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Cohen JY, Pouget P, Woodman GF, Subraveti CR, Schall JD,
Rossi AF. Difficulty of visual search modulates neuronal interac-
tions and response variability in the frontal eye field. J Neuro-
physiol 98: 2580 –2587, 2007. First published September 12, 2007;
doi:10.1152/jn.00522.2007. The frontal eye field (FEF) is involved
in selecting visual targets for eye movements. To understand how
populations of FEF neurons interact during target selection, we
recorded activity from multiple neurons simultaneously while ma-
caques performed two versions of a visual search task. We used a
multivariate analysis in a point process statistical framework to
estimate the instantaneous firing rate and compare interactions among
neurons between tasks. We found that FEF neurons were engaged in
more interactions during easier visual search tasks compared with
harder search tasks. In particular, eye movement–related neurons were
involved in more interactions than visual-related neurons. In addition,
our analysis revealed a decrease in the variability of spiking activity
in the FEF beginning �100 ms before saccade onset. The minimum
in response variability occurred �20 ms earlier for the easier search
task compared with the harder one. This difference is positively
correlated with the difference in saccade reaction times for the two
tasks. These findings show that a multivariate analysis can provide a
measure of neuronal interactions and characterize the spiking activity
of FEF neurons in the context of a population of neurons.

I N T R O D U C T I O N

Neuronal activity in the primate frontal eye field (FEF)
reflects visual target selection and eye movement commands
(Bichot and Schall 1999; Murthy et al. 2001; Schall and
Thompson 1999; Thompson et al. 1996, 1997). Information
from the visual system converges on the FEF (Schall et al.
1995b) and is integrated into eye movement commands
through inputs to oculomotor structures (Hanes and Schall
1996; Helminski and Segraves 2003; Sommer and Wurtz 1998,
2001). Three functional classes of neurons have been described
in the FEF: visual-related, visual-and-movement–related, and
movement-related (Bruce and Goldberg 1985; Schall 1991;
Schall and Hanes 1993; Schall and Thompson 1999; Schall
et al. 1995a; Segraves and Goldberg 1987). How these classes
of neurons in the FEF interact to contribute to target selection
remains unknown. To address how such visual-to-motor inte-
gration occurs, we analyzed the activity of FEF neurons re-
corded during a visual search task, emphasizing interactions
that occurred among simultaneously recorded neurons. We
compared neuronal interactions associated with hard and easy
visual search tasks. A hard task was defined as one with a high

degree of similarity between the target of the search and the
distractor stimuli to be ignored. An easy task was defined as
one with a low degree of target-distractor similarity (Duncan
and Humphreys 1989).

Recent developments in multivariate point process modeling
of neural responses have provided an analytical framework to
characterize neural activity in the context of interactions be-
tween simultaneously recorded neurons (Brown et al. 2002;
Okatan et al. 2005; Truccolo et al. 2005). This analysis models
the instantaneous firing rate of a neuron using its own spiking
history and that of other simultaneously recorded neurons as
covariates in the model. The significance of each covariate
provides an estimate of its contribution to the response of the
modeled neuron. If the multivariate model’s estimate of instan-
taneous firing rate is significantly improved by including co-
variates representing the activity of other neurons, it is evi-
dence of interactions among neurons in the recorded ensemble.
Such interactions may be direct synaptic connections between
neurons or may be mediated polysynaptically or by shared
input. Compared with conventional univariate estimates of
neuronal activity, such as the peristimulus time histogram
(PSTH), the multivariate approach can distinguish between a
neuron’s response and its response in the context of interac-
tions in a population of neurons. Furthermore, point process
modeling of neural activity preserves spike timing information
which is distorted by measures that average over time-interval
windows (e.g., PSTH). Traditional approaches for analysis of
interactions between neurons, such as the covariogram and
joint PSTH (Aertsen et al. 1989; Brody 1999a,b; Constantinidis
et al. 2001), are limited to pairwise comparisons and do not
provide adequate measures of ensemble interactions. The mul-
tivariate point process model estimates the instantaneous firing
rate of a neuron in real-time without limits on ensemble size.
Nonetheless, it can extract the same interactions as pairwise
measures.

We show that the multivariate approach can accurately
model spiking activity in the FEF and characterize interactions
among simultaneously recorded neurons while monkeys per-
form a visual search task. To better understand how neuronal
interactions in the FEF contribute to target selection, we
addressed the following questions. 1) Do interactions among
FEF neurons differ for hard and easy search? 2) Are there
differences in interactions between the three classes of FEF
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neurons? 3) Are interactions of movement-related neurons
associated with saccade onset times?

M E T H O D S

Behavioral task and recording

Activity of FEF neurons was recorded in macaques performing a
visual search task in which they were required to saccade to a
singleton target defined by color (Sato et al. 2001). Each trial began
with the monkey fixating a central spot for �600 ms. A target was
presented at one of eight isoeccentric locations equally spaced around
the fixation spot (Fig. 1A, inset). The other seven locations contained
distractor stimuli. Monkeys were given a juice reward for making a
saccade to the target location and holding their gaze on the target for
�400 ms. There were two levels of task difficulty, hard and easy,
determined by the degree of target-distractor similarity. The hard task
contained a green target among yellow-green distractors. The easy
task contained a green target among red distractors. Recordings were
made simultaneously from two to four tungsten electrodes placed in
the rostral bank of the arcuate sulcus. A neural ensemble was defined
as a set of simultaneously recorded neurons with overlapping recep-
tive fields. Our data set consisted of 91 neurons in 29 ensembles from
one monkey (Macaca mulatta) and 21 neurons in 7 ensembles from a
second monkey (Macaca radiata). Of the 36 ensembles, 15 contained
two neurons, 10 contained three neurons, 6 contained four neurons, 4
contained five neurons, and 1 contained eight neurons. Spikes were
sorted off-line using principal components analysis (Plexon). Because
data from each monkey were collected during the same behavioral
tasks and were similar, we pooled data from both monkeys.

Monkeys were trained on a memory-guided saccade task to distin-
guish visual- from movement-related activity (Bruce and Goldberg
1985; Hikosaka and Wurtz 1983). The target was flashed alone for 80
ms. The monkey was required to maintain fixation for 400-1,000 ms
after the target offset. When the fixation spot disappeared, the monkey
was rewarded for a saccade to the remembered location of the target.
The movement-related neurons analyzed here had significantly greater
responses in the 100 ms leading up to the saccade than in the 100 ms
after the target flash. Visual- and visual-and-movement–related neu-
rons had greater responses in the 100 ms after the target flash than in
the 100 ms before the target flash.

Each monkey was surgically implanted with a head post, a scleral
eye coil, and a recording chamber. Surgery was conducted under
aseptic conditions with isofluorane anesthesia (Schall et al. 1995a).
Antibiotics and analgesics were administered postoperatively. All
experimental procedures were performed in accordance with the
National Institutes of Health Guide for the Care and Use of Labora-
tory Animals and approved by the Vanderbilt Institutional Animal
Care and Use Committee.

Data analysis

To assess simultaneously the interactions of several neurons,
we used a point process multivariate analysis (Okatan et al. 2005;
Truccolo et al. 2005). The point process framework can provide for
comparisons of arbitrarily large ensembles of simultaneously recorded
neurons that pairwise measures cannot. We constructed a statistical
model of the firing rate of a neuron by incorporating its firing history
and the firing history of other neurons in its ensemble from stimulus
onset to saccade onset (5,315 correct hard search trials, 7,414 correct
easy search trials). We used a modified version of the generalized
linear model (GLM) approach recently applied by Truccolo et al.
(2005). The modification was necessary because the fitted GLMs for
the hard and easy tasks may be different. Therefore unless they are
nested, comparing such models statistically is intractable. We modi-
fied the GLM in the following way so that the data for both the
hard and the easy tasks (for a particular neuron) were combined in
a single GLM.

Using the theory of point processes, we represented recorded spike
trains as sets of discrete event times. We modeled the instantaneous
firing rate (conditional intensity function) of a neuron as a combina-
tion of terms of covariates (Truccolo et al. 2005). The conditional
intensity function (�t) is more informative of the instantaneous firing
rate than univariate measures (e.g., PSTH) because its estimate is
derived in the context of interacting neurons. We predicted the firing
of a neuron using its firing history (autoregressive process) and the
firing history of other neurons recorded simultaneously (crossregres-
sive process). We concatenated data from all correct trials for each
neuron and used a GLM to predict the firing rate of a neuron as

log(�t) � (�x1 � �x2) � �
i�1

Q

(�ix1 � �ix2)�N1�1 � �
c
�
j�1

R

(�i
(c)x1 � v1

(c)x2) �N1�j
(c)

where �t is the firing rate at time t, � is a baseline term associated with
the hard search condition, � is a baseline term associated with the easy
search condition, {�i} is the set of hard search autoregressive (AR)
parameters, {�i} is the set of easy search AR parameters, {�j} is the
set of hard search crossregressive (CR) parameters (1 for each neuron
in the ensemble at each lag), {�j} is the set of easy search CR
parameters, and �Nt-k

(c) is the spike count in the k th ms before the
current time t, for neuron c in the ensemble. Q and R are the AR and
CR lags of the model, respectively. The indicator variables x1 and x2

combine the parameters associated with each task into a single model.
x1 is 0 for easy search trials and 1 for hard search trials. x2 is 1 for easy
search trials and 0 for hard search trials. Because of constraints on the
length of the recordings (relative to the firing rate) we set Q � R �
30. This constraint was not of consequence to our analysis because the
parameter fits stabilized well before lags of 30 ms. In the GLM above,
the AR parameters describe the timing of the modeled neuron’s
dependence on its firing history and the CR ones describe the timing

FIG. 1. Behavioral task and performance. A: top: density of
saccade reaction times (RTs) for hard task (gray dashed line
denotes mean). Bottom: density of RTs for easy task (black
dashed line denotes mean). Hard search task consisted of a
green target among yellow-green distractors. Easy task con-
sisted of a green target among red distractors. Data are pooled
across all sessions for both monkeys. B: histogram of session-
by-session RT differences (hard minus easy).
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of interactions between neurons. To compare models of hard and easy
visual search trials, x1 and x2 terms were merged to create a separate
GLM for each task.

We fit the GLM using an iteratively reweighed least squares
algorithm (McCullagh and Nelder 1989). This algorithm provides a
robust maximum likelihood estimate of model parameters. If the
assumptions of the GLM are met, the fitted model’s residuals should
have a normal distribution around mean 0 and constant variance with
no autocorrelations (McCullagh and Nelder 1989; Truccolo et al.
2005). Thus we examined the residuals of each of our model fits.

To compare the fit of nested models, we used likelihood ratio tests.
For each neuron, we compared the model deviance (D � �2logL) for
AR-only models and for AR-CR models for hard and easy search
trials separately. This deviance comes from a 	2 distribution. Thus we
can test the hypothesis that adding CR terms to an AR model does not
improve the GLM fits (McCullagh and Nelder 1989). If the likelihood
ratio is large, the modeled neuron’s response depends heavily on the
ensemble neuron’s responses. We measured variability in �t across
neurons using a standardized measure of variability, the coefficient of
variation (CV) (SD/mean). All analyses were performed in R (R
Development Core Team 2006).

Model fits

To show that the GLM accurately accounted for the firing of FEF
neurons, we compared the conditional intensity functions (�t, instan-
taneous firing rates) against the observed spike trains. Figure 2A
shows the modeled intensity (black curve) and the observed spike
train (gray vertical lines) for one example neuron over the course of
300 ms. The model covariates are the neuron’s spiking history and the
history of a second neuron in the ensemble. The modeled rate closely
follows the observed spike times. Note that the magnitude of the

intensity increases with the frequency of spikes. The brief (1 ms)
decrease in the intensity after a spike likely corresponds to the
neuron’s absolute refractory period (Truccolo et al. 2005). This
decrease is evident in Fig. 2B, which depicts the spike-triggered
average intensity for the neuron in Fig. 2A. We also examined the
Pearson residuals for each model. If the Pearson residuals were
distributed normally with mean 0 and variance 1, the firing left
unexplained by the model was insignificant (McCullagh and Nelder
1989). For the model in Fig. 2, which was representative of the model
fits of FEF neurons in our sample, the mean of the Pearson residuals
was 6.08 � 10�4, the variance was 0.892, and they were distributed
normally. Models for all neurons had normally distributed Pearson
residuals (Shapiro-Wilk test, P � 0.05).

Simulation and interpretation of parameters

A simulation was performed to test whether the GLM analysis
extracted the same interactions that standard measures of pairwise
interactions do. Figure 3, A and B, shows a comparison of the GLM
fitting results for a simulated pair of spike trains with a standard
measure of interactions between pairs of neurons, the covariogram
(Brody 1999a). The CR parameter values in Fig. 3B match the lags of
high correlation between the pair of simulated spike trains in Fig. 3A.
Significant parameters (by Wald Z test, P � 0.05) corresponded to
interactions between the covariate and the target neuron at that lag,
although not necessarily “monosynaptically.” Positive parameter val-
ues corresponded to high probability that the covariate neuron excited
the modeled neuron. Negative values corresponded to high probability
of inhibition. Nonsignificant parameters (gray points) corresponded to
low probability that the covariate interacted with the modeled neuron
at those lags.

Figure 3, C and D, shows boxplots of parameter values at each time
lag for all hard and easy models for all FEF recordings. Both AR and
CR parameter values were stable past 15 ms, making it unnecessary to
use a history of �30 ms. The neurons’ own history dependence (AR
parameters) typically included �10 ms and was inhibitory (negative
parameter values). This likely corresponded to effects of absolute and
relative refractory periods (Truccolo et al. 2005). Neurons’ depen-
dence on ensemble neurons’ history (CR parameters) was, overall,
relatively uniform except for at a lag of 1 ms. Baseline rates differed
by �1 spike/s between hard and easy tasks.

There were no significant differences between AR or CR parame-
ters between hard and easy tasks. Figure 3, C and D, displays the
overall pattern of history dependence on a neuron’s firing.

R E S U L T S

Activity of 112 neurons was recorded in the FEF of two
macaques performing two versions of a saccade-to-oddball
visual search task (Fig. 1A, inset). These neurons were re-
corded in 36 ensembles. An ensemble was defined as a set of
simultaneously recorded neurons with overlapping receptive
fields. Ensemble sizes ranged from two to eight neurons.

Because both monkeys showed similar differences in per-
formance for the easy and hard search tasks, these data were
pooled. The easy and hard search tasks resulted in significant
differences in percent correct (hard task � 71.6%; easy task �
96.6%; Wilcoxon rank sum test, P � 10�15) and mean saccade
reaction time (hard task � 237 ms; easy task � 196 ms; P �
10�15). Figure 1A shows the densities of saccade reaction
times (RTs) for the hard and easy search tasks. In addition to
the significant difference in the mean RT (44.3 ms) for the two
tasks, the variability of saccade RT was greater for the hard
search task (SD � 65.3 ms) than the easy search task (SD �
41.2 ms). The mean difference in reaction time (hard minus

FIG. 2. Example model fit. A: spike train and modeled intensity for 1
frontal eye field (FEF) neuron over 300 ms. Gray vertical lines denote spike
times. Black curve is modeled conditional intensity. B: spike-triggered average
intensity for neuron in A over course of entire recording.
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easy) within each session was 44.4 � 3.6 (SE) ms, with a
minimum of 15.4 ms (Fig. 1B).

Do interactions among FEF neurons differ for hard
and easy search?

We asked whether the amount of interactions among neu-
rons in the FEF was affected by the difficulty of the visual
search task. To measure interactions between neurons, we used
a point process multivariate analysis to model the instanta-
neous firing rate of each neuron for each task (hard and easy)
taking into account the firing history of all neurons in the
recorded ensemble (see METHODS). The model estimated the
conditional intensity function (instantaneous firing rate) of
the neuron with respect to the covariates (AR and CR) when a
saccade was made to a target located within the receptive field.
We computed the likelihood ratios of models for each neuron
for each task by subtracting the deviance of the AR-CR model
from the deviance of the AR model. Large likelihood ratios
indicated that including ensemble neurons in the model of a
neuron greatly improved the prediction of the firing of that
neuron. Because the likelihood ratio is distributed as 	2, it is an
ideal measure of the degree to which addition of CR covariates
improved the estimate of the firing rate (McCullagh and Nelder
1989).

We found that for 63.7% of easy task models and 51.6% of
hard task models, 	2 P values were �0.05, indicating that the
inclusion of CR covariates improved the prediction of firing
rate in the majority of models. We compared the likelihood
ratios of the two pairs of models (hard vs. easy) to determine

under which task the addition of ensemble responses (CR
covariates) improved the model the most. The model that
benefited the most from addition of CR covariates was judged
to convey more interactions. Figure 4A is a histogram of the
difference between likelihood ratios for each neuron (easy
minus hard). The histogram is shifted significantly to the right
of zero (paired Wilcoxon rank sum test, P � 3.05 � 10�3).
Thus we could better predict the firing of neurons in the easy
task than the hard task when including the firing history of
other neurons recorded simultaneously, indicating that neurons
interacted more with each other during easy visual search.
Simulations revealed that, regardless of visual search task,
adding randomly firing simulated neurons to models of FEF
neurons did not improve those model fits. Therefore im-
provements to models of FEF neurons by adding CR co-
variates were caused by neuronal interactions, whether
monosynaptic, polysynaptic, or through shared input. There
was no significant correlation (P � 0.490) between RT differ-
ence (hard minus easy) and likelihood ratio difference (easy
minus hard), possibly because of low variability in RTs.

We cannot completely rule out that differences in interac-
tions were not caused by differences in trial lengths or spike
counts between hard and easy trials. This seems unlikely,
however, for two reasons. First, the average firing rate differ-
ence between hard and easy trials was �1 spike/s. Second, an
analysis in which we equated for trial length yielded similar
results. In this analysis, we removed data from the end of the
spike train for each trial to equate with the length of the spike
train of the shortest trial in each session. Before equating for
trial length, 63.7% of neurons in the easy task and 51.6% in the
hard task showed improved fits on addition of CR covariates,
a difference of 12.1%. After equating for trial length, the
number of neurons that showed improved fits decreased be-
cause of loss of data, but the same trend remained: 31.9% of

FIG. 3. Model interpretation. A: covariogram between a pair of simulated
neurons. Dashed lines indicate significance. B: crossregressive (CR) parameter
values with SE (from Wald Z test) from the generalized linear model (GLM)
fit for the same pair. Gray points are not significantly different from 0.
C: autoregressive (AR) parameter values significantly different from 0 for hard
and easy search models. Filled point is mean, horizontal bar is median, box
delimits interquartile range, and whiskers extend to point no more than 1.5
times interquartile range. Outliers are not shown in figure but are included in
analyses. D: same for CR parameters.

FIG. 4. Likelihood ratio analysis. A: histogram of likelihood ratio (LR)
differences (easy minus hard) for each neuron. B: histogram of LR differences
split by neuron class (black: visual-related neurons; gray: visual-and-move-
ment-related neurons; white: movement-related neurons). C: histogram of LRs
in easy task models split by neuron class. D: histogram of LRs in hard task
models split by neuron class.

2583NEURONAL INTERACTIONS IN THE FEF

J Neurophysiol • VOL 98 • NOVEMBER 2007 • www.jn.org

 on F
ebruary 28, 2009 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


neurons in the easy task and 20.9% in the hard task showed
improved fits on addition of CR covariates, a difference of
11.0%. Thus despite discarding a considerable amount of data
to equate for trial length, we found that neurons exhibited more
interactions during easy trials than during hard trials.

Are there differences in interactions between the three
classes of FEF neurons?

We classified each neuron as visual-related, movement-
related, or visual-and-movement–related. There were 46 visual-
related neurons, 16 movement-related neurons, 49 visual-and-
movement–related neurons, and 1 that was unclassified. Figure 5
shows the responses of representative neurons of each class
from our sample of recordings. The model for each showed
improved fit on addition of CR covariates. Each PSTH in this
figure shows the average firing rate of the neuron when the
target was presented in the neuron’s receptive field. Visual-
related neurons had clear responses �50 ms after target onset
(Fig. 5A), visual-and-movement–related neurons had similar
visual latencies and increased firing leading up to saccades
(Fig. 5B), and movement-related neurons fired at baseline until

�60 ms before saccades (Fig. 5C). The difference in visual-
and-movement– and movement-related responses during the
hard and easy tasks correlated with the difference in mean RT
between the hard (gray arrowhead) and easy (black arrowhead)
tasks.

We tested whether there were systematic differences in
interactions based on neuron class. Figure 4B shows likelihood
ratio differences (easy minus hard) by neuron class. There were
no significant differences in the distributions of likelihood ratio
differences between visual- and movement-related neurons
(Wilcoxon rank sum test, P � 0.203), visual- and visual-and-
movement–related neurons (P � 1.00), and visual-and-move-
ment– and movement-related neurons (P � 0.329). Figure 4, C
and D, shows likelihood ratios for easy and hard tasks split by
neuron class. We found that the likelihood ratios were signif-
icantly larger for movement-related neurons (white bars) than
for visual-related neurons (black bars) for both hard (Fig. 4D;
P � 1.90 � 10�3) and easy tasks (Fig. 4C; P � 2.18 � 10�5).
Likewise, the ratios were larger for visual-and-movement–
related neurons (gray bars) than for visual-related neurons for
both tasks (hard: P � 6.34 � 10�12; easy: P � 7.36 � 10�11).
This indicates that movement- and visual-and-movement–re-
lated neurons were engaged in greater interactions than the
visual-related neurons. Likelihood ratios were significantly
larger for the easy task than the hard task for visual-related
neurons (paired Wilcoxon rank sum test, P � 0.0425) and
movement-related neurons (P � 0.0443) and approached
significance for visual-and-movement–related neurons (P �
0.0990). This indicates that the model better predicted the
firing of neurons in the easy task on addition of CR covariates
than the hard task and that addition of CR covariates signifi-
cantly improved firing predictions. The percent of neurons of
each class with improved fits on addition of CR covariates was
larger for neurons with movement-related activity than for
neurons with only visual-related activity. For the easy task,
48.0% of visual-related neurons, 87.5% of movement-related
neurons, and 63.3% of visual-and-movement–related neurons
showed improved fits. For the hard task, 32.0% of visual-
related neurons, 56.3% of movement-related neurons, and
59.2% of visual-and-movement–related neurons showed im-
proved fits. There were no differences in mean firing rate
between neurons that showed improved fits and those that did
not for each neuron class (Wilcoxon rank sum test, P � 0.287).

Are interactions among FEF neurons time-locked
to saccade onset?

Because movement-related neurons in the FEF characteris-
tically increase their firing leading up to saccades (Hanes and
Schall 1996) (see Fig. 5C), we analyzed the conditional inten-
sity functions (�t, instantaneous firing rates) for movement-
related neurons to determine whether the timing of interactions
reflected the decision of the monkeys to move their eyes. To
observe the neuronal responses around saccades, we modeled
the intensity of these neurons from target onset to 50 ms after
the saccade. Figure 6 shows the mean intensity (�t) for the 16
movement-related neurons during the hard task (Fig. 6A) and
during the easy task (Fig. 6B). The gray curves show the mean
intensities of AR models during the 100 ms leading up to
saccades for the hard task; the black curves are the mean
intensities of AR-CR models.

FIG. 5. Example neurons of each class. A: peristimulus time histogram
(PSTH) for a visual-related neuron for the hard (gray) and easy (black) tasks
aligned to array onset. B: same for a visual-and-movement-related neuron.
C: same for a movement-related neuron. Bin size is 3 ms. Black arrowhead
denotes mean saccade reaction time during recording session for easy task;
gray arrowhead is for hard task.
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Figure 6, C and D, shows the difference between AR-CR
and AR models of mean intensities for hard trials (C) and easy
trials (D). For both hard and easy tasks, addition of CR
covariates increased �t leading up to saccades, relative to �t for
AR models. Thus interactions between neurons statistically
accounted for a significant portion of the presaccadic activity
in movement-related neurons. Figure 6, E and F, shows the
normalized mean PSTH (gray curve) and intensity function
(black curve) for hard trials (E) and easy trials (F). A compar-
ison of the intensity functions and PSTHs shows that the
AR-CR models accurately describe both the magnitude and the
dynamics of the PSTHs for the two search tasks. The intensity
functions are shifted �30 ms to the right of the PSTHs,
reflecting the integration of 30 ms of firing history into the
estimate of the intensities.

To further explore the effect of ensemble interactions on the
activity of movement-related neurons, we compared the vari-
ability of the conditional intensity functions for each search
task. The CV (SD/mean) is a measure of standardized variabil-
ity frequently used in neuroscience and may be interpreted as

a “noise-to-signal” ratio (de Ruyter van Steveninck et al. 1997;
Feng and Brown 1999; Stein and Matthews 1965; Stevens and
Zador 1998). We used the CV to measure changes in instan-
taneous firing rate of movement-related neurons that occurred
just before saccades. Decreases in the CV over time reflected
less variability (or noise) in the system.

Figure 7 shows the CV of the mean intensity function for the
movement-related neurons for the hard (gray curves) and easy
(black curves) tasks for AR-CR models (Fig. 7A) and AR
models (Fig. 7B). For both hard and easy tasks, the CV
decreased leading up to saccades in the AR-CR models until
just before saccades, at which point the CV increased. Thus
addition of CR covariates decreased standardized variability
(CV) leading up to saccades.

Remarkably, there was a clear difference between the time at
which the CV began to increase preceding saccades for hard
and easy tasks. We fit smoothing splines to each curve to
estimate the time at which each curve attained its minimum. In
the AR-CR models, the CV started increasing 28 ms before
saccades for the easy task and 7 ms for the hard task. This

FIG. 7. Coefficient of variation (CV) of intensities and PSTHs. A: gray
curve is CV of mean intensity functions for movement-related neurons during
hard task; black curve is during easy task, averaged over all trials for AR-CR
models. Dashed curves are smoothing splines used to estimate the minima of
curves. Arrowheads denote these minima. B: same for AR models. C: gray
curve is CV of mean PSTH during hard task; black curve is during easy task.

FIG. 6. Mean instantaneous firing rate of movement-related neurons before
saccade. A: black curve is mean intensity function for 16 movement-related
neurons during hard search task, averaged over all trials for AR-CR models.
Gray curve is the same for AR models. Curves are aligned to each trial’s
saccade. B: same for AR-CR models (black) and AR models (gray) for easy
task. C: difference between AR-CR and AR intensities for hard task, i.e.,
difference between black and gray curves in A. D: difference between AR-CR
and AR intensities for easy task. E: comparison of intensities and PSTHs.
Normalized mean intensity function (black curve) and PSTH (gray curve, 1-ms
bins) for hard task. F: same for easy task.
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difference suggests that the movement-related neurons re-
sponded with the least variability �20 ms earlier in the easy
task, despite the fact that we aligned intensities on saccade
times. The difference in minimum CV times between easy and
hard search was closer for AR-CR models (Fig. 7A) than for
AR models (Fig. 7B). Presumably, this was because of poorer
fits of AR models. It is important to note that, although intensities
were shifted to the right of PSTHs, the timing results in Fig. 7
compare identical measures to each other (i.e., intensity to inten-
sity and PSTH to PSTH). Thus the differences in time course of
the CV between the hard and easy tasks reflect the dynamics of
the conditional intensity functions.

We compared the results using the intensity function to a
standard model of the firing rate, the PSTH. Figure 7C shows
the CV of the PSTHs of movement-related neurons. Similar
to the results obtained from the intensity functions (Fig. 7, A and
B), the PSTH CV decreased leading up to saccades and in-
creased 5–10 ms before saccades. However, there was no
difference between time of increase for hard and easy tasks. It
is important to keep in mind that comparing changes in the
PSTH between hard and easy tasks cannot reveal the same
information as the intensity can, because the latter measures
changes in the system in the context of interacting neurons.
Thus the intensity function is a better measure of instantaneous
firing rate than the PSTH to measure time of response vari-
ability in the FEF.

D I S C U S S I O N

An outstanding problem in neuroscience is determining how
populations of neurons interact to produce behavior. We have
recorded simultaneous activity from multiple FEF neurons
while monkeys performed two versions of a visual search task,
one hard and one easy, defined by similarity between the target
and distractors.

These results indicate that easier visual search tasks are
associated with greater interactions among populations of FEF
neurons. This is seemingly counterintuitive. After all, why
should neurons interact more during a task that seemingly
requires fewer resources to solve? The average firing rates are
not significantly different between the two conditions, so there
must be a difference in the structure of the spike trains. There
are at least two potential explanations. 1) During hard tasks,
FEF neurons fire less randomly, requiring fewer interactions to
accomplish the same goals (target selection and saccade prep-
aration). 2) FEF neurons fire more randomly during hard tasks,
requiring more information from other neurons. We measured
the CV of the interspike intervals during hard and easy tasks.
We found no significant difference between the two (P �
0.255), although there was a trend toward larger CV during the
easy task. Further studies are required to determine whether
FEF neurons’ firing patterns differ between tasks.

Hanes and Schall (1996) determined that single movement-
related neurons in the FEF could reliably predict saccade
reaction time. This finding leads to the question of how
movement-related neurons integrate visual information. It is
possible that interactions between the three neuron classes in
the FEF fully predict the timing of saccades. Simultaneous
recordings from the FEF and other prefrontal areas (e.g., area
46) or parietal areas (e.g., lateral intraparietal cortex) would
address this issue. In concert with a point process analysis,

such an experiment would describe the timing of interactions
between areas and determine how neurons in other cortical
areas interact with FEF neurons to decide to move the eyes.

We propose that the timing of changes in the intensity
function of movement-related neurons reveals the time at
which networks of neurons decide to initiate a saccade. For
models that include ensemble activity, the CV decreases until
just before saccades, which coincides with the period of time
when information about the decision to saccade accumulates.
The CV is a second-order measure. As such, it reflects changes
in noise in the system. Thus it provides an estimate of the time
between the saccade decision time of FEF movement-related
neurons and execution of the saccade. Because the CV reflects
noise in the system, remarkably, this also suggests that the
noise in the system actually decreases as the firing rate of
these neurons increases leading up to saccades (until the
increase in CV just before saccades). Therefore we show not
only that movement-related neurons have activity sufficient to
trigger a saccade (Hanes and Schall 1996), but that their
presaccadic activity reflects a decrease in firing variability.

The difference in time of increase of CV between hard and
easy tasks has important implications for when the decision to
make a saccade occurs. In our experiments, the neurons spent
20 ms longer reaching their minimum in response variability in
the hard task than in the easy one. This may correspond to
earlier decision times in the easy task than in the hard one.
Therefore it seems that the decision to move the eyes is
mediated by the movement-related neurons. The larger likeli-
hood ratios for movement-related neurons versus visual-related
neurons suggest that the movement-related neurons receive
greater interactions from other FEF neurons. This agrees with
models of visual search in the FEF, which assert that projec-
tions from visual-related neurons to movement-related neurons
transform information about visual stimuli into a saccade
execution plan (Thompson et al. 1996).

How does the estimate of 20-ms difference in time of
minimum response variability correspond to differences in
saccade RT? The mean RT difference between the hard and
easy tasks was 44.3 ms. The CV during the 100 ms after target
onset did not decrease for visual-related neurons (data not
shown). This may be because of the location of presynaptic
neurons connecting with these visual-related neurons. If, as the
anatomy suggests (Schall et al. 1995b), visual-related neurons
receive synaptic connections from visually responsive neurons
in the parietal, temporal, and occipital cortices, we would not
have observed visual-related FEF neurons in the context of
those interactions. Simultaneous recording from the FEF and
cortical areas that project to the FEF would address this issue.
Such an experiment would address whether sensorimotor inte-
gration occurs in a single bottom-up volley or is the result of
continued flow of information between neurons with sensory
responses and those with motor responses (Riehle et al. 1997;
Woodman et al. 2007).

We showed that accounting for ensemble activity is a pow-
erful method of modeling the firing rate of a neuron. There are
several ways to measure activity of single neurons, however. A
continuous function best represents the firing of a neuron if it
accounts for the synaptic input to the neuron (a network
property) and approximates the instantaneous firing rate of the
neuron. The intensity function has two advantages over other
measures of neuronal firing, such as the PSTH. First, it ac-
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counts for network activity (the CR covariates) and second, it
approximates instantaneous firing rate better than the PSTH
(Truccolo et al. 2005). We have shown that using the intensity
function to describe the firing of FEF neurons reveals the
time-course of activity leading to the decision to saccade more
sensitively than the PSTH.

Although the point process model can account for a large
number of influences on a neuron’s firing, it is not a mecha-
nistic model. It cannot, therefore, distinguish between neurons
that are synaptically connected and neurons that share common
input. This limitation is shared by other common techniques
such as the covariogram and joint PSTH. A challenge for
future studies of neuronal interactions is to include knowledge
about anatomical connections and biophysical properties of
neurons in mechanistic models of networks of neurons.

We postulate that the distinction between easy and hard
tasks, as detected by our results (e.g., difference in lag between
minimum CV and saccade) is continuous, rather than dichot-
omous. Theoretically, there must exist a minimal set of neurons
that are required to complete a given visual search task and a
latest time before saccade that the decision is made. Our results
show that easier visual search tasks are associated with greater
interactions among populations of FEF neurons and may result
in earlier saccade decision times.
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Corrigendum

Volume 98, November 2007

Cohen JY, Pouget P, Woodman GF, Subraveti CR, Schall JD, Rossi AF. Difficulty of Visual
Search Modulates Neuronal Interactions and Response Variability in the Frontal Eye Field.
J Neurophysiol 98: 2580–2587, 2007. First published September 12, 2007; doi: 10.1152/
jn.00522.2007; http://jn.physiology.org/cgi/content/full/98/5/2580.

The equation in METHODS, under the subheading Behavioral task and recording, is incorrect as
shown. The corrigendum published in the February 2008 print issue also contains errors and should
be disregarded. The correct equation is:

log��t� � ��x1 � �x2� � �
i�1

Q

��ix1 � �ix2��Nt�i � �
c

�
j�1

R

�	 j
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�c�x2��Nt�j
�c�

J Neurophysiol 99: 1050, 2008.
doi:10.1152/jn.08689.2008.
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