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Cohen JY, Pouget P, Heitz RP, Woodman GF, Schall JD.
Biophysical support for functionally distinct cell types in the
frontal eye field. J Neurophysiol 101: 912–916, 2009. First pub-
lished December 3, 2008; doi:10.1152/jn.90272.2008. Numerous
studies have described different functional cell types in the frontal
eye field (FEF), but the reliability of the distinction between these
types has been uncertain. Studies in other brain areas have de-
scribed specific differences in the width of action potentials re-
corded from different cell types. To substantiate the functionally
defined cell types encountered in FEF, we measured the width of
spikes of visual, movement, and visuomovement types of FEF
neurons in macaque monkeys. We show that visuomovement
neurons had the thinnest spikes, consistent with a role in local
processing. Movement neurons had the widest spikes, consistent
with their role in sending eye movement commands to subcortical
structures such as the superior colliculus. Visual neurons had wider
spikes than visuomovement neurons, consistent with their role in
receiving projections from occipital and parietal cortex. These
results show how structure and function of FEF can be linked to
guide inferences about neuronal architecture.

I N T R O D U C T I O N

This paper concerns the general problem of how the
primate brain transforms visual input into eye-movement
output. Several cortical areas and subcortical regions con-
tribute to this visual-motor mapping. One such area, the
frontal eye field (FEF), contains at least three main func-
tional types of neurons: visual, movement, and visuomove-
ment neurons (Bruce and Goldberg 1985; DiCarlo and
Maunsell 2005; Goldberg and Bushnell 1981; Hanes et al.
1998; Kodaka et al. 1997; Schall 1991; Segraves 1992;
Segraves and Goldberg 1987; Umeno and Goldberg 1997).
In FEF, a population of visual and visuomovement neurons
selects the target of search by increasing their firing rate in
response to the presence of the target in their receptive fields
(RFs) relative to when a distractor is situated in their RFs
(e.g., Schall and Hanes 1993; Thompson et al. 1996). A
different population of neurons, called movement neurons,
increases their firing rate leading up to saccades into their
movement fields (MFs) (e.g., Hanes and Schall 1996).
Visuomovement neurons also increase their firing rate lead-
ing up to saccades. Despite these differences, distinctions
between these cell types have relied largely on firing-rate
patterns as opposed to inherent biophysical properties of the
neurons being studied. Moreover, disagreements persist
about the reliability of the distinction between cell types.

Understanding how visuomotor transformations occur re-
quires knowledge of the underlying circuitry, which is
composed of different types of neurons. Cortical neurons
have been distinguished by morphology (Kawaguchi 1995;
Krimer et al. 2005), neurotransmitter (Connors and Gutnick
1990), laminar distribution (Bullier and Henry 1979; Condé
et al. 1994; Dow 1974), molecular composition (Cauli et al.
1997; Martina et al. 1998), functional property (González-
Burgos et al. 2005), and developmental origin (Letinic et al.
2002). Differences between neuron types have typically
been distinguished in vitro or intracellularly. Several stud-
ies, however, have distinguished types of neurons by the
shape of extracellularly recorded action potentials (Barthó
et al. 2004; Chen et al. 2008; Constantinidis and Goldman-
Rakic 2002; Csicsvari et al. 1999; Henze et al. 2000;
Mountcastle et al. 1969). For example, extracellular record-
ings of neurons in extrastriate visual cortex (V4) have
shown that neurons with thin spikes (putative interneurons)
showed stronger attentional modulation than neurons with
wider spikes (Mitchell et al. 2007).

To determine whether functional cell types in FEF exhibit
biophysical differences, we measured spike waveforms of
functional cell types distinguished by their responses following
visual stimuli or before saccades. The results are consistent
with the hypothesis that different functional cell types corre-
spond to different anatomical cell types.

M E T H O D S

Behavioral task and recording

All experimental procedures were performed in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and approved by the Vanderbilt Institutional
Animal Care and Use Committee. Activity of FEF neurons was
recorded in four male macaques (Macaca radiata) performing three
different tasks that have been described in detail previously. Monkey
Q performed visual search for a singleton target defined by color
(Cohen et al. 2007; Sato et al. 2001). Monkeys Q and S performed
visual search for a target (T or L) among distractors (Ls or Ts,
respectively) (Woodman et al. 2007). Monkeys M and U performed a
saccade stop signal (countermanding) task (Hanes et al. 1998). All
monkeys were trained on a memory-guided saccade task. Activity
from each neuron was recorded during this task to distinguish visual-
from movement-related activity (Bruce and Goldberg 1985; Hikosaka
and Wurtz 1983).
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Our data set consists of 12 neurons from monkey Q during the color
singleton visual search task, 48 neurons from monkey Q during the
form visual search task, 20 neurons from monkey S during the form
visual search task, 9 neurons from monkey M during the countermand-
ing task, and 5 neurons from monkey U during the countermanding
task, for a total of 94 neurons. Spikes were sorted on-line and off-line
using principal components analysis (Plexon). A neuron was only
considered for analysis if its spike waveforms were clearly discrim-
inable and its activity was clearly visual related, movement related, or
visual and movement related.

Data analysis

To measure the firing rate of each neuron, we used a spike
density function, convolving each spike with a kernel resembling a
postsynaptic potential (Thompson et al. 1996). We used the mem-
ory-guided saccade task to classify neurons. Visual neurons had
significantly greater activity in the 100 ms after the target flash
than in the 100 ms before the target flash. Movement neurons had
greater responses in the 100 ms leading up to the saccade than in
the 100 ms before the target flash. Visuomovement neurons had
greater responses in the 100 ms after the target flash and in the 100
ms leading up to the saccade than in the 100 ms before the target
flash.

Because spike amplitude, but not width, is dependent on the
distance from electrode tip (Henze et al. 2000), we used spike width
as a measure of action potential shape. We applied a smoothing spline
to each mean spike waveform. Spike width was computed as the time
from trough to peak (Mitchell et al. 2007) (see Fig. 2A). This measure
resulted in smaller spike width values than those reported in other
studies (e.g., Constantinidis and Goldman-Rakic 2002), which mea-
sured spike width as the time from first to second trough. Spike
waveforms were sampled at 40 kHz for 800 �s.

In addition to classifying neurons based on their activity during
the memory-guided saccade task, we computed a visuomovement
index for each neuron based on activity during the search or
countermanding task in the RF location that elicited the largest
response during the memory-guided task. The index was computed
as (V � B)/(M � B), where V is the neuron’s average visual-related
firing rate from 50 to 150 ms after target onset, M is its average
movement-related firing rate from 100 ms before saccades to the
time of saccades and B is its average baseline firing rate 100 ms
before target onset. We did not use spike density functions to
compute visuomovement indices.

We measured spiking variability using the coefficient of variation
(CV) (Softky and Koch 1993) in bins of 100 interspike intervals. The
CV is defined as the ratio of the SD to the mean of the interspike
intervals.

To measure differences between groups of neurons, we used Wil-
coxon rank sum tests with Bonferroni corrections for multiple com-
parisons. All analyses were performed in R (R Development Core
Team 2008).

R E S U L T S

We analyzed the activity of 94 FEF neurons from four
monkeys during memory-guided visual search and counter-
manding tasks. We classified neurons as visual, movement or
visuomovement and compared spike widths across functionally
defined neuron types.

Types of FEF neurons

To classify neurons, we measured responses during the
memory-guided saccade task. We classified 33 neurons as visual,

28 as movement, and 33 as visuomovement. The fraction of
visuomovement neurons is lower than reported in previous
studies (Bruce and Goldberg 1985; Schall 1991). Figure 1
shows average firing rates for a representative neuron of each
type during the memory-guided task. Figure 1A, left, shows the
firing rate of a visual neuron aligned to target onset. The
neuron had its largest response following the target flash in its
RF (cumulative distribution of saccade times shown as dashed
gray curve). Figure 1A, right, shows the firing rate of the same
neuron aligned to the time of saccade (dashed line). The neuron
did not fire above baseline prior to saccades. Figure 1B shows
the response of a movement neuron. This neuron increased its
firing rate leading up to saccades (right). It did not fire above
baseline in response to the target flash (left). Figure 1C shows
the response of a visuomovement neuron. This neuron re-
sponded to the visual stimulus and before saccades. We found
no difference in spike amplitude or firing rate between types of
neurons.

Spike widths

After categorizing neurons, we measured the width of the
mean spike waveform for each neuron from trough to peak
(Fig. 2). Figure 2A shows an example mean spike waveform
from a visuomovement neuron and demonstrates our method
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FIG. 1. Representative visual (A), movement (B), and visuomovement
(C) neurons. Left: average firing rate during the memory-guided saccade
task aligned to the time of presentation of the target inside the neuron’s
receptive field. Dashed gray line plots the distribution of response times.
Right: average firing rate aligned on the time of saccade initiation (dashed
gray line).
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for computing spike width. This neuron had a mean spike
width of 250 �s. Figure 2B shows all the normalized mean
spike waveforms for visual neurons (black), movement neu-
rons (red) and visuomovement neurons (blue) fitted with
smoothing splines. Each mean spike waveform was normalized
by dividing its values by the difference of its maximum and
minimum values. Figure 2C shows histograms of spike widths
of all neurons of each type, and Fig. 2D shows the cumulative
distributions of spike widths for each type of neuron. The mean
spike widths (� SE) were 329 � 20.5 �s for visual neurons
(V), 352 � 19.5 �s for movement neurons (M), and 218 �
16.4 �s for visuomovement neurons (VM).

A Kruskal-Wallis rank sum test revealed a significant effect
of neuron type (�2 � 28.1, P � 0.001). Spike widths were
significantly larger for movement neurons than for visuomove-
ment neurons (Wilcoxon rank sum test with Bonferroni cor-
rection for multiple comparisons, P � 0.001) and larger for
visual neurons than for visuomovement neurons (P � 0.005).
There was no significant difference between visual and move-
ment neuron spike widths (P � 0.3).

To verify that the demands of the task did not affect the
shape of a neuron’s spike, we compared the spike widths
during the intertrial intervals and during the period from
target onset to saccade onset. All neurons showed no dif-
ference in spike width between task performance and base-
line activity (P � 0.9).

We computed a visuomovement index for each neuron
defined as the ratio of the difference between visual activity
and baseline activity and movement activity and baseline
activity during the search or countermanding task. Classifying
neurons using the visuomovement index reproduced classifica-
tion using the activity during the memory-guided task. Figure 3A
shows boxplots of visuomovement indices grouped by neuron
type as defined in the memory-guided task. Visuomovement

indices were significantly different between visual and move-
ment neurons (Wilcoxon rank sum test with Bonferroni cor-
rection for multiple comparisons, P � 0.001), between visual
and visuomovement neurons (P � 0.001) and between move-
ment and visuomovement neurons (P � 0.001). To obtain an
independent classification of neurons, we divided the distribu-
tion of visuomovement indices into three groups. Figure 3B
shows this division and the classification of neurons into visual
(V), movement (M), and visuomovement (VM) categories.
Two visuomovement neurons were classified differently using
the visuomovement index, one as a visual neuron and one as a
movement neuron. These are shown as gray points in Fig. 3B.
Using this classification, spike widths were significantly larger
for visual than visuomovement neurons (P � 0.001) and for
movement than visuomovement neurons (P � 0.001). There
was no significant difference in spike width between visual and
movement neurons (P � 0.7).

Neuron classification using the visuomovement index was
robust within a small range of boundaries between classes of
neurons. Figure 3, C and D, show the number of misclassified
neurons as a function of the boundary between movement and
visuomovement neurons and visuomovement and visual neu-
rons for each type of neuron. The boundaries shown in Fig. 3B
(0.2 and 0.7) correspond to the minimum number of misclas-
sified neurons (the 2 visuomovement neurons shown in gray in
Fig. 3B). These boundaries are indicated by dashed vertical
lines in Fig. 3, C and D.

Spiking variability

To obtain another measure useful for distinguishing neuron
types, we measured the coefficient of variation of spiking (CV)
in bins of 100 interspike intervals. Figure 4 shows cumulative
distributions of CV for the three classes of neurons. CV was
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FIG. 2. Spike width by neuron type. A: mean (—) and
mean � SD (- - -) spike waveforms from a representative
visuomovement neuron. B: all mean, normalized spike wave-
forms for visual (V, black), movement (M, red) and visuomove-
ment (VM, blue) neurons. C: histogram of spike widths for each
type of neuron. D: cumulative distribution of spike widths for
each type of neuron.

914 J. Y. COHEN, P. POUGET, R. P. HEITZ, G. F. WOODMAN, AND J. D. SCHALL

J Neurophysiol • VOL 101 • FEBRUARY 2009 • www.jn.org

 on F
ebruary 28, 2009 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


significantly larger for visuomovement neurons than for visual
neurons (Wilcoxon rank sum test, P � 0.001) and for move-
ment neurons (P � 0.001). CV was not significantly different
between visual and movement neurons (Wilcoxon rank sum
test, P � 0.5).

D I S C U S S I O N

We have shown that three functional types of FEF neurons
have different spike waveforms. This suggests that distinct
types of neurons defined functionally may constitute different
types of neurons defined morphologically. It is tempting to

classify visuomovement neurons, those neurons with the thin-
nest spikes, as local inhibitory interneurons. We cannot, how-
ever, say that all neurons with short spike durations are inhib-
itory. Some studies suggest only particular subclasses of
GABAergic neurons display short spike durations (McCormick
et al. 1985; Naegele and Katz 1990). Some or all may be small
neurons with local excitatory connections (Gur et al. 1999).
Likewise, we cannot say that all visual and movement neurons
are pyramidal neurons because they have wider spikes than
visuomovement neurons although data from anatomical and
physiological studies are in agreement with such a claim (Fries
1984; Segraves and Goldberg 1987; Sommer and Wurtz 1998,
2001).

Are there really three categories of neurons in FEF? Al-
though there appears to be a continuum of responses from
visual related to movement related (see Fig. 3), our results
reveal a significant difference in spike width related to func-
tional neuron classification. This is important for exposing the
possibility that visuomovement neurons may constitute a dif-
ferent morphological type of neuron than visual or movement
neurons. While further research is needed to verify or refute
this hypothesis, the current results add to a growing literature
providing evidence for the heterogeneity of neurons in FEF.
The ability to distinguish types of neurons in FEF is necessary
to understand whether the visual to motor transformation
occurs within or across distinct neuron types.
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index. Neurons were classified into movement (M), visuomove-
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