This being said, we have no in-
tention to argue that configural learning is impossible. Instead,
we suspect that our task demands discouraged the use of con-
figural learning. We had participants recall an individual item
from a learned configuration. To correctly report a cued item,
participants had to access the individualized representation of
the cued item. This test procedure likely encouraged participants
to maintain multiple individualized representations of colored
squares rather than one configural representation of the colored
squares. However, in future studies, it will be useful to determine
whether we observe neural evidence of configural learning when
task demands allow participants to engage in such a learning
strategy (e.g., testing memory with a whole report procedure).
Our demonstration of two distinct memory states (i.e., actively

represented working memory and inactively stored long-term

memory) challenges theories that propose human memory con-
sists of a single memory storage mechanism that is unlimited in
capacity (35–38). Furthermore, our results demonstrate that the
behavioral benefits of representing well-learned information come
from additional iterations of retrieval from long-term memory
rather than expanded working-memory capacity (39–41).
Although our findings appear to falsify some models of human

memory, our findings appear to reconcile other classes of mod-
els. One class of theories of human memory proposes that
working memory is the capacity-limited activated portion of
long-term memory (7, 42, 43). Our results show how the classic
theories of human memory that propose retrieved long-term
memories are brought back into working memory can be rec-
onciled with the class of theories in which working memory is the
active portion of long-term memory. Specifically, we show that
alpha-band oscillations can be used to track when a memory
representation changes its state from a passive long-term mem-
ory to an active working memory (44). Given the evidence that
the similar patterns of neural activity represent perceptual inputs
and maintain those representations in working memory (45–47),
we propose that the alpha-band activity we measured indicates a
shift to the same active state by the neurons that store long-
term memories.
We believe that our metric of alpha suppression during memory

retrieval represents a vital tool for investigating the extent of
maneuverability and creativity our memory system supports. For
instance, experiment 3 showed that our mind is capable of in-
tegrating two separately learned long-term memory representa-
tions into one never-seen working-memory representation. More
precisely, our results suggest that such retrieval is best character-
ized as sequential or cascading retrieval of each component rep-
resentation. Such transformation of mental representations (e.g.,
combining a pair of wings and then a horse into a Pegasus) is a
fundamental asset of our creative mind. Thus, future studies are
now better equipped to examine the nature and extent of the
flexibility that our mind possesses.

Materials and Methods
Subjects.We first obtained informed consent for procedures approved by the
Vanderbilt University Institutional Review Board. In experiments 1, 2, and 3,
28 (16males), 20 (12males), and 20 (11males) subjects with normal or correct-
to-normal vision contributed data, respectively. The sample size was larger in
experiment 1 because of the additional number of conditions that each
subject completed. They were compensated $10/h for their participation. In
experiment 1, five additional subjects’ data were excluded from analyses due
to an excessive number of trials contaminated by ocular artifacts (more than
30% of trials in any condition) or an inability to follow instructions. Similarly,
four and three additional subjects were excluded in experiments 2 and
3, respectively.

Procedure.
Experiment 1. Subjects first performed an encoding task (Fig. 1). Before the
experiment, four to-be-learned arrays (set size 1, 2, 4, and 8) were created by
randomly selecting a location from 3 × 3 grids (each grid 4.3 × 4.3° of visual
angle) in each quadrant with a constraint that every quadrant has to have at least
one square before a second square is allocated to any quadrant. After square
locations are selected, colors were assigned to the selected locations without
repetition from a set of eight colors [red (x = 0.592, y = 0.367, 9.60 cd/m2), green
(x = 0.299, y = 0.579, 27.6 cd/m2), blue (x = 0.15, y = 0.08, 4.35 cd/m2),
yellow (x = 0.396, y = 0.509, 35.5 cd/m2), magenta (x = 0.295, y = 0.171,
13.3 cd/m2), cyan (x = 0.219, y = 0.315, 31.2 cd/m2), black (x = 0.393, y = 0.423,
0.31 cd/m2), and white (x = 0.293, y = 0.323, 38.5 cd/m2]. One hundred new
arrays for each set size were also created using the same procedure. We ver-
ified that none of the new arrays was identical to the to-be-learned arrays.

A central fixation dot (0.2° × 0.2° in visual angle) and a 3 × 3 gray grid
(4.3° × 4.3° in visual angle) centered 3.8° eccentric to the center of the screen
in each quadrant were presented and remained visible throughout the ex-
periment. Seven hundred milliseconds after subjects initiated each trial with
a button press, an array of colored squares was presented for 150 ms, which
was followed by a 850-ms-long retention interval. After the retention in-
terval, a gray probe was presented in one of the locations previously
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occupied by a colored square (i.e., the test square). Subjects indicated the
color of the test square with a button press on a handheld game pad on
which each of the eight buttons mapped to the eight possible colors. Sub-
jects were provided with a response key throughout the experiment to
minimize the memory load needed to press the appropriate button. At the
same time that the gray probe was shown, a letter cue (A, B, C, or D for to-
be-learned arrays and N for new arrays) was presented so that subjects
learned the letter cue associated with each array. The assignment of the
letter cues to set sizes was randomized across subjects. Auditory feedback
was provided after each trial to aid learning. Each to-be-learned array was
presented in miniblocks of eight trials to also aid learning. Subjects com-
pleted 25 blocks of 48 trials (32 to-be-learned trials and 16 new trials).

The learning phase described above took place over 1.5 h. Beginning 5min
after completing the learning phase, subjects performed the retrieval task
(Fig. 1). The 3 × 3 grids and a central fixation cross served as a standing
background on the screen. Seven hundred milliseconds after subjects initi-
ated each trial with a button press, a white letter cue (0.75° × 1.5°) was
presented for 150 ms, which was followed by a 2,350-ms-long retrieval in-
terval. Subjects were instructed to retrieve and maintain the learned array
associated with the cue during this retrieval interval. After the retrieval in-
terval, a gray test probe was presented, and subjects reported the color
presented at the probed location in the retrieved array by pressing one of
eight buttons on the handheld game pad. Subjects performed 120 trials for
each learned array.
Experiment 2. Subjects performed the encoding task first just as in experiment
1 with the following exceptions. First, subjects learned three arrays of set size
1, 2, and 4. Second, there were no new arrays introduced, and to-be-learned
arrays were presented four trials in a row in each block. Subjects performed
six blocks of 24 trials. The retrieval task was also identical to that of exper-
iment 1 except for following. A letter cue accompanied a white arrow cue. A
bidirectional arrow cue prompted the retrieval of the entire array associated
with the letter cue, and a diagonal arrow cue prompted the retrieval of just
the quadrant of the array indicted by the arrow cue. Subjects performed
120 trials of whole-array retrieval for set size 1, 2, and 4 array and 240 trials of
quadrant retrieval of the set size 4 array.
Experiment 3. Subjects performed the encoding task first just as in experiment
2 with the following exceptions. Subjects learned two arrays each of set size
(i.e., 2, 4). For construction of the set size 2 arrays, an additional constraint was
that the two arrays appeared in different hemifields. Subjects performed
eight blocks of 24 trials. The retrieval task was also identical to that of ex-
periment 2 except for following. Two letter cues were presented simulta-
neously to prompt the retrieval. Two matching letter cues were presented to
prompt the retrieval of the associated array, and two different letter cues
prompted the retrieval of a combined array of two associated arrays. Subjects
performed 200 trials of retrieval for a single set size 2 and 4 arrays and
200 trials of combined retrieval of set size 2 arrays.

EEG Acquisition and Preprocessing. The EEG was recorded using a right-mastoid
reference on-line and rereferenced off-line to the average of the left and right
mastoids. The signals were amplified with a gain of 20,000, a bandpass of 0.01–
100 Hz, and digitized at 250 Hz. We used the 10–20 electrode sites (Fz, Cz, Pz,
F3, F4, C3, C4, P3, P4, PO3, PO4, O1, O2, T3, T4, T5, and T6) and a pair of custom
sites, OL (halfway between O1 and OL) and OR (halfway between O2 and OR).
Eye movements were monitored using electrodes placed 1 cm lateral to the
external canthi for horizontal movement and an electrode placed beneath the
right eye to detect blinks and vertical eye movements.

For each experiment, the continuous EEG data were first segmented into
trial epochs. For experiment 1, the trial epoch was defined as −400 to 1,000 ms
after the array onset for the encoding task, and −400 to 2,500 ms after the
letter cue onset for the retrieval task. For experiments 2 and 3, the retrieval
trial epoch was defined as −400 to 3,000 ms after the letter cue onset. Trials
accompanied by horizontal eye movements (>30-μV mean threshold across
observers) or blinks (>75-μV mean threshold across observers) were rejected
before further analyses. Subjects’ data with more than 30% of trials rejected
for ocular or motor artifacts in any given condition were replaced.

EEG Analyses. To examine the oscillatory responses, EEG from each trial was
subjected to spectral decomposition with a fixed window size of 400ms and a
window overlap of 380 ms using spectrogram.m in Matlab (please see Fig. 1A
for a schematic). We measured the parieto-occipital alpha-power suppres-
sion in the following manner. First, the baseline power spectrum was de-
fined as the mean power spectrum observed in the pretrial time window
(−400 to 0 ms relative to an array or a letter cue onset, depicted as the data
at −200 ms in Fig. 1B due to our 400-ms-wide windowing procedure). This
baseline spectrum was subtracted from the entire epoch, and the resultant

spectral difference was divided by the baseline spectrum and then multi-
plied by 100. This allowed us to calculate the percentage change in power at
each frequency. The alpha-power percentage change was thus the average
percentage of power change between 8 and 13Hz. This alpha-power per-
centage change was averaged across the parieto-occipital channels (PO3/4,
P3/4, O1/2, OL/R, and Pz). For experiment 1, the mean percentage change
from 200 to 1,000 ms after the array onset (depicted as 400- to 800-ms data
points in Fig. 1B due to our 400-ms-wide windowing procedure) was used as
the measure of the parieto-occipital alpha-power suppression for the
encoding task, and that from 800 to 2,500 ms (depicted as 1,000- to 2,300-ms
data points in Fig. 1B due to our 400-ms-wide windowing procedure) after
the letter cue onset for the retrieval task.

Estimating Visual Working-Memory Capacity During Encoding in Experiment 1.
To estimate working-memory capacity for new visual inputs (Kpercept), we
transformed the encoding accuracy for new arrays with the following as-
sumptions. Let SS be the set size of interest, and Kpercept be the visual
working-memory capacity given set size SS. If the tested item was repre-
sented in visual working memory, participants should be able to report its
color correctly. Otherwise, they would guess the correct color by chance.
Because there were eight colors to choose from, the chance level would be
1/8. Based on these assumptions, we derived the following equation:

Accuracy=Kpercept
�
SS+

�
SS−Kpercept

��
SS× 1=8.

Solving this equation for Kpercept,

Kpercept = 8=7× SS× ðAccuracy− 1=8Þ.

RT Analysis for the Retrieval Task in Experiment 1. The accuracy data showed
that participants were near ceiling at retrieving the learned arrays from long-
term memory (accuracy > 94% for all four arrays). We hypothesized that this
was a result of two types of accurate trials. One trial type was when the
probed item was held actively in working memory when memory was pro-
bed and therefore readily accessible. The other trial type was when the
probed item was not held actively in working memory when memory was
probed, but stored inactively in long-term memory, and therefore the par-
ticipants had to retrieve this representation. Thus, the RTs for the former
trial type are systematically faster than RTs for the latter type of trials be-
cause one has to know whether the probed item is already available for
recall in mind before executing more effortful retrieval from long-term
memory. Furthermore, the RT for the former type of trials should be the
fast Kretrieval/SS portion of the entire correct RT distribution where Kretrieval is
the amount of retrieved information for an array of set size SS that can be
held active at a given time.

Based on the assumptions outlined above, we made the following pre-
diction. If working memory is used to represent new perceptual information
as well as previously learned information retrieved from long-term memory,
then Kretrieval should be the same as Kpercept estimated with new perceptual
information for the same set size (SS) during the encoding task. Kpercept for
each set size was available from initial encoding performance for new ar-
rays. To test this, we extracted the fast Kpercept/SS portion of accurate report
RTs for each set size as within–working-memory recall RTs and examined
whether these within–working-memory RTs would exhibit the characteristic
capacity-defined set size function. That is, we predicted that there should be
a monotonic increase in within–working-memory RTs as a function of set
size until their working-memory capacity is saturated and there would be no
further increase in the RTs for larger set sizes.

To evaluate the set size effect of within-working-memory recall RTs, we
chose median RTs instead of mean-based measurements of RTs because a
median-basedmeasure is robust against the very likely possibility that within–
working-memory recall RTs cannot be crisply isolated, as illustrated in Fig.
1C, due to the trial-to-trial variation in the time it takes to terminate the
within–working-memory search before executing long-term memory search.
In other words, a median RT is invariant to the exact RT values of the fast
and slow ends of the RT distribution, whereas the mean-based RT measures
are. Thus, our median-based RT analysis of within–working-memory recall
can be interpreted without specifying the exact RT boundary of within–
working-memory recall.
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SI Results
Experiment 1.
The encoding task.

Behavioral analyses.First, the accuracy for new arrays was examined.
A repeated-measures ANOVA revealed that there was amain effect
of set size [F(3,84) = 406.1, P < 0.001] such that the accuracy declined
monotonically as a function of set size. We then transformed the
accuracy to calculate the estimate of visual working-memory (WM)
load (i.e., the number of colored squares maintained in visual WM)
for each set size as the following assumptions. Let SS be the set size
of interest, and Kpercept be the amount of visual information
maintained in visual WM at the set size SS. If the tested item was
represented in visual WM, participants should be able to report its
color correctly. Otherwise, they would guess the correct color by
chance. Because there were eight colors to choose from, the chance
level would be 1/8. These assumptions lead to the equation below.
Accuracy = Kpercept/SS + (SS − Kpercept)/SS × 1/8. Solving this
equation for Kpercept, Kpercept = 8/7 × SS × (Accuracy − 1/8). The
Kpercept estimate for each set size was then subjected to a
repeated-measures ANOVA. This revealed a significant effect of
set size [F(3, 84) = 81.1, P < 0.001]. Planned simple comparisons
revealed that Kpercept estimate plateaued at set size 4 [t(27) = 22.2,
P < 0.001 for K1percept < K4percept; t(27) = 13.6, P < 0.001 for
K2percept < K4percept; t(27) = 2.1, P < 0.05 for K4 > K8]. This is
consistent with numerous previous findings. Interestingly, there was
a decrease in the Kpercept estimate from set size 4 to set size 8. This
has also been reported in the previous studies, and it is thought to
be caused by perceptual overload at the encoding stage (48–50).
Next, we examined accuracy data for to-be-learned arrays. A

repeated-measures ANOVA revealed a significant main effect of set
size [F(3,84) = 58.6, P < 0.001] and blocks [F(24,672) = 26.9, P < 0.001]
as well as their significant interaction [F(72,2,016) = 19.0, P < 0.001].
This shows that the large accuracy differences across set sizes di-
minished by the end of the encoding blocks (accuracy for all set
sizes > 94%), thus showing successful learning for all four arrays.

Electrophysiological analyses. The parieto-occipital alpha-power sup-
pression was calculated as the mean percentage change of alpha
power (8–13 Hz) of posterior channels (P3/4, PO3/4, OL/R, O1/2,
and Pz) in 300- to 1,000-ms window after the array onset. A
repeated-measures ANOVA revealed that there was a main effect of
array types (i.e., new and to-be-learned) [F(1,27) = 38.4, P < 0.001]
and set size [F(3,81) = 30.4, P < 0.001]. More importantly, there was
no significant interaction between array type and set size [F(3,81) =
2.6, NS]. Planned simple comparisons revealed that the alpha-power
suppression for both new and to-be-learned arrays approximated the
expected capacity-defined set size function just like the behavioral
capacity estimate [values of t(27) > 4.6, P < 0.001 for set size 1 < set
size 4; t(27) > 2.6, P < 0.05 for set size 2 < set size 4; t(27) = 2.1, P <
0.05 for set size 4 < set size 8 for to-be-learned array and t(27) = 1.3,
NS for set size 4 < set size 8 for new array]. Of note, we did not find a
statistically significant difference between the alpha-power suppres-
sion for set size 1 and set size 2 conditions for new arrays [t(27) = 2.8,
P < 0.01 for set size 1 < set size 2 for to-be-learned array but t(27) =
0.7, NS for set size 1 < set size 2 for new array]. This is likely simply
due to noise because other studies that used very similar WM tasks
(i.e., change detection tasks) have found that alpha suppression in-
creased from set size 1 to set size 2 (18, 20).
The retrieval task.

Electrophysiological analyses. The time window used in the re-
trieval task was different from the encoding task. Although we
anticipated that it might take longer for the capacity-limited set
size effect to emerge due to the visual system processing inputs

faster than long-term memory (LTM) retrieval can operate, we did
not have a precise prediction as to when it would emerge. However,
what we did predict was that once the capacity-defined set size
effect emerged, it would be persistent throughout the retention
interval. That is clearly what we see in the data and reflected in our
measurement window. The parieto-occipital alpha-power sup-
pression was calculated as the mean percentage change of alpha
power (8–13 Hz) of the same posterior channels (P3/4, PO3/4,
OL/R, O1/2, and Pz) in 800- to 2,500-ms window after the letter
cue onset. Planned simple comparisons showed that the alpha-
power suppression showed the expected capacity-defined set size
effect [t(27) = 3.7, P < 0.001 for set size 1 < set size 4; t(27) = 2.1,
P < 0.05 for set size 2 < set size 4; t(27) = 0.5, NS for set size 4 > set
size 8], whereas the sustained negativity did not.

Behavioral analysis.The accuracy showed that participants were near
ceiling at retrieving the learned arrays from LTM (accuracy > 94%
for all four arrays). A repeated-measures ANOVA revealed that the
RTs for correct trials monotonically increased as a function of set
size [F(3,81) = 96.2, P < 0.001]. We hypothesized that this is a result
of two types of accurate recall trials. One type of trials is when the
probed item was actively maintained in mind when recall is
prompted and therefore readily accessible. The other is when the
probed item was not held actively in mind when recall is prompted
but stored inactively in LTM, and therefore the participants had to
activate it for retrieval. As a result, the recall RTs for the former
trial type are systematically faster than RTs for the latter type of
trials because one has to know whether the probed item is already
available for recall in mind before executing more effortful retrieval
from LTM. Furthermore, the recall RT for the former type of trials
should be the fast Kretrieval/SS portion of the entire correct RTs
where Kretrieval is the amount of retrieved information for an array
of set size SS that can be held active at a given time. Based on these
assumptions, we made the following prediction. If the same WM is
used to represent new perceptual information as well as previously
learned retrieved information, then Kretrieval should be the same as
K estimated with new perceptual information (Kpercept) for the
same set size SS during the encoding task. To test this, we extracted
the fast Kpercept/SS portion of accurate recall RTs for each set
size as within-WM recall RTs and examined whether these
within-WM RTs would exhibit the characteristic capacity-
defined set size function. That is, we predicted that there
should be a monotonic increase in the recall RTs as a function
of set size until their visual WM capacity is saturated and there
would be no further increase in the RTs for larger set sizes. A
repeated-measures ANOVA confirmed this prediction. In ad-
dition to a significant main effect of set size [F(3,81) = 79.2, P <
0.001], planned simple comparisons showed that search RT within
WM showed the capacity-limited set size function [t(27) = 12.8, P <
0.001 for set size 1 < set size 4; t(27) = 5.6, P < 0.001 for set size 2 <
set size 4; t(27) = 0.2, NS for K4percept < K8percept]. These results,
taken together with the alpha-power results, suggest that the
amount of information retrieved from LTM at a given time is
limited by WM capacity.

The Retrieval Task in Experiment 2.
Behavioral analyses. The accuracy showed that participants were
near ceiling at retrieving the learned arrays from LTM (accu-
racy > 96% for all four conditions).
Electrophysiological analyses. To capture the time course of partial
retrieval, we tested the parieto-occipital alpha-power suppression
in early (500–1,000 ms after the letter cue onset) and late (2,300–
2,700 ms after the letter cue onset) time window separately. First
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of all, planned simple comparisons revealed that the alpha-power
suppression replicated the results of experiment 1 for both early
and late retention periods [values of t(19) > 3.6, P < 0.01 for set size
1 < set size 4 whole retrieval; t(19) > 3.3 P < 0.01 for set size 2 < set
size 4 whole retrieval]. Another set of planned simple comparisons
revealed that quadrant retrieval initially yielded the same level of
alpha-power suppression as set size 4 whole retrieval [t(19) = 0.7, NS
for set size 4 whole > set size 4 quad; t(19) = 3.3, P < 0.01 for set size
1 < set size 4 quad], but it declined to the same level as set size 1 by
the late retention period [t(19) = 2.3, P < 0.05 for set size 4 whole >
set size 4 quad; t(19) = 1.2, NS for set size 1 < set size 4 quad].

The Retrieval Task in Experiment 3.
Behavioral analyses. The accuracy showed that participants were
near ceiling at retrieving the learned arrays from LTM (accu-
racy > 92% for all three conditions).

Electrophysiological analyses. To capture the time course of partial
retrieval, we tested the parieto-occipital alpha-power suppression
in early (800–1,600 ms after the letter cue onset) and late (2,000–
2,700 ms after the letter cue onset) time window separately. First
of all, planned simple comparisons revealed that the alpha-
power suppression replicated the results of experiments 1 and
2 for both early and late retention periods [values of t(19) > 3.5,
P < 0.01 for set size 2 < set size 4]. Another set of planned simple
comparisons revealed that additive retrieval initially yielded the
same level of alpha-power suppression as set size 2 retrieval
[t(19) = 1.0, NS for set size 2 additive > set size 2; t(19) = 4.7, P <
0.001 for set size 2 additive < set size 4], but it amplified to the
same level as set size 4 by the late retention period [t(19) = 2.5,
P < 0.05 for set size 2 additive > set size 2; t(19) = 2.0, P = 0.06 for
set size 2 additive < set size 4].
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