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Potential Problems with “Well Fitting Models”

The question of model fit is obviously of central importance to researchers who analyze structural equation models. Indeed, many users would probably argue that the primary purpose of a structural equation modeling (SEM) analysis is to assess whether a specific model fits well or which of several alternative models fits best. Not surprisingly, then, the assessment of fit is arguably the single topic within the SEM domain that has attracted the greatest attention and most well-known contributions (e.g., Bentler & Bonnett, 1980; Bollen & Long, 1993; Cudeck & Henly 1991; Steiger & Lind, 1980).  Consistent with these observations, empirical SEM papers routinely include several fit indices and a lengthy discussion about fit. 

In our view, the assessment of fit is a more complex, multifaceted, and indeterminate process than is commonly acknowledged – even by relatively experienced SEM users. For this reason, while we will briefly discuss several topics that are the typical focus of papers on model fit (e.g., chi-square tests of model fit, goodness of fit indices), they are not the primary focus of the present paper. Instead, we concentrate on several problem and ambiguities that can arise even when various indices indicate that a structural equation model fits well. Thus, an overriding theme is that psychopathology researchers need to go beyond the numerical summaries provided by fit indices when evaluating the adequacy of a model or the relative adequacy of alternative models. 

We have chosen to concentrate on somewhat more subtle problems that can compromise even well-fitting models for two reasons. First, there are a number of well-written discussions of fit indices that are appropriate either for relative newcomers to SEM (e.g., Bollen, 1989; Loehlin, 1998; Maruyama, 1998; Schumaker & Lomax, 1996) or more methodologically sophisticated users (e.g., Bollen & Long, 1993; Fan, Thompson, & Wang, 1999; Hu & Bentler, 1995, 1998;  MacCallum, Browne, & Sugawara, 1996; Marsh, Balla, & Hau, 1996). In contrast, the topics on which we will focus have received less extensive treatment in introductory textbooks and appear to be less widely known to psychopathology researchers who conduct SEM analyses. Second, we conducted an informal review of all SEM papers published in the Journal of Abnormal Psychology from 1995 until the present time1. While questions could be raised about the use of fit indices in specific instances, such indices were used appropriately in the majority of cases. Overall, authors demonstrated a reasonable sensitivity to the guidelines for fit assessment available at the time that the article was published. In contrast, we were struck by the consistent tendency to ignore the issues that we will discuss in the present paper.  

We believe that the present paper will prove informative to a wide range of readers. If there is one target audience, however, it is psychopathology researchers who are not methodological specialists but are sufficiently familiar with the basics of SEM that they can specify and test models, reasonably interpret the output, and write up the results. In fact, this is likely to be a relatively broad audience at this point in time. The ready availability of user-friendly software (e.g., Arbuckle, 1999; Bentler & Wu, 2002; Jöreskog & Sörbom, 1996; Muthén & Muthén, 2001), a growing number of introductory textbooks (e.g., Kline, 1998; Maruyama, 1998), and the availability of other opportunities for rapid education (e.g., workshops) have made SEM accessible to individuals without a great deal of formal training in statistics. As Steiger (2001) has recently pointed out, one unfortunate consequence of these developments may be lack of awareness of the problems and ambiguities associated with SEM as an approach to model testing. If there is one primary goal of the present paper, it is to redress what we perceive as an imbalance by pointing out some less immediately evident pitfalls and ambiguities associated with the attempt to assess whether a structural equation model fits. 

The Basics of Fit Assessment


We begin with a brief review of the methods typically used to assess the global fit of SEM models. Our review will be highly selective and is designed to introduce newcomers to the major issues and provide necessary background for the discussion of that follows. 
Fit as the Discrepancy between Observed and Implied Matrices
The most global hypothesis tested by SEM analyses concerns the variances and covariances among the manifest (i.e., directly measured) variables included in a given model.2 According to this hypothesis, the population covariance matrix that is implied by the model equals the actual population covariance matrix (e.g., Bollen, 1989). ‘Model fit’ is thus conceptualized as the degree of correspondence between the observed and implied covariance matrices. From this perspective, a well-fitting model is one that minimizes the discrepancy between the observed and implied covariance matrices. 

In practice, we only have access to sample data.  For this reason, we fit models to the sample covariance matrix (S). Using numerical algorithms, parameter estimates will be generated that will produce a sample estimate of the implied covariance matrix that does indeed minimize its discrepancy relative to the sample covariance matrix. However, the estimates yielded also have to adhere to the constraints or restrictions on the variances and covariances that are implied by the model. For this reason, even apart from the effects of sampling error, corresponding elements of the observed and implied covariance matrices may not be identical. Indeed, in practice, such perfect correspondence is highly unlikely. In such cases, values of discrepancy functions are greater than 0. 
As an example of model-implied restrictions, consider the three-variable causal-chain model depicted in the top panel of Figure 1 and denoted Model 1A. This model specifies that X has a direct effect on Y and that Y has a direct effect on Z. Most importantly, this model specifies that X has no direct effect on Z as indicated by the absence of a directed arrow from X to Z. That is, its effect on Z is wholly indirect and mediated by Y.  It can be shown (e.g., Bollen, 1989) that this model imposes the following restriction on the covariances and variances among the variables. 
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Any set of parameter estimates (e.g., coefficients estimating the direct effects noted above) for this model will generate an implied covariance matrix with elements that respect the constraint implied by equation 13. If the model fit the observed data perfectly (i.e., if the estimate of the direct effect of X on Z were truly 0), then the implied and observed matrices would be identical. In practice, this is very unlikely for two reasons. First, it is very unlikely that the effect of X on Z is precisely 0 in the population. This is an example of a model misspecification. Second, sampling error would likely produce a non-zero estimate in a given sample even if model were correct at the population level. Because of both effects, the discrepancy function value will be greater than 0. 
-----------------------------------

Insert Figure 1 about Here

------------------------------------

Model 1A is an example of an over-identified causal model that imposes restrictions on the implied covariance matrix. Over-identified measurement models that specify relations between observable indicators and latent factors also introduce restrictions on the observed covariance matrix. Just-identified or saturated models represent a different case in which perfect correspondence between the observed and implied matrix is guaranteed in advance. An example of a just-identifed model is Model 1B, which posits an additional direct effect of X on Z. If we were to fit this model to a set of data, we would always find that it fits perfectly (i.e., the observed and implied matrices are identical). 

Hypothesis-Testing: Likelihood Ratio Tests

As noted above, when sample data are analyzed, a value of the discrepancy function that is greater than 0 does not automatically imply model mis-specification. This value could also conceivably be due to sampling error. To make decisions concerning which of these two alternatives is more plausible, hypothesis testing procedures can be used. The most common statistical test of a given SEM model is what has been termed the chi-square test of “exact fit” (e.g., MacCallum et al., 1996). The null hypothesis is that the model specified holds exactly in the population and, thus, can account completely for actual values of the population covariance matrix among the observed variables. If the observed chi-square value is greater than the critical chi-square value, then the null hypothesis that the model fits exactly in the population is rejected. Let us emphasize that what the chi-square test is actually testing are the model-imposed over-identifying restrictions on the covariance matrix. 

The chi-square test of exact fit can be derived as a likelihood ratio (LR) test (e.g., Buse, 1982; Eliason, 1993) that compares two models: the model of interest and a just-identified (saturated) model that fits perfectly (e.g., Bollen, 1989; Hayduk, 1987).  Likelihood ratio chi-sqaure tests can also be used to test the relative fit of any two models as long as one is a more restricted version of the other; that is, the restricted model represents a version of the unrestricted model with specific free parameters either fixed or otherwise constrained (e.g., to be equal to other parameters).  
The chi-square test of exact fit has several well-recognized constraints and limitations. Its validity depends on whether several assumptions have been met, including multivariate normality of the observed variables, the analysis of covariance rather than correlation matrices, independence of observations across experimental participants, random sampling from the population of interest, and the absence of selective attrition and other biases that would render missing data non-ignorable. In addition, it is assumed that sample sizes are sufficiently large to justify the use of statistical procedures based on asymptotic statistical theory. Although space constraints preclude a discussion of these issues (see citations directly above), our review of SEM papers published in this journal indicated a greater need to attend to these assumptions and, in some cases (e.g., violations of multivariate normality), to consider alternatives to the standard chi-square tests when they are violated. For example, users rarely address the multivariate normality assumption and often analyze correlation rather than covariance matrices without any comment about possible effects on the results yielded. 

Several additional limitations of the chi-square test have also been noted. For example, from an interpretive standpoint, it is primarily a “badness of fit” measure that facilitates dichotomous yes/no decisions but provides less useful information about degree of fit (e.g., Jöreskog, 1983).   A second issue is that of sample size. When sample sizes are small (e.g., < 100), in addition to the asymptotic approximation issues noted above the test of exact fit may not have sufficient power to reject models with rather significant misspecifications.  Conversely, when sample sizes are sufficiently large, even trivial mis-specifications might be sufficient to warrant rejection of a model. 

An additional criticism of this test is that it simply tests the wrong hypothesis. As noted above, this statistic is used to test the hypothesis that the model specified fits exactly in the population. As many commentators have noted, however, structural models are typically only approximations to reality (e.g., Browne & Cudeck, 1993; Cudeck & Henley, 1991; Jöreskog , 1978; MacCallum, 1995; MacCallum & Austin, 2000; Meehl & Waller, in press). That is, the models specified, estimated, and tested by researchers typically are over-simplified, incomplete, or otherwise inaccurate representations of the correct measurement and/or causal structure that accounts for the variances and covariances among a set of observed variables. For this reason, a test of the exact fit of a model generally imposes an overly stringent and unrealistic criterion for evaluating the adequacy of a model.
Alternative Measures of Fit
Because of dissatisfaction with the chi-square test of exact fit, a number of alternative measures of fit have been developed. One approach is to test a different global null hypothesis, one that is less stringent and more realistic. With this goal in mind, Browne and Cudeck (1993) and MacCallum et al. (1996) have proposed two alternative statistical tests of model fit. The test of close fit tests the hypothesis that the specified model closely fits the observed data while the test of not-close fit tests the hypothesis that the model fails to closely fit the observed data. Due to space constraints, a detailed exposition of the conceptual and mathemetical underpinnings of these tests is beyond the scope of this paper (see, e.g., the accessible description provided by MacCallum et al., 1996). We should note, however, that while such tests would appear highly appropriate for the types of models tested by psychopathologists, they are rarely reported in empirical SEM papers published in this journal. 
A more familiar approach that is commonly used by psychopathologists and many other applied researchers is to use goodness of fit indices (sometimes referred to as “adjunct fit indices” or simply “fit indices”) as measures of the global fit of a model. Goodness of fit measures are analogous to measures of effect size or measures of association used in other statistical contexts. In theory, such measures address several limitations of the chi-square test of exact fit. For example, goodness of fit measures allow a model to evaluate on a continuum that indicates degree of fit. In addition, the expected values of such measures are less affected by sample size than the chi-square test (but see discussion below). For both reasons, goodness of fit measures can indicate good fit for models that are rejected by the chi-square test of exact fit. Not surprisingly, then, psychopathology and other applied researchers commonly use goodness of fit indices as the primary basis for their judgments concerning model fit. 

Although further subdivisions are possible and relevant, one can subdivide fit indices into two superordinate categories: absolute and incremental. Absolute fit indices assess how well a model reproduces the sample data. Examples of absolute fit indices are the goodness of fit index (GFI), the root mean squared error of approximation (RMSEA), and the standardized root-mean-square residual (SRMR). Incremental fit indices assess the proportionate improvement in fit afforded by the target model relative to a more restricted baseline model. In practice, the latter is typically an “independence model” estimating the variances of the observed variables but specifying that the covariances are 0. Example of incremental fit indices are the normed fit index (NFI), non-normed fit index or Tucker-Lewis index (NNFI or TLI), and Comparative Fit Index (CFI). 
There are a number of helpful papers that summarize the major issues raised by goodness of fit indices and present guidelines and recommendations for their use. Because they are not the primary focus of the present paper, we will simply note two or three salient issues that are most relevant to the discussion below. First, although fit indices are often contrasted with the chi-square test of fit, they reflect the same core conception of model fit: the degree of discrepancy between the model-implied covariance matrix and the observed covariance matrix. Thus, they are also testing model-implied restrictions. When such restrictions perfectly fit the observed data, all fit indices accordingly reach their optimal values. We should note, however, that most fit indices are also affected by factors other than the discrepancy between the observed and implied matrices (i.e., the degree of model misspecification). For example, several indices reward parsimony (i.e., fewer parameters estimated) and the values of incremental fit indices are affected by the fit of the independence model that serves as a comparison point. 
Unfortunately, fit indices also have several ambiguities and limitations. The default output of several programs, such as SAS PROC CALIS (SAS Institute, 2000), AMOS (Arbuckle & Wothke, 1999), and LISREL (Jöreskog, & Sorbom, 1996), includes between 15 and 20 fit indices. The variety of indices available can make it difficult for researchers to select a core subset to use for model evaluation. In addition, readers may often be unclear about the relative sensitivity and overall strengths and weaknesses of different measures. These problems are magnified when the values of different indices suggest inconsistent conclusions about model fit. When reviewing SEM papers published in the Journal of Abnormal Psychology, we were struck by the general brevity of the discussion about the specific goodness of fit measures used in a given study. We strongly recommend that authors offer a more explicit rationale for the specific measures used in a given context and explain to readers what dimensions of fit (see discussion below) such measures are and are not sensitive to. 

In addition, the majority of fit indices are ad hoc measures with unknown distributional properties. This limitation prevents formation of confidence intervals and hypothesis testing by conventional means (for exceptions, see e.g., MacCallum et al., 1996). Fit indices can also be affected by several unwanted factors other than those originally intended.  For example, recent simulation studies have shown that the expected values of fit indices are affected by sample size, estimation method (e.g., maximum likelihood vs. generalized least squares), and distributional properties of the data. More generally, it is important for users to recognize that, while a number of simulation studies have assessed the performance of fit indices when models are correctly specified, a much smaller proportion have assessed the ability to detect model misspecifications. The results of several more recent studies that have addressed this issue indicate that: (1) some of the most commonly used fit indices are less sensitive to degree of misspecification than one would like; and, (2) the “rules of thumb” commonly used to indicate good fit (e.g., a value of an incremental fit index > .90) are often inaccurate. For all these reasons, it is important for SEM users to be aware of the current evidence and recommendations concerning the use of fit indices. 
Potential Problems with “Well Fitting” Models 
Although both statistical tests of model fit and goodness of fit indices have the limitations noted above, such measures are clearly the major influence on researcher’s decisions about the adequacy of a model. It is critically important, however, that researchers not rely solely on global measures of fit when evaluating models. Let us assume a best-case scenario: a model fits very well according to a variety of indices. The critical message of the present paper is that even under such seemingly ideal conditions,  there can be significant problems or ambiguities. Indeed, our review of SEM papers published in the Journal of Abnormal Psychology indicated that the single most notable shortcoming was the failure of authors to demonstrate recognition of this general point. Below, we provide several examples of the limitations and uncertainties that can arise even when models fit well.  

My Model Fits Well – and So Do 10,000 Others: The Problem of Equivalent Models


From an interpretive standpoint, no statistical test or descriptive fit index can prove that a model is the correct representation of the underlying covariance structure. At most, one can conclude that a well-fitting model is one plausible representation of the underlying structure from a larger pool of plausible models. This more cautious conclusion is necessary because there often are a large number of alternative models that would fit the observed data equally well or better. 

Equivalent models are a salient example of this point (e.g., Breckler, 1990; Hershberger, 1994; Lee & Hershberger, 1991; MacCallum, Wegener, Uchino, & Fabrigar, 1993; Raykov, 1999; Stelzl, 1986).  Consider two alternative models, denoted
[image: image2.wmf]12

 and 

MM

, each of which is associated with a set of estimated parameters 
[image: image3.wmf]( and )

12

θθ

))

 when a given sample covariance matrix (
[image: image4.wmf]S

) is analyzed. These two models are equivalent if their implied covariance matrices are identical across all possible sample covariance matrices. That is, 
[image: image5.wmf]12

 and 

MM

are equivalent if 
[image: image6.wmf]12

=

Σ(θ)Σ(θ)

))

))

 for any S. The implied covariance matrices are always identical because equivalent models impose the same restrictions on variances and covariances. Note that if the implied covariance matrices are equivalent, the values of the discrepancy function will also be identical. In turn, the values of statistical tests of overall fit (e.g., test of exact fit, test of close fit) and goodness of fit indices will also be identical. 1

Some relatively simple examples of equivalent models help concretize and extend the aforementioned points. Figure 4 presents three equivalent causal models. Note first that these models depict very different theories of the causal relations among the three variables of interest (X, Y, and Z). Model 4A, which is the three-variable causal model that we have used in previous examples (see Figure 2) specifies a causal chain according to which X causes Y and Y causes Z. Model 4B specifies precisely the reverse causal sequence, with Z serving as a distal cause and Y as a proximal cause of X. Model 4C is a still different representation of the causal structure, as it specifies that Y serves as a common cause of both X and Z.  Despite these very different representations of the causal structure, all three models will yield the identical implied covariance matrices, discrepancy function values, and measures of overall fit. Interested readers can verify this by testing the fit of each of each model using several different sample covariance matrices. The reason these models are equivalent is that they impose the same restriction on the implied covariance matrix that is presented in equation 2 above. If variables were standardized, this constraint could be expressed in the following manner: 
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The left-hand side of (1) is the numerator of the partial correlation between X and Z adjusting for Y. Thus, all three models imply that the value of this partial correlation is 0.   Equivalent models commonly impose the same partial correlational constraints (e.g., Hershberger, 1994). 

------------------------------------

Insert Figure 4 About Here

------------------------------------

Measurement models can also be equivalent (e.g., Hershberger, 1994). Figure 5 shows three factor-analytic models (for related examples, see Hershberger, 1994, Figure 3.5a. and 3.5b) that are equivalent because they impose the same restriction on the implied covariance matrix: 
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Despite the fact that these models are equivalent, they have very different substantive implications. For example, via the inclusion of a correlated error term, Model 5A specifies that X1 and X2 have an additional source of common influence in addition to the factor of interest. This pattern could model a situation in which, for example, X1 and X2 share method as well as trait variance. In contrast, Model 5B specifies that X3 and X4, not X1 and X2, share an additional source of common influence. In contrast to both models, Model 5C specifies a two-factor structure. In addition, the estimated value of a given parameter and related quantities (e.g., the proportion of the variance of an observed variable accounted for by the factor) may vary significantly across equivalent models. Thus, equivalent fit does not imply equivalent theoretical implications or model components.  Hershberger (1994) provides additional examples of equivalent measurement models.  

----------------------------------

Insert Figure 5 About Here

--------------------------------

More complex models that specify both measurement relations between observed and latent variables and causal relations among the latent variables are typically associated with a large number of equivalent models. For example, Figure 6 shows two equivalent versions of Trull’s model shown in Figure 1. In each case, we have held constant the measurement component of Trull’s model and varied only the structural component of the model. For this reason, we have omitted the measurement component in Figure 6.  As we will discuss  in greater detail below (see section on parsing composite models), if we hold constant the measurement component of a composite model, two alternative specifications of the structural component that yield equivalent path models will yield equivalent fit when the composite models as a whole are tested.   

----------------------------------

Insert Figure 6 about Here

---------------------------------

Both Models 6A and 6B will yield measures of fit that are identical to the original model specified and tested by Trull. Note, however, how the specifications of these two models have important substantive differences from the original model. For example, Model 6A specifies that abuse is not simply correlated with parental disinhibitory disorders and parental mood disorders but is caused by these factors. This alternative specification will be associated with corresponding empirical differences. For example, because Model 6A specifies that Abuse mediates the effects of parental disinhibitory and mood disorders on the remaining endogenous constructs, estimates of the indirect effects of the parental variables will change accordingly.

In addition, while Trull’s original model specifies that trait disinhibition and trait negative affectivity are temperamental constructs that cause borderline features, Model 6A specifies a hierarchical arrangement, with borderline features as a higher-order factor on which the lower-order factors of trait disinhibition and trait negative affectivity load. This latter specification appears plausible for two reasons. First, Trull’s design does not establish temporal priority because the observable indicators of all three constructs were assessed concurrently and assess longer-term, stable patterns of behavior. Second, features that reflect both the disinhibition (e.g., impulsivity) and negative affectivity (e.g., anger, dysphoria) constructs constitute some of the diagnostic criteria for borderline personality disorder (American Psychiatric Association, 1994).  Thus, trait disinhibition and trait negative affectivity can reasonably be considered indicators of a higher-order borderline construct. More generally, as this example would indicate, there are likely a number of instances in which a given psychological variable or construct (e.g., hopelessness) can conceivably be both a symptom (i.e., indicator) of a disorder (e.g., depression) and a prodromal cause of that disorder. Different structural models that reflect these alternative perspectives are particularly likely to be equivalent. For further elaboration of this point, see Hershberger’s (1994) discussion of the reversed indicator rule for equivalent models. 
While Model 6A appears to be a plausible alternative to the model originally specified by Trull, Model 6B appears less plausible. It specifies that trait disinhibition, trait negative affectivity, and borderline features in young adults cause disinhibitory and mood disorders in their parents. Although one could conceivably argue that retrospective memory biases could produce such an effect (e.g., individuals with borderline features are more likely to demonstrate biased recall of prior episodes of abuse), such a result reflects more of a methodological limitation linked to retrospective assessments than a plausible etiological theory or causal model. This example highlights two important points. First, not all equivalent models are equally plausible. Second, design features can influence the relative plausibility of an equivalent model (e.g., MacCalllum et al., 1993). For example, Model 6B would be even more implausible in the context of a prospective longitudinal design that did not rely on retrospective assessments of childhood experiences. 
Several rules have been derived for generating equivalent models (e.g., for reviews, see Hershberger, 1994; Lee & Hershberger, 1991; MacCallum et al., 1993; Raykov & Penev, 1999; Spirtes, Glymour, & Scheines, 1993; Stelzl, 1986; Verma & Pearl, 1991). Using such heuristics, researchers can identify in advance models that are equivalent to a target model. For example, the structural component of Trull’s model is just-identified or saturated. All possible pairings among the six variables are connected by a directed path, a covariance among the variables, or a covariance among the residuals of the variables. In the terminology coined by Lee and Hershberger (1991), the structural component of Trull’s model is a saturated preceding block (see also Hershberger, 1994, MacCallum et al., 1993). In these cases, equivalent models can be generated simply by changing the block into any other just-identified block. By these means, for example, a directed path between two endogenous variables (
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), with the restriction in the latter case that the two paths be equated. Such changes represent a specific instantiation of the replacing rule for equivalent models that has been derived by Lee and Hershberger (1991; see also Hershberger, 1994) and is broadly applicable to both saturated and non-saturated (i.e., over-identified) blocks. We should emphasize, however, that the rules that have been derived to date represent sufficient but not necessary conditions for the existence of equivalent models (Raykov and Penev , 1999). 

As a general rule, the larger the saturated blocks in a given model, the greater the number of equivalent models. For example, MacCallum et al. (1993) calculated that saturated blocks with four, five, and six latent variables have at least 81, 1,130, and 33,925 equivalent models, respectively. These figures actually represent a lower bound because not all operations that can be used to derive equivalent models were used in the calculations. In general, models with fewer restrictions have a larger number of equivalent models (Hershberger, 1994). Thus, while often implausible, highly restricted (i.e., parsimonious) models do have the virtue of imposing greater limits on the number of equivalent models. 

Although most of the SEM models specified and tested by applied researchers have equivalent models -- and often a large number of them (e.g., MacCallum et al.1993) -- they are rarely acknowledged by applied researchers (Breckler, 1990; MacCallum et al., 1993) and, in some cases, or not even mentioned in introductory textbooks (Steiger, 2001).  For example, MacCallum et al. (1993) reviewed 53 published applications of SEM between 1988 and 1991. Nineteen of these appeared in the Journal of Abnormal Psychology. Although 74% of the published models had at least one equivalent alternative, there were no cases in which authors explicitly acknowledged the existence of an equivalent model. Our review of the papers published in this journal from 1995 until the present was consistent with this finding. We are able to find only one case – Trull’s (2001) paper -- in which an author explicitly noted that the target model under consideration had equivalent models. 
We recommend strongly that: (1) psychopathology researchers attempt to generate plausible models that are equivalent to the target model under consideration before the actual study is conducted (e.g., Hershberger, 1994); and, (2) acknowledge explicitly the existence of plausible equivalent models when reporting and discussing results. In practice, the generation of a large number of equivalent causal models can be time-consuming and challenging. However, in our experience, the rules that have been generated for equivalent models and plausibility constraints allow for relatively rapid generation of at least a subset of plausible equivalent models. The TETRAD software program can also be used for automated generation of equivalent models (Scheines, Spirtes,  Glymour, &  Meek, 1994). 

As noted above, even though equivalent models will always yield identical measures of fit, they are not necessarily equally plausible from a theoretical perspective. MacCallum et al. (1993) have discussed several design features that can further limit the number of plausible equivalent models. For example, when independent variables are experimentally manipulated, equivalent models in which such variables receive directed influences from other variables are generally not meaningful. Similarly, in longitudinal contexts, directed causal paths from later to earlier time points are not meaningful. 
One can also potentially differentiate equivalent models on the basis of features of the results other than model fit. For example, it is possible for some equivalent alternatives to have inadmissible estimates (e.g., negative variance estimates or other out of range values; see, e.g., Chen, Bollen, Paxton, Curran, & Kirby, 2001; Dillon, Kumar, & Mulani, 1987) or admissible estimates the sign or magnitude of which appear implausible. Typically, however, at least some equivalent models – and often many – will remain even after these criteria are used to eliminate alternatives. In these cases, the most reasonable approach for researchers is to: (1) inform readers about the most plausible alternatives to a target model; and, (2) conduct future studies (e.g., experimental studies, longitudinal studies) explicitly designed to discriminate the relevant alternatives. 

Alternative (but not Necessarily Equivalent) Models

In addition to equivalent models, there are typically a variety of alternative but not necessarily equivalent models that could conceivably fit as well or better than the target model. Even if we limit consideration to those observable and latent variables originally specified in the target model, to relatively small changes in model specifications (e.g., adding, deleting, or reversing one or two paths), and to models that could receive at least some theoretical justification, there typically are an extremely large number of alternative possibilities for the types of models that psychopathologists specify and test.

Most published applications of SEM in this and other journal include at least one comparison of alternative models. In the overwhelming majority of these cases, nested models are compared. That is, the comparison is between a more restricted and more general model, with the former fixing or otherwise constraining parameters that are free in the latter. As noted above, nested comparisons are often of critical importance in testing whether specific parameters (e.g., direct effects of specified causes) are necessary to account for the observed covariances. As we will elaborate below (see section on parsing composite models), nested tests are particularly meaningful when complex latent variable models are being tested. In such cases, one can often propose a sequence of nested tests across several hierarchically arranged models that progressively differ in the number of restrictions imposed (e.g., Anderson & Gerbing, 1988). 

Although nested tests are clearly valuable, they comprise only a small subset of the possible comparisons between the target model and alternative models. For example, nested tests do not allow for comparisons between the target model and qualitatively different models that are equally complex and specify clearly different structural representations of the data (MacCallum & Austin, 2000). The number of possible comparisons of this sort is staggering, even if we allow for the fact that not all of the possibilities will be estimable or theoretically plausible. 
The important point here is simply that researchers typically only evaluate the relative merits of a small subset of the relevant, plausible alternatives to a target model. As we will note below when discussing post-hoc model modifications, we do not recommend purely empirical attempts to modify a target model until it fits optimally unless explicit attempts are made to cross-validate the final solution obtained. In addition, while software is available to generate tests of a large number of alternative models (e.g., Glymour, Scheines, Spirtes, & Kelly, 1987; Spirtes, Scheines, & Glymour, 1990), such procedures are more properly used for hypothesis generation rather than hypothesis testing. 

Meehl and Waller (in press; Waller & Meehl, in press) have, however, recently proposed a new approach that uses comparisons to a potentially large set of alternative models as a means for testing the verisimilitude of a given target model. Although space constraints preclude an extensive discussion, the core features of their approach is a comparison of the fit of a target path model (D*) to corrupted alternatives formed by following a “delete 1-add 1” rule. That is, a path is deleted from D* and an identified path is added. Parameter estimates for a given model are generated using a subset of the available correlations that yield a just-identified solution. The fit of the model is evaluated using a root mean squared residual index (
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) that assesses the discrepancy between the observed and model-implied correlations. This index is computed only on those correlations ignored when parameter estimates were generated. This basic procedure is followed for the target model and all alternatives formed using the delete 1-add 1 rule. In the final step, the obtained 
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 value for the target model relative to all models tested. For example, evidence that the 
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value for the target model was smaller than 99% of the alternatives would strongly corroborate the underlying theory that generated the target model. Note also that while the Meehl-Waller approach has several features in common with more traditional approaches to path-analytic models (e.g., the comparison of observed and model-implied matrices), there is a critical distinctive feature: the evaluation of a model by comparing it to a large number of closely related competing alternatives.2 

The Detection of Omitted Variables


Our discussion of equivalent and other alternative models in the two previous sections has considered only those cases in which the target model and all alternatives have the same fixed set of observable variables. That is, we have focused only on alternatives to the target model that add or subtract paths or other free parameters but do not add or subtract observed variables. As noted in a previous section, omitted variables constitute a major category of model mis-specification. Fortunately, in many cases fit indices are sensitive to omitted variables because such omissions contribute to discrepancies between the observed and implied covariance matrices. However, fit indices are certainly not sensitive to all omitted variable structures. Thus, in some cases, a model can fit perfectly but still omit key variables implicated in the causal structure.

An obvious example is that of just-identified (i.e., saturated) models. Saturated models fit perfectly. A classic multiple regression model in which a given dependent variable is regressed on a set of correlated predictors is an example of a saturated structural model. However, it is highly likely that any given regression model excludes important predictors that are likely correlated with at least some of the other predictors in the equation. It is well known that the failure to include such predictors will produce biases in regression coefficients and inaccurate estimates of standard errors (e.g., Draper & Smith, 1998; Reichardt & Gollob, 1986). Because the regression model will always fit perfectly, however, such inaccuracies will not be detected by fit indices.


There are also cases of over-identified models in which fit indices will demonstrate a general lack of sensitivity to omitted variables. For example, consider again the casual models depicted in Figure 2. Assume again that the researcher is interested in testing Model 2A (causal chain) but that Model 2C is the correct model that includes an additional exogenous variable (denoted Q). Let us further assume that the researcher has not measured Q. As discussed above, if in fact Model 2C  is the correct model in the population but Model 2A is tested, the over-identifying restriction associated with Model 2A (see equation 2) will be violated. If we assume adequate power (see discussion below), Model 2A will thus usually be rejected by the test of exact fit and goodness of fit indices will be less favorable.

The over-identifying restrictions linked to Model 2A will not, however, be inconsistent with all alternative models that include Q. Consider, for example, Model 2D which posits a direct path from Q to Y but no direct path from Q to Z.  If Model 2D was the correct model in the population but we tested Model 2A, we would find that the latter perfectly fit the population covariance matrix among the X, Y, and Z variables. The reason is that: (1) the over-identifying restriction of Model 2A (noted in equation 2 above) is identical to one of the two over-identifying restrictions of Model 2D; and, (2) the other over-identifying restriction of Model 2D includes terms involving Q. Because, however, Q is not included in Model 2A, this restriction cannot be tested by that model.  Thus, Model 2A passes the only test of a restriction that can be conducted. Although space constraints preclude a more formal analysis, another perspective on what has happened here is that the coefficient (a) for the causal path from X to Y in Model A1 has “absorbed” the missing parameters (the covariance between X and Q and the path from Q to Y) linked to the X-Q-Y circuit in Model A4. Such absorption effects are particularly likely when omitted variables have relatively localized effects that occur in saturated blocks (in this example, the X-Q-Ylock).   Again, the important point raised by this example is as follows: a model can fit perfectly yet still omit important variables implicated in the causal structure. 

The Importance of Power

In the sections above, we have discussed several types of misspecifications that can occur even in models that fit well according to the inferential and descriptive indices of global fit commonly used by researchers. We have emphasized cases in which the central issue is not whether the researcher has sufficient statistical power to detect model misspecifications.  In most cases, however, power will be a prime determinant of the sensitivity of statistical tests to misspecifications Thus, one reason why researchers need to be cautious even when statistical tests indicate good fit is that the results of such tests are highly dependent on their power to detect specific misspecifications. Indeed, it has been argued that it is effectively impossible to interpret the results of inferential tests of fit without considering their power to detect alternative models (e.g., Kaplan, 1990, 1995; Saris, Satorra, & Sörbom, 1987).   
For these and additional reasons noted below, it is important for researchers to be aware of factors that influence the power of SEM analyses. Unfortunately, in our experience, even users who are familiar with power in other statistical contexts are unfamiliar with the factors that affect the power of SEM models and procedures that can be used to estimate power. In addition, power is a topic that is often relatively neglected in introductory textbooks on SEM. Due to space constraints, we can only discuss some of the most salient issues that users should bear in mind (for more extended discussions, see e.g., Kaplan, 1990, 1995; MacCallum et al., 1996; Matsueda, & Bielby, 1986; Muthén, & Curran, 1997; Raykov & Penev, 1998; Saris & Satorra, 1988, 1993;  Saris, Satorra, & Sörbom, 1987). 

As in other statistical contexts, power in SEM denotes the probability of rejecting an incorrect null hypothesis. In addition, the estimation of power requires specification of an alternative model that is assumed to be correct. The alternative models typically considered in SEM power analyses relax one or more restrictions that are imposed by the hypothesized model of interest. Thus, power is typically operationalized as the probability of detecting false restrictions imposed by a model. An example of a false restriction is a coefficient that is fixed at 0 but in actuality is not 0 in the population. 

It is important to bear in mind that SEM models are more complex than the models used in many other statistical contexts. As a result, there are typically a much greater number of alternative models that are reasonably plausible. For example, consider Model 7A in Figure 7 that depicts a latent variable version of the causal-chain model (Model 2A) depicted in Figure 2. There are a wide variety of restrictions that could be incorrect and a very large number of possible combinations of incorrect restrictions. For example, among the fixed 0” restrictions that could be incorrect are the direct path from LX to LZ, the loading of 
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In addition, researchers should bear in mind that power often has a different relation to theoretical hypotheses in SEM relative to other statistical contexts. As noted above, in other contexts, the researcher’s theoretical hypothesis is commonly aligned with the statistical alternative hypothesis rather than the statistical null hypothesis. Thus, power is essentially the probability of corroborating the researcher’s theory-based hypothesis. In contrast, in SEM, the theoretical hypothesis is often aligned with the null hypothesis that is being tested, rather than the alternative. That is, the models that are directly tested are often those that are actually specified by the researcher’s theory. In such cases, high power may psychologically represent a form of “bad news” because it denotes the probability of refuting the theoretically driven prediction. We suspect that this is one reason why authors of empirical SEM papers are generally silent about the issue of power. 
When power is discussed in SEM papers in this and other journals, the singular focus is typically the well-known effects of sample size on the power of the test of exact fit to reject misspecified models. Indeed, this “sample size effect” is typically the major explanation given for the rejection of a model by the test of exact fit and the decision to give greater weight to goodness of fit indices in model evaluation. However, in two respects, statistical power in SEM is a much more complex and multifaceted issue than this conclusion would imply.   
First, power is relevant beyond the test of exact fit. For example, as demonstrated by MacCallum et al. (1996) in an important contribution, one can also compute the power of the tests of close fit and not-close fit against specific alternatives.  In addition, using any one of several approaches, one can compute the power of nested chi-square tests (e.g., Kaplan, 1995; Raykov & Penev, 1998; Saris et al., 1987) to detect specific model restrictions. Despite the fact that authors regularly acknowledge the effects of sample size on the test of exact fit, they only rarely address the sample size effect on nested tests of fit. This omission is surprising because increases in sample size are associated with increased power to reject model-implied restrictions in both cases. 
Second, there are a variety of factors that influence power beyond sample size alone. Consistent with power analyses conducted in other contexts, it should not be surprising that the magnitude of the difference between the value of a parameter specified under the null and alternative hypotheses generally has a significant effect on power. All else being equal, the greater the deviation of the true value of a parameter from the specified value (most commonly 0), the greater is the power to detect the mis-specification.  There are, however, additional factors that influence power that may be less immediately intuitive. One factor is the specific location of a given misspecified parameter in the model. There is ample evidence that the likelihood ratio test has unequal power for misspecifications of the same size that occur in different places in a model (Saris & Satorra, 1988; Saris et al., 1987; Kaplan, 1989c, 1995). Consider, for example, a two-factor model similar to Model 5C depicted in Figure 5. Saris et al. (1987; see also Saris & Satorra, 1988) compared the power of the test of exact fit to detect three different types of misspecifications that could occur in a two-factor model: a truly non-zero factor loading that is incorrectly fixed at 0, non-zero within-factor correlated errors that are fixed at 0, and non-zero across-factor correlated errors that are fixed at 0. Even when the magnitude of the misspecification was the same in all three cases, the power of the test of exact fit often varied dramatically. Thus, measures of fit are differentially sensitive to different types of specification errors.  As Saris et al. (1987) noted: 
If the model is not rejected, it does not mean that the specification errors in the model are small. We can only conclude that the specification errors for the parameters for which the test is sensitive are small. For other parameters, large deviations are still possible. Similarly, if the model is rejected, we cannot say that that it necessarily contains large misspecification errors. It is also possible that small deviations exist for parameters for which the test is very sensitive (p. 113).
Other contextual features of a model also have a significant influence on power. All else being equal, power generally increases with increases in the reliability of the observed variables (defined as the proportion of their variance attributable to the latent constructs on which they load), increases in the number of indicators per latent variable, and increases in the number of degrees of freedom (an indication of the number of restrictions imposed by a model) (Kaplan, 1990, 1995; MacCallum et al., 1996; Matsueda, & Bielby, 1986; Saris & Satorra, 1988, 1993;  Saris, Satorra, & Sörbom, 1987).  Various design features of a study can also influence power. For example, in longitudinal contexts, the number of time points assessed can have a significant impact on the power to detect misspecifications in patterns of change over time (Mandys, Dolan, & Molenaar, 1994;   Raykov, 2000). 
To demonstrate concretely the effects of some of these factors, let us assume that the researcher is interested in testing Model 7A depicted in Figure 7 but that Model 7B is actually the correct model in the population.  Notice that Model 7B includes a direct effect from the LX to LZ variable that is omitted (i.e., fixed at 0) in model 7A. Thus, Model 7A specifies that the effects of LX on LZ are wholly indirect and mediated by LY. The restriction that the direct effect from LX to LZ equals 0 represents the target misspecification in model 7A. Recognize that, in practice, an over-identified model will typically have more than one misspecified restriction. We have denoted the path from LX to LZ as ‘c’ in Model 7B because our initial power computations assessed the effects of variations in its “true” value. For our initial set of calculations, we fixed all other parameters in Model 7B to specific values that were held constant across our initial set of power calculations (e.g., all factor loadings were fixed at .7).  One commonly used approach to SEM power calculations requires as a first step such a completely specified alternative model that is assumed to be the correct representation of the underlying structure in the population (for reviews, see Bollen, 1989; Loehlin, 1998; Saris & Satorra, 1988; Saris, Satorra, & Sörbom, 1987). 

Using this approach, and fixing the Type 1 error rate at
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, we estimated the power of both the test of exact fit for Model 7A and the power of a nested 
[image: image23.wmf]2

c

 test (df = 1) that compared the more restricted model depicted in Figure 7A to a less restricted model in which coefficient c was freely estimated.  We report only the results of the nested test below. Because we specified that parameter c is in fact non-zero in the population (i.e., Model 7B is the correct model), the power of the nested test is precisely the probability of correctly rejecting this restriction, that is, of obtaining an observed 
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value for the nested test greater than the critical value of 3.84.   

Figure 8 shows the effects on estimated power of variations in sample size and of specific values of parameter c consistent with the less restricted, alternative model.  Each power curve depicted shows the effects of variations in sample size (ranging from 100 to 1000) on power for one of 6 possible “true” values of parameter c (ranging from  .05 to .3). As indicated by this figure, increases in sample size are associated with increased power to reject the restriction that c = 0.  In addition, for a given sample size, increases in the true value of c that are more disparate from the hypothesized null value of 0 are associated with increased power. Thus, the greater the misspecification, the greater is the power to detect it.  Note also that the sample sizes required for desired levels of power (e.g., .80) depend greatly on the size of the misspecified parameter: larger sample sizes are necessary to detect smaller misspecifications. Finally, note that when misspecifications are quite small, even sample sizes that are much larger than those typically used in practice (e.g., N = 1000) can be associated with very low power. 

_________________________

Insert Figure 8 About Here

________________________

In a separate set of calculations, we estimated the effects of the reliability of observable indicators and number of indicators on the estimated power of the same nested
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test. We held constant the correct population value of parameter c at.20 and varied the magnitude of the factor loadings (.5, .7, or .9) in the population, the number of indicators per factor (2 or 4), and sample size. Because the variances of all observed variables were fixed at 1, increases in the factor loadings are associated with corresponding increases in reliability, defined as the proportion of the variance of observed values accounted for by the latent constructs. As indicated by Figure 9, increases in the factor loadings have a significant impact on the power of the nested test of parameter c. For example, when sample sizes are 300 and there are four indicators per factor, the power values are for the .5, .7, and .9 loading conditions are 26, .66, and .94, respectively. Similarly, Figure 9 shows that four-indicator models have greater power than two-indicator models. In this regard, note that the parameter being tested by the nested 
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test is a structural parameter (path coefficient between latent constructs) and not a component of the measurement portion of the model. Despite this fact, these two variations in the measurement component of the model significantly influence the power of the nested test. Note also how the three variables manipulated appear to interact with one another. For example, the effects of increases in sample size are effectively blunted when factor loadings are relatively small and there are only two indicators per factor.  
_________________________

Insert Figure 9 About Here

________________________

As these results indicate, there are factors other than sample size alone that significantly influence power. Thus, under some conditions, even models with relatively large sample sizes may have low power to detect specific types of misspecifications. This is another example of how a model judged to be “well-fitting” according to various indices may still be significantly flawed. For these reasons, it is important for SEM researchers to be aware of the factors that influence power. In addition, researchers should know how to compute power for SEM models. Unfortunately, due to space constraints, a discussion of procedures for computing power is beyond the scope of the present paper (for discussions and demonstrations, see, e.g., Bollen, 1989; Loehlin, 1998; Kaplan, 1995; MacCallum et al., 1996; Muthén, & Curran, 1997; Raykov & Penev, 1998; Saris & Satorra, 1988, 1993; Saris, Satorra, & Sörbom, 1987). We particularly recommend MacCallum et al’s (1996; see also Raykov & Penev, 1998) discussion and demonstration of power calculations for tests of exact fit, close fit, and not-close fit that are based on the RMSEA fit index. Relative to the most commonly used alternative approaches for power calculations, the procedure outlined by MacCallum et al. does not require complete specification of an alternative model, is less model-specific, can be easily adapted to compute the minimum sample size necessary to achieve a desired level of power, and is easier to perform on the whole. As such, we believe that it is a practical alternative for applied researchers. We also recommend Muthén and Curran’s (1997) demonstration of how power calculations can help researchers design optimal intervention studies using latent-variable SEM models to detect treatment effects.

Parsing Composite Models: Precisely What Types of Restrictions are you Testing?  

One potential problem that frequently arises in practice is the differential sensitivity of global measures of fit to the measurement vs. structural components of a model.  Recall that the measurement model depicts relations between latent and observable variables while the structural model depicts relations among the latent constructs. As McDonald and Ho (2002) have recently pointed out, when the measurement component fits well and is associated with a large proportion of the total degrees of freedom, the result can be a well-fitting composite model that masks a poor fitting structural component. 
The two models shown in Figure 10 can be used to illustrate this scenario. Assume that model 10A (identical to Model 7A discussed above) is the composite model specified by the researcher. With three indicators per factor, this model has 25 degrees of freedom that correspond to 25 independent restrictions imposed on the observed variances and covariances.  If we wanted to test the measurement model alone, we could saturate the structural component by allowing the three latent variables to freely correlate with one another (e.g., Anderson & Gerbing, 1988). Model 10B depicts this saturated structural model, which is a confirmatory factor analytic model that freely estimates the covariances among all the factors. Because Model 10B imposes no restrictions on the relations among the latent constructs, measures of its fit only assess the validity of the restrictions imposed by the hypothesized measurement structure (e.g., the restriction that variable Y1 does not load on latent construct LX). In all, there are 24 independent restrictions that correspond to the 24 degrees of freedom associated with Model 10B.  
Using one of several alternative procedures, we could conduct a focused test of the structural component of Model 10A. Because the differences among these procedures are not critical to the present argument, we will discuss a procedure originally recommended by Anderson and Gerbing (1988) that is the most commonly used in practice. These authors recommended performing a nested chi-square test that  tests the difference between the chi-square values of the saturated structural model (e.g., model 10B) and the researcher’s composite model (e.g., model 10A). We denote the chi-squaure value of this nested test as
[image: image27.wmf]2

()

BA

c

-

. In the present example, this procedure uses the fact that model 10A is actually a restricted version of model 10B. While this nested relation might initially appear surprising, it becomes more understandable when we observe that Model 10B is an equivalent model to a less restricted version of Model 10A that freely estimates the path from LX to LZ.  The chi-square value for this nested test has one degree of freedom. Note that the degrees of freedom for the focused tests of the measurement component (
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=25). Correspondingly, it can be shown that the chi-square value for a composite latent variable model can be decomposed into independent and additive chi-square statistics, one for the measurement model and one for the path model represented in the structural component (e.g.., Anderson & Gerbing, 1988; McDonald & Ho, 2002; Steiger et al. 1985). In this hypothetical example, then,  
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To demonstrate these relations we assumed that the researcher was testing model 10A. We created a hypothetical covariance matrix reflecting: (1) a well fitting but not perfectly fitting measurement component; and, (2) a misspecified structural parameter. Specifically, as in the example noted in the previous section on power, we specified that the path from LX to LZ (fixed at 0 in the model) is actually equal to .4 in the population. 

Table 4 presents the chi-square values and RMSEA values (see, e.g., McDonald & Ho, 2002) for the composite, measurement, and structural models. Recall that RMSEA values < .05 are generally considered to indicate good fit. Note that the chi-square values shown in Table 4 respect the mathematical constraints noted in equation (3). Most importantly, observe that both the measurement and composite models fit rather well. In contrast, the structural model fits poorly.  
_________________________

Insert Table 4 About Here

           ________________________

As this example illustrates, when the measurement component of a model fits reasonably well and contributes a high proportion of the total number of degrees of freedom), it can produce a well-fitting composite model that masks a poor-fitting structural component. Although we have demonstrated this problem using a hypothetical example, McDonald and Ho’s (2002) re-analysis of SEM papers published in 14 journals (including the Journal of Abnormal Psychology) indicated that it is fairly common in practice to find the combination of composite and measurement models that fit well and structural models that fit poorly or, at least, not as well as the composite model. This is a particularly significant problem given that, in many cases, the researcher’s primary interest is clearly the structural component. Both the review conducted by McDonald and Ho (2002) and our own review of SEM papers published in the Journal of Abnormal Psychology indicated that: (1) many studies that used composite models (i.e., those with separable  measurement and structural components)  did not report the fit of the separate components; and, (2) even when authors provided comparisons between the chi-squares for the measurement and composite models, the final conclusions typically were based on the fit of the composite model. 

Our review of SEM papers also revealed a related case that reflects the failure to distinguish the measurement and structural components of a composite model.  When the structural component is saturated, the fit of the composite model is identical to the fit of the measurement model. Indeed, the two are equivalent models. In such cases, the structural component is not imposing any restrictions that are tested by the global indices of fit linked to the composite model.  For example, it can be shown that Trull’s model depicted in Figure 1 is a saturated structural model that is equivalent to a model in which the six constructs that constitute the causal model (i.e., parental disinhibitory disorders, abuse, parental mood disorders, trait disinhibition, trait negative affectivity, and borderline features) are all allowed to freely correlate. Because the structural component is just-identified, measures of composite model fit are only testing restrictions imposed by the measurement structure. To his credit, Trull (2001) noted that the structural component is just-identified in the Discussion.  In our experiences, however, such acknowledgements by authors are quite rare. 
As our commentary implies, we believe that it is important for researchers to report separately the fit of the measurement and structural components of composite models using procedures similar to those that we have outlined above. As a cautionary note, we should add that the general issue of how to go about testing composite models is a controversial one that has elicited several divergent recommendations. We encourage interested readers to consult the following sources for a more extended discussion and, in some cases, alternative perspectives (see, e.g., Anderson & Gerbing, 1988; 1992; Bentler 2000; Bollen, 2000; Fornell & Yi, 1992; Hayduk & Glaser, 2000a, 2000b, Mulaik & Millsap, 2000).  
Well-fitting Models produced by Specification Searches: Buyer Beware


It is critical that readers understand the process by which “well fitting” models are generated. Often, such models are arrived at only after post-hoc modification of an initially ill-fitting model. In such cases, both the validity of the model as a representation of the population structure and its replicability are often questionable. 


In fact, it is fairly common for initially hypothesized models to fit inadequately. In such cases, SEM researchers often attempt to improve model fit. Two broad classes of respecification are possible. One could delete unnecessary parameters (e.g., path coefficients that are not significantly different from 0) or one could free parameters that are fixed at specific values (typically 0) or constrained equal to other parameters. Typically, when models do not fit well, the primary focus is on the latter type of respecification because a direct way to improve model fit is to free up restricted parameters.  

In the best-case scenario, the researcher can specify in advance a small number of modifications that are theory-driven. In such cases, the modified models really represent theoretically plausible, alternative models that probably would have been tested regardless of the absolute fit of the initial model. For example, a researcher conducting mediational tests might initially hypothesize that the effects of a given set of variables are wholly indirect. A nested chi-square test that compares this model to an alternative that frees up parameters by allowing for direct as well as indirect effects would likely be theoretically plausible and anticipated in advance. 

In many cases, however, researchers engage in an avowedly exploratory search for modifications that can improve the fit of a model. Such exploratory searches are often termed specification searches in the SEM literature (e.g., Green, Thompson, & Poirer, 1999; MacCallum, 1986; MacCallum, Roznowski, & Necowitz, 1992). Several approaches are available for exploratory searches. In practice, the most common approach is to conduct sequential modifications based on the univariate Lagrange multiplier (LM) tests that are often denoted as modification indices in SEM software packages. The values of such modification indices denote the estimated drop in the chi-square test of the model that would occur if the restricted parameter in question were freely estimated.  A common approach followed by users is to: (1) run the original model; (2) identify the restricted parameter that is associated with the largest modification index; (3) if a significant reduction in the chi-square value is indicated at step 2, respecify the model with that parameter freed up; and (4) continue the cycle through subsequent iterations that focus on the remaining restricted parameters. Typically, the user stops when the modified model fits adequately and/or no more statistically significant drops in chi-square values are indicated by modification indices. Several related alternative approaches for model modifications can also be used (e.g., Bentler, 1995; Green et al., 1999; Kaplan, 1990; Saris et al. 1987).  

Unfortunately, as several studies have shown, models that are respecified on a post-hoc basis often capitalize on the idiosyncratic features of sample data (e.g., Chou & Bentler, 1990; Green, Thompson, & Babyak, 1998; Green et al., 1999; MacCallum 1986; MacCallum et al., 1992). Because of capitalization on chance, the specific modifications made are often unique to a specific sample and not generalizable across samples. Correspondingly, the final models that are the product of such modifications often do not correspond particularly well to the correct population models. They may fail to include correct parameters and add incorrect ones. Several factors increase the probability that such problems will arise. They include small-to-moderate sample sizes like those typically used in practice (e.g., N’s < 500), the failure to impose limits on the number of possible modifications that one is willing to consider, and a severely misspecified initial model. 

As the emphasis on sampling fluctuations would imply, the primary cause of these difficulties is sampling error. However, additional factors beyond sampling error alone contribute to problems. For example, differential power to detect specific restrictions can account for why some modifications that should be made are not (e.g., Kaplan, 1990; Saris et al., 1987; see also the discussion of power above). In addition, even when the population covariance matrix is analyzed (i.e., there is no sampling error), incorrect parameters can actually be added at given steps (for an example, see Green et al., 1999). 

Thus, well-fitting model generated by a specification search needs to be regarded with caution. On a more positive note, there are several guidelines for specification searches that increase the likelihood -- but by no means guarantee -- that they will generate reasonably valid and replicable models. Such searches are likely to be most successful when researchers: (1) limit the number of possible modifications that could be made to a reasonably small number that are theoretically plausible; (2) control familywise Type 1 error rates (i.e., restrictions that are incorrectly freed up)  by using Bonferroni corrections or Scheffé-type procedures that are analogous to those used when conducting multiple comparisons of means (e.g., Green et al., 1998; Hancock, 1999); (3) use a two-stage approach according to which parameters added on the basis of LM tests are subsequently deleted if significance tests indicate that they are no longer necessary to maintain model fit (e.g., Green et al., 1999); (4) use expected parameter change measures to help insure that the values of parameters freed up do in fact change meaningfully (e.g., Kaplan, 1989; Saris et al., 1987);  (5) use very large sample sizes (e.g., MacCallum et al., 1992); and, (6) attempt to cross-validate models generated by specification searches, ideally using the parallel specification search procedure described by MacCallum et al. (1992). Although sample size constraints may make it impractical to follow the final two guidelines, all the others can generally be followed. Because space constraints preclude a more extensive discussion, interested readers should consult the sources cited above. 

Unfortunately, our review of empirical papers published in this journal indicated that while specification searches were not uncommon, the recommended procedures noted above were almost never followed.  We also observed an additional problem: in some cases, it was difficult to ascertain whether or not particular specifications were the product of post-hoc searches designed to improve the fit of an initially ill-fitting model. For example, in empirical SEM papers, graphic depictions of models sometimes include correlated error terms that are not addressed in the text and do not necessarily make theoretical sense. In such cases, it is sometimes unclear whether such correlated error terms were part of the initially hypothesized model or were added after the fact to improve fit. 

We suspect that users sometimes feel free to improve model fit via the inclusion of correlated error terms because of the belief that such terms do not violate core features of the model. We believe that this reasoning is flawed in several respects. First, correlated error terms can denote the omission of important constructs of substantive interest and the existence of meaningful alternative factor structures to those hypothesized (e.g., Gerbing & Anderson, 1984; see also Figure 5). Second, the inclusion of such terms can significantly alter the values of other parameters in the model  (e.g., path coefficients between latent variables). Finally, when such correlated error terms are the result of post-hoc specification searches, they increase concerns about the validity and replicability of  global indices of fit. Thus, in addition to the guidelines for specification searches noted above, we recommend strongly that authors explicitly account for all the specifications included in a model and explicitly acknowledge those specifications that are post-hoc products of specification searches
Importance of Lower-order Components of Fit 


As noted at several points above, global indices of fit test restrictions imposed on the model-implied covariance matrix. They do not directly test lower-order components of a model. By lower-order components, we mean specific model parameters (e.g., path coefficients) and relevant quantities that could be derived from such parameters including the magnitude of the direct, indirect, and total effects of a given variable on another, and the proportion of variance in an endogenous variable that is accounted for by its specified predictors in the model. In our experience, many researchers are unaware that models that fit well according to global fit indices can be associated with significant weaknesses in such lower-order components (e.g., Bollen, 1989). Some possible problems here include improper solutions (estimates that take on impossible values, such as negative variances) (e.g., Chen, Bollen, Paxton, Curran, & Kirby, 2001; Dillon, Kumar, & Mulani, 1987); path coefficients that are biased estimates of population parameters, small in magnitude, or opposite in sign to theoretical expectations; weak direct, indirect, or total effects; and, small proportions of variance in endogenous variables that are accounted for by specified influences.  The opposite phenomenon can occur also. For example, models that fit poorly can account for high proportions of the variance of endogenous variables. 
Let us provide a concrete example of the dissociation between overall fit and lower-order components of fit. Assume that a researcher is testing Model 2D shown in Figure 2. Assume further that the observed sample covariance matrix is either 
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Table 5 shows several global fit indices and lower-order components of fit when model 2D is estimated using each of these matrices as input and assuming N=500. In each case, dissociations between global fit indices and lower-order components of fit are indicated. When 
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 is analyzed, Model 2D fits perfectly according to global indices assessing overall fit (e.g., exact-fit 
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0, RMSEA = 0.00). Yet, none of the path coefficients are statistically significant and less than 1% of the variance of the two endogenous variables (Y and Z) is accounted for. Conversely, when  
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 is analyzed, the overall fit is rather poor. However, all path coefficients are highly significant and between 60% and 65% of the variances of endogenous variables are accounted for. These results underscore the fact that measures of global fit and lower-order components of fit can be strongly divergent. In fact, they are not completely independent of one another.3 However, they are certainly separable. 
_________________________

Insert Table 5 About Here

________________________

How can perfect fit co-exist with small magnitudes of effect or measures of association? One reason is that residual variances are typically parameters in the model itself. Consider again Model 2D. The implied variances of the two endogenous variables (Y and Z) will be the sum of their predicted variances (i.e., the estimated variance of the linear combination of their predictors) and their residual variances. Even if the specified causes of an endogenous variable account for only a small proportion of its variance, its implied and observed variances can be equal if the residual variance is sufficiently large. Because residual variances are typically just-identified parameters with few restrictions, they can “fill in the difference” and help generate an implied variance estimate that equals the observed variance. For example, in the case of the analysis of Model 2D using 
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 as input, although small proportions of variance are accounted for by the model, the estimated residual variances are sufficiently high (99.35 and 99.36, respectively for 
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, respectively) as to generate identical  observed and implied variances equal to 100 for both Y and Z.  Thus, small proportions of variance may impose essentially no penalty on the value of the discrepancy function that is the core of measures of fit. Although this argument has focused on observable-variable models, the same general logic holds for latent variable models. 4
We recommend strongly that psychopathology researchers routinely report and discuss proportions of variance or other measures of association in addition to global fit indices. Unfortunately, our review of SEM papers published in this journal indicates that psychopathology researchers often de-emphasize lower-order components in favor of almost sole reliance on global fit indices. In addition, authors often do not present their results in text, tables or figures in a manner that allows readers and reviewers to evaluate lower-order components of fit. For example, it is rare for researchers to report the proportion of variance in endogenous variables accounted for by predictors or specific parameters (e.g., the variances of residuals) that would allow for computation of such quantities (MacCallum and Austin, 2001).  In those cases during our review of SEM papers in which we were able to calculate proportions of variance, the quantities yielded were often disappointingly small. Similarly, the magnitudes of direct, indirect, and total effects of a given variable on other variables were often rather small .These observations raise strong questions about both the overall theoretical and clinical significance of the results presented in research reports that use SEM. 

Researchers’ tendency to ignore lower-order components of fit in favor of global indices suggests an irony: while many users conduct SEM analyses in order to provide a more rigorous test of model fit than is affordable by alternative statistical approaches, the actual assessment may be less rigorous in some respects. For example, Model 2D could have been analyzed using conventional multiple linear regression software provided in all statistical packages. The coefficients, standard errors, and proportion of variances yielded would be identical to those shown in Table 5. Because, however, the multiple regression approach would require separate analyses of each dependent variable, no global measure of model fit analogous to those output by SEM software could be provided. For this reason, researchers using the multiple regression approach are forced to rely solely on what we have termed “lower-order components of fit”. The point here is not that researchers should conduct multiple regression analyses instead of SEM analyses. Even apart from the fact that there are a number of SEM models that cannot be handled by conventional regression software, the key point is simply that researchers opting for the SEM route should examine and report lower-order components of fit. 

When just-identified (i.e., saturated) models are tested, lower-order components of fit are clearly the primary vehicle for evaluating the adequacy of a model even in the SEM context. Because just-identified models will always fit perfectly, global fit indices are not a meaningful way to evaluate their adequacy. Note also that even when the model as a whole is over-identifed, this conclusion is potentially applicable to just-identified partitions. For example, as noted above in the context of Trull’s (2001) model, when a composite model is over-identified but the structural component can be just-identified.  
These points bring up an interesting issue. One might argue that over-identified models (or partitions of models) are superior to just-identified models (or partitions) because the latter impose no restrictions on the covariance matrix and do not allow for a meaningful test of overall fit. However, as Reichardt (2002; see also Reichardt & Gollob, 1986) has argued, there is a compelling argument to be made that saturated models are generally superior to over-identified models even if the latter are associated with might appear to be more “meaningful” tests of overall fit.  For example, because over-identified models have more omitted paths, they are far more likely to be associated with biased estimates of coefficients than just-identified models. Indeed, the degree of bias in just-identified models will be less than or equal to the bias in over-identified models (Reichardt, 2002).  Furthermore, note that even when a likelihood ratio test indicates that the restrictions imposed by an over-identified model cannot be rejected, this result might well reflect lack of power more than the fact that is a correct representation of the processes under consideration. In addition, some over-identified models strike us as clearly implausible, as when a researcher hypothesizes that the effects of a given distal cause are mediated solely by the limited set of variables under consideration. All in all, we caution readers to put the statistical cart after the theoretical horse and avoid reflexive reliance on restrictive (i.e., over-identified) models that, based on theoretical or other grounds, are clearly implausible. This point also underscores the importance of the components of fit in model evaluation. 
Section that offers Summary of Recommendations

Footnotes

1We should note that although our conclusions are broadly applicable, our review – and the discussion below – excluded behavioral genetic applications of SEM. For a discussion of behavioral genetics approaches, see the paper by Michael Neale (2002) in this section. 

2For the sake of brevity, we omit consideration of models that include mean and intercept terms in the discussion of identification, estimation, and assessment of fit. Thus, we focus on models in which all data are mean-centered (i.e., all means are 0) and in which discrepancy functions reflect the disparity between the observed and implied covariance matrix. 

3 The restriction embodied in equation 1 makes good sense in the context of the model specified. Consider a standard multiple regression equation in which X and Y are specified as predictors of Z.  The left-hand side of Equation 1 is the numerator of the unstandardized regression coefficient for X
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 that would be yielded by such an analysis. If the numerator equals 0 (as specified in equation 2) then, of course, the regression coefficient as a whole must equal 0. In this regard, note the absence of a direct path from X to Z in Model A1 and recall that this signifies that the direct effect of X on Z is fixed at 0.

1 The equivalence of fit indices may some elaboration. All fit indices are sensitive to the discrepancy between the implied and observed covariance matrices (see Table 2). Questions might be raised, however, about the equivalence of all fit indices because most take additional factors into account, such as the relative parsimony of a given model (e.g., RMSEA, Tucker-Lewis index) and the fit of a baseline comparison model (i.e., incremental fit indices). Even in these cases, however, equivalent models as commonly defined will always yield identical values for a given index. For example, the “independence” model that commonly serves as the baseline comparison will be identical across
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, or any other models that could be proposed for a given S. Thus, in reference to incremental fit indices, when two models are equivalent, not only are their discrepancy function values identical but so are the discrepancy function values of their baseline comparison models. Concerning the issue of parismony, note that the degrees of freedom of a model indicate both its relative parsimony of a given model (more parsimonious models have larger
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) and the number of independent restrictions on the covariance matrix implied by the model. If, as noted above, equivalent models impose the same restrictions on a covariance matrix, they will then have the same degrees of freedom. Thus, when models are equivalent, those fit indices that take into account the degrees of freedom of a given model as well as the observed values of discrepancy functions will also be identical. 

2At this time, the Meehl-Waller procedure is only applicable to path-analytic models with observed variables.
3 For example, all else being equal: (1) the greater the proportion of variance accounted for by a model, the greater the power to detect model mis-specifications (e.g., Saris & Satorra, 1988); and, (2) the higher the correlations among the observed variables (as occurs when proportions of variance are high), the worse the fit of the “0 correlation” independence model relative to the hypothesized model. The result will be higher values of the chi-square test of model fit and of incremental fit indices. Note that these two results have opposite effects on conclusions about model fit. 
4 Residual covariance terms, when specified, often play a similarly important though unacknowledged contribution to a well-fitting model. Despite the fact that such terms denote relations among constructs that that are unknown and unmeasured, they typically are large in magnitude and have a critical influence on the overall fit of a model (e.g., McDonald & Ho, 2002). For example, note the covariance between the residuals of Trait Disinhibition (DIS) and Trait Negative Affectivity (NA)  in Trull’s (2001) model (see Figure 1). This specification makes good sense because it allows for common causes of DIS and NA other than parental mood disorders, parental disinhibitory disorders, and childhood abuse. The estimated residual covariance itself is substantial (in a standardized metric, r=.60) and highly significant (p < .001). It also has a critical influence on model fit: when this covariance term is removed from the model (i.e., fixed at 0), the resulting solution is not admissible (e.g., the residual variance for Borderline Features is negative). Although there are several possible reasons for inadmissible solutions (see, e.g., Chen et al., 2001), one possible cause is model mis-specification. We suspect that the latter factor is operative in this particular case.  Although residual covariances commonly have an important influence on model fit, they are often not even discussed in research reports. This is an additional respect in which researchers should pay greater attention to specific parameters – even residual terms that might appear initially to be only of secondary importance. 
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