Measurement of the extraocular spike potential during saccade countermanding
David C. Godlove, Anna K. Garr, Geoffrey F. Woodman and Jeffrey D. Schall
J Neurophysiol 106:104-114, 2011. First published 13 April 2011; doi:10.1152/jn.00896.2010

You might find this additional info useful...

This article cites 70 articles, 22 of which can be accessed free at:
http://jn.physiology.org/content/106/1/104.full.html#ref-list-1

This article has been cited by 1 other HighWire hosted articles
 Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys
 David C. Godlove, Erik E. Emeric, Courtney M. Segovis, Michelle S. Young, Jeffrey D. Schall and Geoffrey F. Woodman
 [Abstract] [Full Text] [PDF]

Updated information and services including high resolution figures, can be found at:
http://jn.physiology.org/content/106/1/104.full.html

Additional material and information about Journal of Neurophysiology can be found at:
http://www.the-aps.org/publications/jn

This information is current as of December 9, 2011.
Measurement of the extraocular spike potential during saccade countermanding

David C. Godlove, Anna K. Garr, Geoffrey F. Woodman, and Jeffrey D. Schall
Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee

Submitted 18 October 2010; accepted in final form 11 April 2011

Full Author List
Godlove DC, Garr AK, Woodman GF, Schall JD. Measurement of the extraocular spike potential during saccade countermanding. J Neurophysiol 106: 104--114, 2011. First published April 13, 2011; doi:10.1152/jn.00896.2010.—The stop signal task is used to investigate motor inhibition. Several groups have reported partial electromyogram (EMG) activation when subjects successfully withhold manual responses and have used this finding to define the nature of response inhibition properties in the spinal motor system. It is unknown whether subthreshold EMG activation from extraocular muscles can be detected in the saccadic response version of the stop signal task. The saccadic spike potential provides a way to examine extraocular EMG activation associated with eye movements in electroencephalogram (EEG) recordings. We used several techniques to isolate extraocular EMG activation from anterior electrode locations of EEG recorded from macaque monkeys. Robust EMG activation was present when eye movements were made, but no activation was detected when saccades were deemed canceled. This work highlights a key difference between the spinal motor system and the saccadic system.

Rapid inhibition of prepared motor responses has been studied extensively with the stop signal, or countermanding, task (for review, see Verbruggen and Logan 2008). In this task, subjects make quick responses to target stimuli. On a subset of trials, a second stimulus follows the target, instructing subjects to withhold their responses. When subjects are successful in canceling their responses, behavioral measures cannot be recorded because no overt behavior occurs. However, using a modeling approach, the timing of the covert inhibitory process can be estimated (Logan and Cowan 1984; Colonius 1990; Logan 1994). A saccadic response version of the stop signal task has been used to characterize properties of the ocular motor system (Hanes and Schall 1996; Hanes et al. 1998; Hanes and Carpenter 1999; Logan and Irwin 2000; Pare’ and Hanes 2003; Corneil and Elsley 2005; Walton and Gandhi 2006; Boucher et al. 2007; Emeric et al. 2007).

Several groups have reported subthreshold electromyogram (EMG) activation on canceled trials in the manual response version of the countermanding task (De Jong et al. 1990; McGarry and Franks 1997; McGarry et al. 2000; van Boxtel et al. 2001; Scangos and Stuphorn 2010). However, it is unknown if partial extraocular EMG activation is present when eye movements are deemed canceled. The possibility that extraocular muscles may contract without producing detectable eye movement seems unlikely. However, the literature is inconclusive on this point. While it is true that the inertia of the eye within the orbit is negligible, the surrounding tissue of the oculomotor plant exerts viscous and elastic forces on the eye that are significant (Porter et al. 2003). It is difficult to estimate the extent to which these forces counteract eye movement production, because research has resulted in contradictory evidence (Robinson 1964; Sklavos et al. 2005; Anderson et al. 2009; Quaia et al. 2009). In fact, very few experiments have been reported on this matter. Furthermore, most of these studies have been conducted using anesthetized animals, but larger time constants for viscoelastic relaxation of orbital tissues have been noted in alert animals (Anderson et al. 2009). When considering whether or not extraocular muscles are able to generate contractions that do not result in eye movements, it is also important to consider the muscles themselves. The extraocular muscles are relatively poor actuators. During periods of fixation, only 23% of muscle innervation is ultimately transferred to the tendons to result in rotation of the eyeball (Quaia and Optican 2003). Thus, when saccades are initiated, a force of much larger magnitude must be supplied to overcome that dissipated by the muscles themselves. This initial burst of force can be observed in the well-known “pulse-slide-step” discharge pattern of oculomotor neurons (Fuchs and Luschei 1970; Robinson 1970). The “pulse” portion of muscle innervation is thought to be necessary to overcome static viscous drag exerted by the passive orbital tissue (Sparks 2002). These considerations leave open the possibility that small extraocular muscle contractions may occur in the absence of detectable eye movements.

If partial EMG activation was observed in the primate oculomotor system when trials were deemed canceled, it would provide a powerful and versatile tool for examining motor control in saccadic tasks. This development would be particularly useful for neurophysiological research, since most of the work using the stop signal paradigm with monkeys has been carried out in the ocular motor domain. On the other hand, there is reason to believe that partial muscle activation should not be readily produced by the primate oculomotor system. First, saccades are thought to be initiated in an all-or-none manner. Second, although manual responses can be canceled by coactivating agonist and antagonist muscles, it should be nearly impossible to perform this type of cancelation in the ocular motor domain. The contralateral inhibitory circuitry of the brain stem saccade generator precludes this type of muscle coactivation (Hikosaka et al. 1978; Sparks 2002; for review, see Scudder et al. 2002)

Because of their positions in the orbit, it is difficult to record EMGs directly from the extraocular muscles. However, an

Address for reprint requests and other correspondence: J. D. Schall, PMB 407817, 2301 Vanderbilt Place, Vanderbilt Univ., Nashville, TN 37240-7817 (e-mail: jeffrey.d.schall@vanderbilt.edu).
electroencephalographic (EEG) effect associated with eye movements, the saccadic spike potential (SP), has been consistently noted in humans and monkeys (Blinn 1955; Keren et al. 2010; Sander et al. 2010). Several studies have provided strong evidence that the SP does not originate in cortical activity or from the corneoretinal potential (Thickbroom and Mastaglia 1985; Moster and Goldberg 1990; Picton et al. 2000). Instead, this component is myogenic, derived from contraction of the lateral and medial recti (Blinn 1955; Thickbroom and Mastaglia 1985). The SP appears as a prominent, high-frequency component occurring just before or concomitant with saccade onset. It takes the form of a frontal negativity with scalp distribution ipsilateral to the direction of eye movements (Thickbroom and Mastaglia 1985; Moster and Goldberg 1990; Keren et al. 2010). With appropriate filtering techniques, SPs have been shown to reliably precede saccades as small as 0.2° in amplitude and to predict saccades with amplitudes of <0.2° above chance level (Keren et al. 2010). Research on the SP has lapsed over the last few decades, but interest was recently renewed with the observation that many findings of recent interest are artifacts from the SP associated with microsaccades (Yuval-Greenberg et al. 2008). Consequently, methods for isolating and removing SP activation from EEG recordings have been described (Keren et al. 2010).

In the present study, we tested the hypothesis that partial activation of eye movement responses are made in the stop signal task, similar to findings from manual stop signal studies. This hypothesis predicts that partial muscle activation can occur on canceled trials. We tested this prediction by recording EEG and isolating SPs during periods when eye movements were prepared but not detected. We found strong SPs when saccades were made but found no evidence of SP activation when movements were deemed canceled.

METHODS

Animal care. Data were collected from one male bonnet macaque monkey (Macaca radiata; ~8.5 kg) and one female rhesus macaque monkey (Macaca mulatta; ~7 kg). Both animals were cared for in accordance with policies set forth by the United States Department of Agriculture and Public Health Service Policies on the Humane Care and Use of Laboratory Animals. Animal care, procedures, and experiments were carried out with supervision and approval from the Vanderbilt Institutional Animal Use and Care Committee. Fruit juice was given as positive reinforcement for correctly completed trials. During periods of testing, ad libitum access to liquids was withdrawn. In consultation with attending veterinarians, each animal’s weight and food intake were monitored, and fluids were supplemented as needed.

Surgical procedures. All surgical procedures were carried out under aseptic conditions. Access to food was withdrawn 12 h before surgery. Animals were sedated with ketamine (10–30 mg/kg) and provided with an initial dose of buprenorphine (0.005–0.010 mg/kg) to alleviate postoperative discomfort. Ophthalmic ointment was applied to prevent corneal drying. Robinal (0.004–0.008 mg/kg) was administered to minimize mucosal secretions and help prevent vagal bradycardia. Animals were intubated, and catheters were inserted into the saphenous veins for the administration of support fluids throughout the procedure. Monkeys were anesthetized with an isoflurane-oxygen mixture (1–3% C,H,ClF,NO, shaved, positioned in stereotax, and scrubbed. ECG, rectal temperature, respiration, and blood pressure were monitored. Expiratory CO, was maintained at ~4%. After the subcutaneous administration of lidocaine (~1–2 ml of 2% solution), the subjects’ skulls were exposed, and titanium headposts were firmly attached with titanium orthopedic screws (Synthes, West Chester, PA) to immobilize the animals’ heads during testing. Solid gold surface electrodes, Teflon-coated stainless steel wires, and plastic connectors were constructed and implanted following the method of Woodman et al. (2007). Surgical sutures and staples were used to close incisions in layers. In consultation with attending veterinarians, analgesics [buprenorphine (0.005–0.010 mg/kg)] and prophylactic antibiotics [naxcel (2.2 mg/kg)] were administered for at least 3 days after surgery.

Task. During testing, monkeys were seated comfortably 51 cm from a cathode ray tube monitor (48 × 48°, 80 Hz) in enclosed polycarbonate and stainless steel primate chairs and head restrained using surgically implanted headposts. Stimulus presentation, task contingencies related to eye position, and delivery of liquid reinforcement were all under computer control in hard real time (TEMPO, Reflective Computing, Olympia, WA). Stimuli were presented using computer-controlled raster graphics (TEMPO Videosync 1,280 × 1,040-pixel resolution, Reflective Computing). Stimuli had a luminance of 30 cd/m² (fixation point) or 10 cd/m² (targets) on a 1-cd/m² background.

Behavior and electrophysiological signals were recorded during the countermanding (i.e., stop signal) task (Fig. 1). Additional details about the behavioral training regime and task have been previously described (Hanes and Schall 1995; Hanes et al. 1998). Trials were initiated when monkeys fixated a centrally presented square, which subtended 0.34° of the visual angle. After a foreperiod ranging from 200 to 1,100 ms, the central fixation point was extinguished, and a target subtending 3° of the visual angle simultaneously appeared at 10° to the left or right of fixation. The foreperiod was randomly sampled from a distribution described by the following function:

\[
p(t) = \left[1 - \exp\left(-t/\tau_g\right)\right] \times \left[\exp\left(-t/\tau_d\right)\right]
\]

where \(p(t) \) is the probability of selecting a specific foreperiod, \(t \) is time, \(\tau_g \) is the growth rate, and \(\tau_d \) is the decay rate. We chose a growth rate of 1,000 ms and a decay rate of 200 ms to approximate a nonaging foreperiod. We added 200 ms to this distribution and truncated it at 1,100 ms to achieve the desired range. On no-stop trials (Fig. 1, top), no further visual stimuli were presented. Monkeys were required to make a saccade to the target within 600 ms to obtain a reward. Correct trials were rewarded with several drops of juice and an audible tone. On stop trials (Fig. 1, bottom), the fixation point was reilluminated after a variable delay, providing a “stop signal” that instructed the monkeys to cancel their impending eye movements and maintain central fixation. In practice, two trial outcomes were then possible. If monkeys successfully withheld the eye movement and maintained fixation for a minimum of 600 ms, they obtained a juice reward and a tone. These trials were designated as “canceled.” If monkeys were unable to inhibit the movement, a 1,500-ms timeout was added to the normal intertrial interval of 200 ms, no rewards were given, and the trial was termed “noncanceled.” The stop signal delay (SSD), or time between the target and stop signal presentation, determines the probability with which movements can be successfully countermanded (Logan and Cowan 1984). An initial set of SSDs from 0 to 420 ms and separated by either 40 or 60 ms was selected for each recording.
session. We then manipulated the SSD using an adaptive staircasing
algorithm, which adjusted the stopping difficulty based on perfor-
mance. When subjects failed to inhibit responses, the SSD was
reilluminated, instructing the monkeys to withhold movement. Successful
inhibition of saccades resulted in a reward (canceled trials), but errant saccades
resulted in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
probability value, \(t \) is the time after target onset, \(\alpha \) is 64% of the
maximum probability value, and \(\beta \) is the slope. Next, we used the
fitted inhibition functions and the combined no-stop RT data to estimate
SSRTs for each monkey using two different methods. The
first of these methods assumed that SSRT was a random variable,
whereas the second method assumed that SSRT was constant across
SSDs (Hanes et al. 1998; Band et al. 2003). Since there was no reason
to suppose an advantage of either of these SSRT estimation methods,
we averaged the two estimates together to obtain a final SSRT
estimate separately for each monkey (Hanes et al. 1998; Fare and
Hanes 2003).

A robust finding in the stop signal literature is that noncanceled
RTs are significantly lower than no-stop RTs. This is a straightforward
prediction of Logan and Cowan’s (1984) horse race model, since trials
with faster “go” processes will tend to finish before the “stop” process,
resulting in no reward (noncanceled trials). The solid squares indicate stimulus
locations. Dotted circles represent the area of fixation. F, fixation point; T,
no response is generated on successfully canceled trials, RT ranges can be estimated for this trial type. The technique of matching noncanceled and canceled trials to no-stop trials with RTs from the appropriate portion of the RT distribution has been termed “latency matching” (Hanes et al. 1998). In the present study, it was especially important that we compared canceled trials with their latency-matched no-stop counterparts. This allowed us to estimate times when eye movements were likely even though they were not detected. Where appropriate, we used our derived SSRT estimates to latency match at each SSD.

Event-related potential and event-related velocity analyses. Event-related potentials (ERPs) were time locked to saccade initiation or target onset and baseline corrected to the interval from 150 to 50 ms before these events. Canceled trials did not contain saccade events. Instead, a virtual saccade event was created for trials in this condition by randomly sampling from the distribution of latency matched no-stop RTs with replacement. Canceled trials were then aligned to this virtual saccade event and baseline corrected. Trials with voltage deflections greater than \(\pm 300 \mu V \) due to artifacts were excluded from further analysis. This threshold for rejection was an order of magnitude greater than the variability in the ERPs observed across monkeys (i.e., maximum root mean square for monkey \(F \) target-aligned no-stop trials: 42.2 \(\mu V \), canceled trials: 39.8 \(\mu V \), noncanceled trials: 41.4 \(\mu V \); and maximum root mean square for monkey \(Y \) target-aligned no-stop trials: 42.7 \(\mu V \), canceled trials: 45.2 \(\mu V \), and noncanceled trials: 40.7). Single trial EEG signals were truncated 50 ms before the onset of the second, nontask-related saccade to eliminate “smeared” saccade-related artifacts. It was important to estimate the relative timing of saccades and to display this estimate graphically. Instead of using a traditional method such as displaying a histogram of saccade latencies, we collapsed across saccade velocity profiles. This method is essentially the same as creating an ERP from EEG data except that the data were radial eye velocity traces (Fig. 2). The resulting average not only contained information about saccade latency but also took into consideration saccade amplitude and duration, making it a more complete descriptor of average saccade dynamics. Since these velocity profiles were aligned to particular events and collapsed across trials in the same way as ERPs, we will refer to them as “event-related velocities” (ERVVs). ERVs were not baselined since an ERV value of zero is not arbitrary as it is in an ERP. As a rule, the single trial velocity profiles that made up the ERVs were truncated at the onset of the second, nontask-related saccade to avoid contamination of the task-related saccade velocity trace.

Narrow digital bandpass filters (frequency: \(\pm 1 \) Hz) were used to discriminate the SP from other saccade-related components (see RESULTS). Each filter was created using a Hamming window of length \((2 \times T + 0.001)\) s, where \(T = 1/f \). A zero phase-shift digital filter was applied to the data using the specified Hamming window. The analytic power of the filtered data at each time interval \((t_i) \) was approximated using a sliding window function of the following form:

\[
P(t_i) = \frac{\max(A) - \min(A)}{2}
\]

where \(A \) is the time interval \([t_i - (T/2) \times t_i + (T/2)\]) . These methods ensured a high level of filter specificity while minimizing sacrifices in timing estimation accuracy at each bandpass frequency. A signal-to-noise ratio was estimated for each applied filter to assess how well it isolated the SP from the surrounding EEG. After each filter was applied to a single session of data and analytic power was estimated, the mean value in a 41-ms time window centered on the peak of the SP was recorded. This value was termed the “signal.” The mean value in a 1-s time window centered on the saccade onset and excluding the signal time window was also recorded. This value was termed “noise.” (Note that in this context, noise does not just refer to variability, measurement error, or unwanted line voltage fluctuations; noise also refers to EEG fluctuations and includes those fluctuations that are task related. Task-related EEG fluctuations do not average out in ERPs, and they can obscure the SP, which is our component of interest.) The filter yielding the highest signal-to-noise ratio was then used to isolate single trial SPs in subsequent analysis.

RESULTS

Behavior. RTs, average probabilities of committing errors, and SSRT estimates collapsed across sessions are shown in Table 1. Both animals exhibited noncanceled trials with probability \(>50\% \). Since we used a staircasing algorithm to adjust SSD, this departure suggests that both animals tended to speed up, causing a reduction in SSD. This pattern of behavior has been described before in animals performing the saccade stop signal task, and it appears to be an effective strategy for speeding up trial presentation and maximizing the rate of reward delivery (Godlove et al. 2009). In any case, our estimates of SSRT were lower than the more typical estimates of
80–100 ms recorded in the literature. If our estimates were artificially low due to violations of the race model, it presents a problem for latency matching, since we may have erroneously underestimated the time of probable SP activation on canceled trials. Accordingly, when the results depended on latency matching, large RT windows were displayed and analyzed to ensure that late SP activation was not missed in canceled trials.

Saccade dynamics. Figure 3 shows main sequences of no-stop (blue) and noncanceled (red) saccades separately for each subject and each target. These data are shown numerically in Table 2. We carried out three-way ANOVAs to test the hypotheses that saccade amplitude and/or velocity differed between subjects, targets, or trial types. Both amplitude \([P < 0.001, \text{degrees of freedom (df) } = 87] \) and velocity \([P < 0.001, \text{df } = 87] \) were found to differ between targets. Monkeys tended to make slightly larger amplitude and higher velocity saccades toward the right target. This may be an artifact induced by the monocular eye tracking procedures we used. Since we only tracked the right eye of each subject, saccades traces to the right target reflected abduction of the tracked eye, whereas saccade traces to the left target reflected adduction of the tracked eye. On the other hand, the difference may reflect a real bias that both monkeys developed toward the right target. Peak saccade velocity was also found to differ between subjects \((P < 0.001, \text{df } = 87) \). *Monkey F* made saccades with higher peak velocities than *monkey Y*. However, neither amplitude \((P = 0.701, \text{df } = 87) \) nor peak velocity \((P = 0.380, \text{df } = 87) \) differed significantly between trial types. Since main effects of \(\sim 1^\circ \) proved highly significant in the target contrast, the failures to reject null hypotheses in the trial type contrasts cannot be attributed to a deficiency of statistical power. These results replicate previous findings by Hanes and Schall (1995).

Saccade-aligned ERPs. Figure 4 shows saccade-aligned ERPs and ERVs from both subjects. On trials in which saccades were detected, we observed a high-amplitude, high-frequency negativity occurring concomitant with or slightly before saccade initiation. This saccade-related component has been described many times in human subjects (Evdokimidis et al. 1991; Everling et al. 1997) and at least once in nonhuman primates (Sander et al. 2010).

For our purposes, the most important finding was the absence of the SP on canceled trials. At least two alternatives exist to explain this finding. First, we may conclude that partial muscle activation does not occur on canceled saccade trials, so no saccadic SP is evident. Second, we may conclude that aligning EEG to a virtual saccade event obtained by random sampling from existing RT distributions is too coarse a method to detect the saccadic SP on canceled trials. If partial motor activation did occur on these trials, we do not know when. Therefore, aligning on virtual randomly sampled RT events and collapsing across the data may have smeared any partial SPs and rendered them difficult to detect. We note that even if small-amplitude SPs had been generated on the canceled trials but were temporally smeared by averaging, they should be revealed by a low-amplitude, broad negativity during the measurement epoch. As is evident in Fig. 4, we did not observe a waveform on canceled trials, consistent with this pattern.

However, we carried out an additional time-frequency analysis.
to isolate SP activation from the surrounding EEG and test for the presence of extraocular EMG activation during canceled stop trials.

Isolated SP activation. In our data, the SP is readily visible as a stereotyped high-frequency negativity (Fig. 4). Because of its unusually high frequency and its invariance across sessions, we hypothesized that SP activation could be discriminated from the surrounding EEG on a trial-by-trial basis after the application of an appropriate filter (see also Keren et al. 2010).

We applied narrow digital bandpass filters in steps of 10 Hz to search for a frequency that optimally discriminated SP activation from the surrounding EEG. After filtering the data and calculating power as a function of time, we constructed response-aligned ERPs for no-stop trials at each bandpass frequency for each recording session. We then calculated signal-to-noise ratios for each filtered ERP. The result of this analysis is shown in Fig. 5F. A bandpass filter centered on 95 Hz was found to provide the greatest discrimination between the SP and the surrounding EEG for monkey F, whereas a bandpass filter centered on 35 Hz was found to be optimal for monkey Y. At first glance, this difference may seem surprising. However, our technique does not simply measure the frequencies contributing power to the SP. Instead, it isolates the frequency that optimally discriminates the SP from the surrounding EEG. Therefore, this difference reflects variations in overall EEG frequency spectra between the two monkeys. Differences in EEG frequency spectra are to be expected due to several factors. For example, the skulls of monkeys F and Y were observed to be of different thicknesses during surgery (Nunez and Srinivasan 2006).

The application of optimal discrimination bandpass filters allowed us to observe the SP separate from the surrounding EEG. Using this technique, we were able to search for SP activation in target-aligned ERPs made up either of no-stop or canceled trials. This comparison is shown for a sample session from monkey F in Fig. 6. The SP was visible in the unfiltered data when aligned on the response onset but was impossible to resolve, even on no-stop trials, when aligned on the target onset (left column). After filtering, the SP was readily apparent in the response-aligned, single trial data as a vertical band of elevated power (Fig. 6, top right). A diffuse band of power can also be observed in the target-aligned no-stop trials during the period of time when saccades were initiated (Fig. 6, middle right). However, no coherent band of elevated power could be discriminated on successfully canceled trials (Fig. 6, bottom right).

Our bandpass filtering technique also provided us with power measurements that were amenable to statistical testing. After filtering the data and performing latency matching to compare canceled trials with the appropriate no-stop trials, we measured average normalized power during a discrete window around mean RTs. For our window, we chose the period from the 25th percentile RT to the 75th percentile RT. Following this method ensured that we sampled power on canceled trials during the period of time when SPs were most likely to occur.

Table 2. Countermanding saccade dynamics

<table>
<thead>
<tr>
<th></th>
<th>Amplitude, °</th>
<th>Peak Velocity, °/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left target</td>
<td>Right target</td>
</tr>
<tr>
<td></td>
<td>No stop</td>
<td>Noncanceled</td>
</tr>
<tr>
<td>Monkey F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.7 ± 0.7</td>
<td>9.6 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>9.3 ± 0.9</td>
<td>9.8 ± 2.9</td>
</tr>
<tr>
<td>Monkey Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3 ± 0.7</td>
<td>9.6 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>9.3 ± 0.9</td>
<td>9.8 ± 2.9</td>
</tr>
</tbody>
</table>

Values are means ± SD. Shown are mean amplitudes and mean peak velocities across sessions separated by subject, target location, and trial type.

Fig. 4. No saccadic spike potentials (SPs) are evident in canceled trials aligned on a virtual saccade event. Black traces show ERPs and colored traces show ERVs (see text). The thin solid traces show saccade-aligned ERPs and ERVs on no-stop trials. The most prominent components in the ERPs are the sharp negative SPs, which occur just before or concomitant with the saccade onset and the several positive and negative deflections that follow. The first several components that follow the saccade onset probably include a strong contribution from the corneoretinal potential. The dashed traces show ERPs and ERVs on errant noncanceled trials. Note the extreme similarity of the ERPs for no-stop and noncanceled trials. Also note the similarity between no-stop and noncanceled ERPs. This similarity is especially apparent in the time before the saccade onset when the SP is visible. The thick solid traces show ERPs and ERVs on canceled trials aligned to a virtual saccade event. No elevated velocity can be detected in the ERVs, and no SP can be detected around time 0 in the ERP. Data were collapsed across 15 sessions and recorded from a location approximating Fz for monkey F; data were collapsed across 7 sessions and recorded from a location approximating Fpz for monkey Y. ERP data were baseline to the period from 150 to 50 ms before the saccade onset. The numbers of trials (n) in each ERP were as follows: monkey F, no-stop n = 13,764, canceled n = 6,256, and noncanceled n = 6,552; and monkey Y, no-stop n = 4,782, canceled n = 1,489, and noncanceled n = 1,120.
DISCUSSION

We have provided evidence indicating that partial muscle activation does not occur in the primate ocular motor system when monkeys inhibit saccades in a countermanding task. Our conclusion is supported by the following observations. First, when canceled ERPs are aligned on a virtual saccade event to create saccade-aligned ERPs, no evidence of EMG activation in the form of a SP can be observed around the time of saccade initiation. Second, when the SP activation is isolated from the surrounding EEG using bandpass filters, no-stop trials show EMG power that is significantly elevated above baseline while saccades are being made. Canceled trials, on the other hand, do not show EMG power that is elevated above baseline. Instead, trials in which saccades were deemed canceled display slightly reduced EMG activation as measured by the SP. This is strong evidence against partial motor activation in the ocular motor system on canceled saccade trials.

The saccadic countermanding paradigm is a versatile tool that has led to many key findings over the last two decades. Human psychophysical experiments using the saccadic stop signal task have helped elucidate the nature of conjugate gaze shifts (Corneil and Elsley 2005), differences between predictive and reactive stimulus tracking (Joiner et al. 2007), the relative contributions of reflexive foveal stimulation to stopping (Cabel et al. 2000), and the influence of stimuli timing and salience on saccade inhibition (Morein-Zamir and Kingstone 2006; Stevenson et al. 2009). Physiological recordings from monkeys carrying out the stop signal task have helped uncover cortical (Hanes et al. 1998; Brown et al. 2008; Ray et al. 2009; Stuphorn et al. 2009; Scangos and Stuphorn 2010) and subcortical (Pare' and Hanes 2003) mechanisms of saccade generation. The task is useful for investigating performance monitoring in both human (Curtis et al. 2005; Endrass et al. 2005)
and animal (Stuphorn et al. 2000; Ito et al. 2003; Stuphorn and Schall 2006; Emeric et al. 2008, 2010) subjects. In addition, the saccadic countermanding task has given rise to a strong computational modeling literature leading to breakthroughs in understanding neural saccade production and regulation (Hanes and Schall 1996; Asrress and Carpenter 2001; Boucher et al. 2007; Lo et al. 2009; Wong-Lin et al. 2010). Finally, the saccadic stop signal task has had broad clinical significance, providing insights on the action of several popular anesthetic agents (Khan et al. 1999; Nouraei et al. 2003), as well as the core dysfunctions underlyng disorders such as mild traumatic brain injury (DeHaan et al. 2007), Parkinson’s disease (Joti et al. 2007), and attention-deficit hyperactivity disorder (Armstrong and Munoz 2003; Hanisch et al. 2006). Given the wide experimental significance of the saccadic stop signal paradigm, the observation of partial muscle activation on canceled saccade trials would have provided important theoretical leverage to the study of behavioral inhibition.

Several groups have found partial motor activation on canceled trials during the manual response version of the countermanding task. Partial motor activation on canceled trials has been taken as evidence against a ballistic phase of motor execution (De Jong et al. 1990; McGarry and Franks 1997; McGarry et al. 2000). Partial motor activation has also been used to study the unity or diversity of stopping under different circumstances (De Jong et al. 1990; van Boxtel et al. 2001). In addition, partial motor activation on canceled trials has been compared with full motor activation on no-stop trials, used as a proxy measure for SSRT, and compared with neural data to assess the relative contribution of supplementary motor neurons to movement initiation (Scangos and Stuphorn 2010). Clearly, partial motor activation on canceled trials is a useful measurement for characterizing countermanding behavior. In contrast to manual response countermanding, partial extraocular muscle activation appears to be absent on canceled trials in the saccade countermanding task.

Lack of partial extraocular muscle activation on canceled trials is not surprising given our current understanding of the saccadic system. The saccadic system and spinal motor system differ in several important ways. Unlike manual responses and
smooth pursuit eye movements, saccade initiation is, in many ways, ballistic (for reviews, see Sparks 2002; Scudding et al. 2002). Kornyllo and colleagues (2003) found that pursuit eye movements could be canceled more quickly than saccadic eye movements and concluded that saccade production includes a final ballistic stage that is not observed during pursuit.

One possible criticism of this work concerns the linking proposition identifying the SP with the extraocular EMG. Since its first observation and characterization as the external rectus muscle potential (Blinn 1955), the SP has been almost uniformly appreciated as myogenic in nature (Picton et al. 2000; but see also Kurtzberg and Vaughan 1982; Balaban and Weinstein 1985; Riemslag et al. 1988). This conclusion is supported by the following seven observations. First, the corneoretinal potential cannot contribute to the SP since the corneal Topography after complete hemispherectomy (Thickbroom and Mastaglia 1985). Second, the SP is not considered to be cortical in origin, since it has been obtained with normal Topography after partial hemispherectomy (Thickbroom and Mastaglia 1985). Third, the SP is attenuated or absent in patients with ocular prosthesis and intact extraocular musculature (Thickbroom and Mastaglia 1985). Fourth, the amplitude of the SP remains constant, but its scalp distribution changes predictably with saccades made in different directions (Thickbroom and Mastaglia 1985; Moster and Goldberg 1990; Keren et al. 2010). Fifth, both its scalp distribution (Moster and Goldberg 1990; Lins et al. 1993a; Keren et al. 2010; Sander et al. 2010) and dipole source modeling (Thickbroom and Mastaglia 1985; Lins et al. 1993b) suggest that the SP is maximal around the eyes. Sixth, there is a close and consistent ‘ballistic’ correlation between the peak of the SP and saccade onset (Thickbroom and Mastaglia 1985; Keren et al. 2010). Finally, the amplitude of the SP shows a positive correlation with saccade amplitude (Keren et al. 2010). Thus, using the strong inference method advocated by Platt (1964), an extensive body of evidence has demonstrated that the SP should be viewed as an extracocular EMG. It is a natural step, then, to search for the presence of extraocular EMG activation using SPs recorded in the stop signal task.

Another possible criticism concerns the resolution of our EMG measurement. One may argue that our proxy measure of extraocular EMG was not sensitive enough to detect small muscle activations. If so, partial muscle activation may have been present on some canceled trials that was unobservable as single trial SP. Using a wide bandpass filter, Keren et al. (2010) were able to reliably isolate single SPs from the raw EEG. They then used signal detection theory to quantify the accuracy with which single SPs predict saccades. These researchers found that they could detect >80% of saccades 0.5–1° in amplitude with close to zero false alarms, and they could detect saccades of 0.02–0.2° in amplitude above chance level. They concluded that single SPs might serve as more reliable saccade indicators than the traditional method of detecting corneoretinal dipole shifts in EEG recordings.

We refined the technique presented by Keren et al. (2010) by adopting a frequency optimization procedure that ensured small SPs would be highly detectable. The average power traces that we were able to construct for no-stop trials containing 10⁶ saccades suggest that we would have been able to detect few SPs associated with very small amplitude movements (see Figs. 5 and 6). Still, the fact remains that canceled trials may be associated with subthreshold EMG activation that is too small to detect with surface electrodes. To test this hypothesis further, recordings would be needed from microelectrodes inserted into the motor nuclei themselves.

It is noteworthy that we did not simply observe a lack of extraocular EMG on canceled saccade trials. Instead, we report a small but significant decrease in EMG activity when eye movements were withheld. Before baselining, a tonic increase in EMG was observed in the period of time around task-related saccades. (Fig. 5, F and G) We speculate that this tonic resting EMG activity was produced by microsaccades that occurred throughout our recordings (Yuval-Greenberg et al. 2008). On canceled trials, we observed a significant decrease in tonic EMG activity during periods when saccades were likely (Fig.
Following this logic, we suggest that fewer microsaccades are probably made while eye movements are suppressed during canceled trials. This would be an interesting finding, useful for further characterizing the function of fixation cells during the countermarching task. Unfortunately, the spatial resolution of our current eye tracking data set does not allow us to test this hypothesis directly. Future work should measure the presence or absence of microsaccades during periods when task-related saccades are canceled in the countermarching task.

In summary, we isolated EMG activation associated with eye movements from the EEGs of monkeys performing a saccade countermarching task. We found that eye movements were reliably accompanied by EMG activation on noncanceled trials, but no subthreshold EMG activation was detectable on successfully canceled trials. This finding demonstrates the ballistic nature of saccade initiation and highlights a basic difference between the spinal motor system and the saccadic oculomotor system.

ACKNOWLEDGMENTS

The authors thank C. Segovis for invaluable contributions throughout this work. M. Feurtado, M. Young, and P. Weigand helped with animal care. K. Thakkar and P. Bissett provided useful comments on the manuscript.

GRANTS

This work was supported by National Institutes of Health Grants R01-MH-55806, R01-EY-019882, P30-EY-08126, and P30-HD-015052 and by Robin and Richard Patton through the E. Bronson Ingram Chair in Neuroscience.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

