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Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition
and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in
visual processing. Neither is there an understanding of how its role in feature processing interfaces with its
role in visual attention. This review captures our current knowledge of V4, largely derived from electrophys-
iological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific
domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific
functional domain-based networks, whether it be by bottom-up specification of object features or by top-
down attentionally driven selection.

Area V4 is a midtier visual cortical area in the ventral visual

pathway. Although believed to be important in object recognition,

V4’s functional role remains elusive. This is in part due to the

complexity of V4. V4comprisescells that exhibit diverse receptive

field preferences related to surface properties (color, brightness,

texture), shape (orientation, curvature), motion and motion con-

trast, and depth. V4 has also been a focus of studies on visual

attention. It iswidelyacknowledged that visual attentionenhances

neuronal firing to relevant stimuli in V4 and suppresses responses

to distractor stimuli. However, the relationship between V4’s

contribution to attentional processes and its role in object recog-

nition processing is unclear. What is the unifying role of V4 across

these multiple feature response dimensions? What ties feature

and attention together in V4? This review attempts to bring the

reader to our current understanding of V4. We propose that

a primary role of V4 is to facilitate figure-ground segmentation of

the visual scene.We further propose that the samenetworkwhich

mediates figure-ground computation also enables attentional

filtering. We suggest that the unifying function of V4 circuitry is

to enable ‘‘selective extraction,’’ whether it be by bottom-up

feature-specified shape or by attentionally driven spatial or

feature-defined selection. As the bulk of knowledge regarding

V4 derives from electrophysiological and functional magnetic

resonance imaging (fMRI) studies in the macaque monkey, the

emphasis of this review will be on monkey studies. However,

where appropriate, reference to human studies is made.

I. Brief Background
In the macaque monkey, V4 is located on the prelunate gyrus

and in the depths of the lunate and superior temporal sulci and

extends to the surface of the temporal-occipital gyrus (Fig-

ure 1A). V4 contains representations of both superior (ventral V4)

and inferior visual field (dorsal V4) representations (Gattass et al.,

1988). Recent retinotopic mapping (Figure 1B) of this region

using fMRI has provided evidence that it is bounded posteriorly

by V3 and anteriorly by dorsal and ventral V4A. While gross

retinotopy in V4 is well understood, some important aspects of

its organization are still debated. These issues include the loca-

tion of V4 borders (see Stepniewska et al., 2005 for review),

whether it is one area or more, and whether it is comprised

of multiple functional maps. Physiologically guided injections of

tracer into central and peripheral locations in V4 reveal that

only central V4 receives direct input from V1 (Zeki, 1969; Naka-

mura et al., 1993; Yukie and Iwai, 1985). Central V4 also exhibits

strong connections with temporal areas such as TE and TEO,

suggesting that it plays an important role in object recognition.

Peripheral V4 shows strong connections with dorsal stream

areas such as DP, VIP LIP, PIP, and MST (Baizer et al., 1991;

Ungerleider et al., 2008), suggesting that V4 plays a role in spatial

vision and spatial attention.

Neurons in V4 have diverse response preferences. Originally

V4 was characterized as a color area by Zeki (1973, 1983)

based on the predominance of color selective receptive fields

recorded. However, subsequent studies also found prominent

orientation selectivity among V4 cells, suggesting its role in pro-

cessing of shape information (Van Essen and Zeki, 1978; Schein

et al., 1982; Mountcastle et al., 1987). As will be seen in the next

section, the diversity of response properties (which include

selectivity for color, orientation, depth, and motion) has led to

competing notions of the function of V4. It is our hope that this
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review will offer insights that help make these differing views of

V4 compatible.

Lesions of V4 lead to specific deficits in pattern recognition.

Monkeys with V4 lesions are moderately impaired in a variety

of simple 2D-shape detection and discrimination tasks. How-

ever, the V4 lesion literature is somewhat mixed on this issue,

perhaps due to differences in the mediolateral extent of the

lesions (Heywood and Cowey, 1987;Walsh et al., 1992; Merigan,

2000; Walsh et al., 2000; Girard et al., 2002; Schiller, 1993). In

contrast, V4 lesions produce striking deficits in more complex

perceptual tasks. For example, V4 lesions lead to loss of ability

to discriminate images of 3D objects (Merigan and Pham,

1998), loss of color constancy (Walsh et al., 1993), and deficits

in the ability to select relatively less salient objects from an array,

or to generalize across different stimulus configurations (Schiller,

1993; De Weerd et al., 1996, 1999).

A very large number of neurophysiological experiments on

V4 have focused on attention. In fact it would not be an exag-

geration to say that much of our understanding of the neural

mechanisms mediating attention has been informed by neuro-

physiological studies in monkey V4. Note that, while under

natural behavioral conditions primates foveate objects of atten-

tion, most neurophysiological studies have been conducted in

extrafoveal regions of V4 inmonkeys performing covert attention

tasks (e.g., attending to nonfoveal stimuli while maintaining fixa-

tion on a central location).

Comparison between Monkey and Human V4

Development of fMRI over the past 15 years has dramatically

advanced our understanding of human V4 and indicates that,

to a large extent, human V4 is organizationally and functionally

analogous to macaque V4. The retinotopic organization of area

V4 and nearby visual areas appears similar in humans (Sereno

et al., 1995; Hansen et al., 2007) and macaques (Fize et al.,

2003; Gattass et al., 1988). That is, humans appear to possess

an inferior field representation of V4 dorsally and a superior field

representation ventrally (Hansen et al., 2007). However, some

others report a complete hemifield representation within ventral

human V4 and conclude that no dorsal V4 exists in humans

(Wade et al., 2002; Winawer et al., 2010; Goddard et al., 2011).

Beyond retinotopy, many fMRI studies of V4 are broadly con-

sistent with what would be expected based on neurophysiolog-

ical studies in monkey V4. However, this comparison is difficult

to make because interpretation of fMRI results in terms of the

underlying neural mechanisms is problematic (Buxton et al.,

2004; Logothetis and Wandell, 2004). In any case, from a

comparative evolutionary viewpoint, it is likely that many com-

monalities exist between monkey V4 and human V4, but there

may also be specializations in the human that are not present

in the monkey.

II. Complex Functional Organization in V4
There have long been suggestions that V4 contains functional

compartments. The original evidence for this idea comes from

anatomical studies in which retrograde tracer injections in V4

labeled either predominantly thin stripes (associated with color)

or pale stripes (associated with form) in area V2 and did not label

thick stripes (associated with depth) (DeYoe et al., 1994).

Furthermore, tracer injections in inferotemporal areas (PITv and

PITd) result in interdigitated segregated label in V4 (DeYoe

et al., 1994), indicating some degree of continued functional

streaming in the ventral pathway. Intrinsic connections within

V4 also have a patchy appearance, with clusters that measure

200-300 mm in size (Yoshioka et al., 1992). Electrophysiological

studies have also reported functional clustering of color-selec-

tive neurons in V4 (Zeki, 1973; Conway et al., 2007; Conway

and Tsao, 2009; Harada et al., 2009). However, in contrast to

classic electrophysiological studies in V1 (Hubel and Wiesel,

1977), V2 (Hubel and Livingstone, 1987; Roe and Ts’o, 1995),

and MT (DeAngelis and Newsome, 1999), efforts to map V4

with dense grids of electrophysiological penetrations have failed

to reveal clear functional organization (cf. Youakim et al., 2001).

Recent advances in fMRI and optical imaging methods have

provided new information about functional organization of V4.

These studies show that V4 in monkeys is not a homogenous

visual area. fMRI studies in alert macaque monkeys reveal

color-selective functional domains in several regions of the

temporal lobe (including V4, posterior inferior temporal (PIT)

cortex, and TE) (Figure 2A, Conway et al., 2007; Conway and

Tsao, 2006; Harada et al., 2009). To draw analogy with the color

blobs of V1, these regions have been dubbed ‘‘globs’’ (Figures

2B and 2C) and the nonglob regions as ‘‘interglobs.’’ The imaging

results are supported by single-unit recordings showing that

Figure 1. V4 in Macaque Monkey
(A) Ventral and dorsal pathways are indicated by red and blue arrows,
respectively. V4 (shaded green) is a midtier area in the ventral pathway. Sulci:
lunate, STS (superior temporal sulcus). +, �: superior, inferior fields. Adapted
from Parker (2007).
(B) fMRI visual field mapping of early visual areas reveal dorsal and ventral V4
and V4A (Janssen and W.V., unpublished data).
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glob cells are spatially clustered by color preference and may be

arranged in ‘‘chromotopic’’ maps (Figure 2D, Conway and Tsao,

2009). Glob cells are narrowly tuned for hue, tolerant to changes

in luminance, and less orientation-selective than are interglob

cells (Conway et al., 2007). The identification of such globs

suggests that V4 is not a homogeneous area and may comprise

a collection of modules. It also highlights the need to further

investigate the functional organization of V4 and the adjoining

brain regions, and to elucidate their relationship with retinotopic

definitions of V4, PIT, and TEO.

The first optical imaging study of V4 in anesthetized monkeys

revealed orientation-selective domains which were a few

hundred microns in size (Ghose and Ts’o, 1997). More recent

studies using isoluminant color and achromatic gratings re-

vealed clear functional domains with preference for surface pro-

perties (color and luminance, Figures 3B and 3D) and for shape

(contour orientation; Figures 3C and 3E) in foveal regions of V4

(Tanigawa et al., 2010). These feature preference domains are

segregated within V4 (Figure 3F, pixels in B and D coded pink,

pixels in C and E coded green) and measure �500 mm or less.

Within color preference domains are maps for hue (Tanigawa

et al., 2010), akin to the hue maps found in V2 (Xiao et al.,

2003). No direct comparison between the optical imaging and

fMRI studies has yet been made. However, it seems possible

that the color/luminance and orientation regions identified with

optical imaging correspond to some of the globs and interglobs

found in V4 with fMRI. The findings that V4 contains functional

domains reconciles a long-standing debate concerning the

color-coding properties of V4: studies claiming that all of V4

was a color area were likely biased toward microelectrode

recordings fromcolormodules, while those reporting clear shape

selectivity were likely biased toward recordings from noncolor

modules (Conway and Tsao, 2006; Tanigawa et al., 2010).

How does the presence of segregated functional domains

impact topography? Topographic representation in V4 appears

to employ the same strategy present in other areas where there

are segregated functional domains. In V1, where there are segre-

gated left and right eye ocular dominance columns, the visual

map is repeated, once for the left eye and once for the right

eye (Hubel and Wiesel, 1977). In V2, where there are three func-

tional stripe types (thin, pale, and thick, Hubel and Livingstone,

1987), the visual field is represented three times, once each for

representation of color, form, and depth (Roe and Ts’o, 1995;

Shipp and Zeki, 2002a, 2002b). This type of repeated represen-

tation results in an interdigitation of different feature maps. A

complete visual field representation in one feature modality is

achieved by a collection of discontinuous functional domains

(e.g., a complete right eye visual field is achieved by coalescing

all right eye ocular dominance columns in V1; a complete

color visual field is achieved by coalescing all thin stripes in

V2). Topographic representation within V4 is similar (Tanigawa

et al., 2010; Conway et al., 2007). In the iso-eccentric axis, color

maps and orientation maps are interdigitated within V4, and

continuity of feature-specific representation is achieved across

bands of similar functional preference (Figure 4A). Iso-polar

Figure 3. Functional Organization in V4
Optical window over foveal V1, V2, and V4 (A). V4 fields of view in upper (B and
C) and lower (D and E) white rectangles. Color/luminance (B and D) and
orientation (D and F) maps. Composite map (F) illustrates segregation of color/
lum (pixels in B and D coded pink) and orientation (pixels in C and E coded
green) preference bands. Scale bar: 1 mm (Tanigawa et al., 2010).

Figure 2. Color Regions in Macaque
(A–C) Gray patches (A): several color globs identifed with fMRI seen in coronal
(B) and sagittal (C) views. Color voxels: better activated by equiluminant color
than black and white gratings. Electrode is seen targeting a color glob.
(D) Shift in color preference of neurons along length of an electrode penetration
through a glob (Conway and Tsao, 2009; Conway et al., 2010). Scale bar: 1 cm.
D: dorsal, A; anterior.
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representations map in the orthogonal axis along the color and

orientation bands (Figure 4B). In sum, it appears that, at least

in foveal regions of V4, the mapping strategy parallels that

observed in earlier visual areas.

III. V4 Is a Midtier Feature Representation Area:
Computation of Figure/Ground
In this section, we summarize the current knowledge about

object feature selectivities in V4. In doing so, we hope to under-

score certain aspects of V4 processing that may guide our

understanding of what makes V4, V4. That is, we ask, given

the diversity of response types in V4, what common transforma-

tion(s) underlies these various computations thatmake thempart

of this singular area? This line of questioning has been success-

fully used to examine transformations that occur in other visual

areas. For example, by identifying transformations across dif-

ferent submodalities of color (thin stripes), contour (thick/pale),

depth (thick), and motion (thick), the functional transformations

unique to V2 were characterized (Roe, 2003; Roe et al., 2009;

Lu et al., 2010). An important viewpoint that emerged is that

functional organization matters. That is, specific clustering of

neurons provides insight into the functional computations that

are emphasized (or more readily made) in a particular cortical

area. Indeed, it is possible that such functional organizational

signatures which are unique to each area, if sufficiently under-

stood, may be used to characterize the fundamental computa-

tions performed by each cortical area. We will return to this

notion at the end of this review.

Color and Brightness Representation in V4

Color Inputs to V4. Color vision begins with the L,M, and S cones

in the retina. The cone names derive from their peak wavelength

(at 562 nm, 535 nm, 440 nm, respectively). The cone classes do

not correspond to our perception of ‘‘red’’ ‘‘green’’ and ‘‘blue’’;

rather, our perception of color requires multiple stages of L, M,

S input integration (Chatterjee and Callaway, 2003; Gegenfurtner

and Kiper, 2003; Solomon and Lennie, 2007; Conway et al.,

2010). An important early stage is the generation of color-

opponency: red-green neurons detect differences in L and M

cone inputs, blue-yellow neurons compare S and L+M inputs,

and light-dark neurons sum L andM cone inputs. These compar-

isons form the two cardinal color axes and orthogonal luminance

axis, and are represented by discrete classes of neurons in the

lateral geniculate nucleus (Derrington et al., 1984). Within V1,

color opponency is further elaborated and is dominated by cells

with responsiveness along the blue-yellow and red-green axes

(Dow and Gouras, 1973; Livingstone and Hubel, 1984; Ts’o

and Gilbert, 1988; Lennie et al., 1990; Hanazawa et al., 2000;

Conway, 2001; Conway and Livingstone, 2006; Xiao et al.,

2007). While V1 plays an important role in generating color, it

does not contain a representation corresponding to perception

(e.g., perception of hues, color constancy, Brouwer and Heeger,

2009; Parkes et al., 2009). It is not until V2 that the first evidence

for hue maps (i.e., red, orange, yellow, green, blue, purple, etc.)

arises; these hue maps are found in V2 thin stripes (Xiao et al.,

2003). An important open question concerns the mechanisms

that transform the cone signals into neurons that code hue,

and whether the color-tuned neurons in V4 inherit their color

preferences or compute them within V4 (Conway, 2009).

Brightness. Both color and achromatic brightness (light-dark)

are important stimulus features that define object surfaces.

Brightness perception is subject to many of the same types of

contextual influences as color perception (e.g., filling in, Kraus-

kopf, 1963; contextual effects such as lightness constancy and

color constancy effects, MacEvoy and Paradiso, 2001; edge-

induced percepts such as Cornsweet brightness illusion, Roe

et al., 2005, andwater color illusion, Pinna et al., 2001). As shown

by human functional imaging (Engel and Furmanski, 2001) and

electrophysiological studies in monkeys (Livingstone and Hubel,

1984; Roe and Ts’o, 1995), at the level of V1, evidence suggests

that color and brightness are largely encoded independently.

Little is known about brightness representation in V4.

Is V4 a Color Area? In his early studies, Zeki reported that

the bulk of recorded cells in macaque V4 were color selective

and that cells with similar color preferences were clustered in

columnar fashion. Subsequent studies have also found a sig-

nificant clustering of color cells in V4: some clusters contain

neurons with similar color preferences and others with diverse

color preferences (Kotake et al., 2009). This is consistent with

the color domains revealed by functional imaging and may

suggest further diversity of color domains. Earlier studies re-

ported that V4 neurons were in fact no more selective for color

than were neurons in other visual areas and that they were also

selective for other stimulus dimensions (Schein et al., 1982; Ta-

naka et al., 1986) (although there may be a greater degree of

Figure 4. Topography in V4 Color and Orientation Bands
(A) Representation of iso-eccentricity across color (blue arrows) and orienta-
tion (red arrows) bands.
(B) Representation of iso-polarity within each set of color and orientation
bands. (Based on Tanigawa et al., 2010.)
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multipeaked chromatic tuning curves than in V1 or V2) (Hana-

zawa et al., 2000). However, note that differences may only

emerge under stimulus conditions that elicit differences (e.g.,

color constancy, see below). Despite the diversity of response

types in V4, the association of V4 with color processing remains

and is even used as a strong criterion for identifying V4 response

in human studies.

Color Constancy. An important aspect of V4 is its role in color

constancy. Color constancy refers to the perception that objects

maintain a constant color despite the fact that under different

illumination conditions the wavelength composition of light

reflected from the object changes significantly. In other words,

a red apple remains redwhether it is in shadow or under sunlight.

Although some aspects of color and brightness constancy

(Figure 5A) may arise as early as V1 or V2 (MacEvoy and Para-

diso, 2001; Conway, 2001; Moutoussis and Zeki, 2002; Shapley

and Hawken, 2002), the effects become quite prominent in V4

(Zeki, 1983). Using Mondrian-type stimuli (see Figure 5A, left),

Kusunoki and colleagues (2006) found that changing the illumi-

nation of the background shifted the tuning of V4 neurons; cells

shifted their color-tuning function in the direction of the chro-

matic change of the illuminant, matching the psychophysical

percept (also Schein and Desimone, 1990). In contrast, colored

surrounds do not change the chromatic tuning of cells in V1 or

V2 (Solomon et al., 2004). Consistent with this finding, lesions

of V4 leave color discrimination intact but lead to loss of color

constancy perception (in monkeys: Heywood et al., 1992; Walsh

et al., 1993; in man: Vaina, 1994). These findings give rise to the

speculation that the color domains identified in V4 by functional

imaging could be color-constant domains and not hue-selective

domains per se, something which remains to be examined.

Another open question concerns the degree to which the color

modules within V4 are functionally independent of other feature

domains. Psychophysically color constancy is dependent on

scene segmentation; that is, color constancy is maintained

within a depth plane but less so across depth planes (Werner,

2006). This suggests the presence of significant interactions

between representations of different feature modalities (e.g.,

color and depth) in V4.

Color Contrast-Defined Form. A recent finding points to the

distinction between objects defined by high-contrast achromatic

borders and equiluminant color-contrast borders. Bushnell et al.

(2011b) report roughly a quarter of cells in V4 exhibit greatest

response when shapes are presented at equiluminance to the

background and decreasing response with increasing figure-

ground luminance contrast. This response type, which has not

been observed in either V1 or V2, suggests that chromatically

defined boundaries and shapes are a defining feature of V4

and further strengthens the role of V4 in color processing. It

also introduces the concept that there may be two distinct

form pathways, one for high-contrast-defined form and another

for color-defined form.

Is V4 a Color Area in Humans? There is evidence from humans

which favors the existence of an extrastriate ‘‘color area.’’ Stroke

patients with particular circumscribed lesions of the ventral

cortex acquire a deficit of color vision (achromatopsia) yet retain

the ability to perceive shape, motion and depth. Imaging studies

of healthy human brains show localization of extrastriate color

responses to a region on the ventral surface of the brain

(although whether this area is within V4 proper or is an area ante-

rior to V4 remains debated) (Barbur and Spang, 2008; Bartels

and Zeki, 2000; Hadjikhani et al., 1998; Mullen et al., 2007;

Wade et al., 2008). Note that the correspondence of monkey

V4 and proposed human ‘‘color area’’ and human cerebral

achromatopsia remains in question (cf. Cowey and Heywood,

1997). Importantly, pattern analysis of fMRI responses to colored

gratings in humans has shown that the spatial distribution of

responses within this region covaries with perceived color, a

result that is not found for other visual areas such as V1 (Brouwer

and Heeger, 2009). Moreover, microstimulation of this region in

humans elicits a color percept (Murphey et al., 2008). To the

extent that color is considered a surface property, activation in

V4 also appears to correlate with surface perception (Bouvier

et al., 2008).

Thus, in the larger debate of whether there is a cortical area(s)

specialized for processing color information, the weight of the

evidence is suggestive that V4 does perform a transformation

that is unique and is central to color perception. Such an impor-

tant stage is also distinct from higher areas in inferotemporal

cortexwhere functions such as color categorization occur (Koida

and Komatsu, 2007) and where color and other object features

are combined to generate recognition of objects.

Figure 5. Examples of Transformations in V4
(A) Color: color constancy (left) and lightness constancy (right).
(B) Shape: curvature, sparse coding of curvature.
(C) Depth: binocular correspondence, size constancy.
(D) Motion: motion contrast-defined shape.
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Shape Representation in Area V4

A number of studies have demonstrated that V4 neurons are at

least as selective for shape as they are for color. Similar to earlier

processing stages, V4 cells are tuned for orientation and spatial

frequency of edges and linear sinusoidal gratings (Desimone and

Schein, 1987). However, V4 neurons are also sensitive to more

complex shape properties (Kobatake and Tanaka, 1994).

Curvature. One advanced shape property represented in V4 is

curvature. Curvature, which can be considered an integration of

oriented line segments, is a prominent feature of object bound-

aries. V4 cells (receptive fields typically 2–10 deg in size) can

be strongly selective for curvature of contours (Pasupathy and

Connor, 1999, 2001) as well as curved (i.e., non-Cartesian) grat-

ings (Gallant et al., 1993, 1996). Interestingly, a similar curvature-

based coding strategy appears to be used at intermediate levels

of the somatosensory system (Yau et al., 2009). One proposal

suggests that curvature tuning in V4 helps provide an efficient

way to encode shape. In fact, recordings from V4 neurons reveal

that not all curvatures are equally represented: there is a stronger

representation of acute curvatures across the neural population

(Carlson et al., 2011) (Figure 5B, right). In visual scenes, acute

curvatures are statistically relatively rare but highly diagnostic,

so, quite distinct from V1 where all local contour segments are

faithfully represented, the V4 bias can be characterized as

a sparse, discriminative representation of object shape (Carlson

et al., 2011).

Encoding of Object-Based Coordinates. Another important

aspect of shape coding that emerges in V4 is the transition from

retinotopic coordinates to object-centered coordinates. Several

lines of evidence suggest that V4 cells are very sensitive to the

relative position of texture and contour features within the recep-

tive field, rather than the absolute position of those features. For

example, the relative responsesof aV4 neuron to a variety of non-

Cartesian grating patterns remains constant as those patterns

are shifted across the receptive field (Gallant et al., 1996). V4 cells

are extremely sensitive to the position of contour fragments

within objects. For example, a given V4 cell may respond to

convex contour fragments near the top of a shape but not near

the bottom (Pasupathy and Connor, 2001). This invariance to

relative position may be related to the observation that V4

neurons encode information about the position of stimuli relative

to the center of attention (Connor et al., 1996, 1997). Tuning for

relative position appears to extend across larger regions of reti-

notopic space at subsequent stages of processing in inferotem-

poral cortex (Brincat and Connor, 2004; Yamane et al., 2008).

Representation of relative position is critical for any structural

shape coding scheme, and current evidence suggests that V4

cells carry sufficient contour shape and relative position informa-

tion for reconstruction of moderately complex shape boundaries

at the population level (Pasupathy and Connor, 2002).

Shape andHuman V4. Until relatively recently most of thework

on area V4 came from studies using animal models, particularly

themacaquemonkey. Human studies relied on the rare observa-

tion of neurological patients with circumscribed lesions to V4

(Rizzo et al., 1992; Gallant et al., 2000; Merigan et al., 1997).

These lesion studies showed that lesions to human V4 have

effects similar to V4 lesions in nonhuman primates (De Weerd

et al., 1996, 2003; Merigan, 1996, 2000; Merigan and Pham,

1998; Schiller, 1995) and that human V4 lesions affect curvature

discrimination (Gallant et al., 2000). More recent fMRI studies

suggest that area V4 in humans is activated preferentially by con-

centric and radial gratings (Wilkinson et al., 2000) and textures

(Dumoulin and Hess, 2007).

Computational Models. Computational models have been

used topredict object shape fromactivity of neuronal populations

in V4. Responses of V4 have been defined in stimulus subspace,

such as contour curvature. The aim is, using V4 responses to one

specific subset of (basis) curves, to read out contour curvatures

from a population of V4 neuronal responses (Pasupathy and

Connor, 2002). Unfortunately, no current neuronal model of V4

provides good predictions of responses to natural images (David

et al., 2006). Voxel-based models of V4 developed using fMRI

also provide poor predictions of responses to natural scenes,

though they perform as well as neuronal models in both earlier

and later areas (Naselaris et al., 2009).

There are several possible reasons why current computational

models of V4 perform poorly. It could be that V4 represents

complex aspects of shape that cannot be captured by the

second-order nonlinearities assumed in current models (David

et al., 2006). Preliminary reports suggest that this may be true

for at least a subset of V4 neurons (J.L.G. and C.E.C., unpub-

lished data). Another possibility is that V4 represents aspects

of shape that are more complex than current mathematical

models allow. For example, if V4 neurons represent the three-

dimensional structure of occluded surfaces then there would

be no way to represent this aspect of selectivity using current

computational models (Lee et al., 2001).

Depth Representation in V4

Binocular Disparity Inputs to V4. We perceive depth in visual

scenes by detecting small positional differences between corre-

sponding visual features in the left eye and right eye images. This

difference is called binocular disparity and permits binocular

depth perception, or stereopsis. Disparity-selective response

is initially established in V1 (Poggio and Fischer, 1977), where

single neurons exhibit sensitivity to a narrow range of depths

(measured by the width of disparity tuning curves). In V2,

disparity selective neurons are found throughout the thin, pale,

and thick stripes, but are most prevalent in the thick stripes (Liv-

ingstone and Hubel, 1988; Peterhans and von der Heydt, 1993;

Roe and Ts’o, 1995; Ts’o et al., 2001). The association with thick

stripes in V2 is reinforced by the presence of functional maps for

near-to-far depth in thick stripes (Chen et al., 2008). Since V2

provides inputs both to dorsal (via thick stripes, DeYoe and

Van Essen, 1985; Shipp and Zeki, 1985, 1989; Nascimento-Silva

et al., 2003) and ventral (via thin and pale stripes, DeYoe and Van

Essen, 1985; Nakamura et al., 1993; Nascimento-Silva et al.,

2003) pathways, it raises the issue of how these disparity are

differentially used in the two pathways.

Role of Disparity Selective Responses in V4 in Fine Depth

Perception. Although binocular disparity has traditionally been

considered a dorsal pathway function (e.g., Livingstone and

Hubel, 1988; Sakata et al., 1997; Gonzalez and Perez, 1998),

recent physiological studies are overturning this long-standing

belief. Indeed, V4 cells exhibit selectivity for binocular disparity

(Hinkle and Connor, 2001, 2005; Watanabe et al., 2002;

Tanabe et al., 2004, 2005; Hegdé and Van Essen, 2005a),
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disparity-defined shape in random-dot stereograms (Hegdé and

Van Essen, 2005b), and 3-D orientation of bars (Hinkle and Con-

nor, 2002). As shown by studies in both monkeys and humans,

these response characteristics are consistent with the use of

disparity cues in the ventral pathway for object recognition

(fine stereopsis involving higher spatial frequencies, retinal

disparities < 0.5 deg, stationary or slowly moving objects), and

are distinct from those in the dorsal pathway for vision related

tomotion, self-motion, and visually guided behavior (coarse ster-

opsis involving lower spatial frequencies, larger retinal disparities

between 0.5–10 deg, and moving targets) (Neri et al., 2004;

Parker, 2007; Preston et al., 2008). Further confirming V4’s role

in fine depth perception, microstimulation in V4 biases behav-

ioral judgment of fine depth (Shiozaki et al., 2012), whereas

microstimulation of MT biases behavioral judgment of coarse

but not fine depth (Uka and DeAngelis, 2006). Consistent with

these results, V4 and IT neurons show trial-by-trial response vari-

ation correlated with fine depth judgment (Uka et al., 2005; Shio-

zaki et al., 2012), while MT neuron responses correlate with

coarse depth judgment (Uka and DeAngelis, 2004).

Binocular Matching. To calculate binocular disparity, how

does the visual system find the appropriate matching between

left and right eye images? A very useful tool for investigating

this ‘‘binocular correspondence problem’’ is the random dot

stereogram (RDS, Figure 5C, left), a stimulus in which 3D struc-

ture is perceived only with appropriate matching of dots in left

and right eyes (Julesz, 1972). The degree of spatial shift of

dots between the left and right eyes determines the depth plane

perceived. To probe what stage in the visual system binocular

correspondence is computed, a control (anticorrelated RDS,

aRDS) was designed in which the matching dots were reversed

in contrast (e.g., black in left eye to white in right eye, called

‘‘falsematches’’); this contrast reversal prevents binocular corre-

spondence and results in lack of surface-in-depth percept

(Julesz, 1972; Tanabe et al., 2008; Doi et al., 2011). Neurophys-

iological studies revealed that cells in V1 exhibit similar respon-

siveness to RDS and aRDS stimuli (Ohzawa et al., 1990; Qian

and Zhu, 1997; Cumming and Parker, 1997). In contrast, V4 cells

substantially reduce their selectivity to disparities in aRDSs, sug-

gesting that the false matching responses elicited in V1 are

largely rejected by the stage of V4 (Tanabe et al., 2004; Kumano

et al., 2008). Although there is no evidence from single unit

studies of any difference in binocular correspondence between

V1 and V2 (Okazaki and I.F., unpublished data), Chen et al.

(2008) reported that in V2 thick stripes, near-to-far maps are

imaged in response to RDSs, but not aRDSs, suggesting that

V2 also plays an important role in rejecting false matches.

Conversion of Absolute Disparity to Relative Disparity.

Disparity cues can be used to calculate absolute distance from

the observer. However, amore important function is the determi-

nation of distance relative to a background or another object

(Westheimer, 1979; Erkelens and Collewijn, 1985; Regan et al.,

1986). This requires calculation of relative disparity. Whereas

cells in V1 encode local absolute disparity within their receptive

field (Cumming and Parker, 2000), the computation of relative

disparity begins in V2 (Cumming and Parker, 1999; Thomas

et al., 2002). Some cells in V2 exhibit shifts in disparity tuning

with shifts in plane of the background, thereby signaling depth

relative to the background depth plane (Thomas et al., 2002).

In V4, a much higher proportion of cells display such shifts in

disparity tuning, and, furthermore, themagnitudes of these shifts

are greater than those for V2 (Umeda et al., 2007). Thus, V4 is

a stage central to the calculation of relative disparity between

spatially adjacent visual planes, a function highly important for

fine depth perception and figure-ground segregation.

Roles in Size Constancy. Size constancy refers to our ability to

perceive the size of an object despite different viewing distances

(Figure 5C, right). To achieve this, information regarding the differ-

ences in retinal image size at different viewing distances must be

incorporated with information about object distance. Where and

how does this computation occur? The first electrophysiological

study to address this question found that neurons in V4 vary their

responses relative to size and distance of the viewing plane

(Dobbins et al., 1998). More recently, Fujita and Tanaka hypothe-

sized that V4 compensates for change in retinal image size by

using visual cues for depth, and then calibrates for the perceived

size. In the majority of V4 neurons studied, when stimuli were

presented with larger crossed disparities (nearer), the size tuning

curves of these cells shifted toward larger size preferences.

Thus, V4 neurons may contribute to size constancy by systemat-

ically changing their size tuningdependingon theviewingdistance

fromobjects.Consistentwith these findings, lesions of V4 (prestri-

ate cortex) (Ungerleider et al., 1977), but not parietal cortex (Hum-

phrey and Weiskrantz, 1969), result in loss of size constancy.

3D Shape. While most neurophysiological research has

focused on 2D shape representation, recent work has demon-

strated strong representation of 3D shape information in V4 and

elsewhere in the ventral pathway. Many V4 neurons are robustly

tuned for 3D surface/edge orientation, in a depth-invariant

manner (Hinkle and Connor, 2002). V4 neurons are also sensitive

tomore complex 3Dsurface shapedbasedonbinocular disparity

and shading cues (Hegdé and Van Essen, 2005b; Arcizet et al.,

2009). Explicit coding of 3D surface shape in IT (Janssen et al.,

1999; Yamane et al., 2008) is likely supported by inputs from

such V4 neurons.

Motion Representation in V4

Some Neurons in V4 Are Direction Selective. Due to the strong

association of motion with the dorsal pathway, the role of V4 in

motion processing has long been neglected. This has been

true despite the number of studies that have shown considerable

direction selectivity in V4 (Mountcastle et al., 1987; Desimone

and Schein, 1987; Ferrera et al., 1994; Tolias et al., 2005).

Depending on the directional criterion used, up to a third of V4

neurons have been characterized as direction selective. Esti-

mates range from about 5% if assessed within the globs

(Conway et al., 2007) or 13% overall (preferred: null direction

criterion of 10:3, Desimone and Schein, 1987) to about 33%

(preferred: null criterion 2:1, Ferrera et al., 1994) (see also Tolias

et al., 2005). Although the proportion of direction-selective

neurons in V4 is much less than in MT where roughly 90% of

neurons exhibit direction selectivity (Albright et al., 1984), it is

not dissimilar from that in V1 (20%–30%, e.g., Orban et al.,

1986) or V2 (�15%, e.g., Levitt et al., 1994).

Presence of Direction-Selective Domains in V4. In monkey

early visual cortex, clustering of direction selective neurons

was observed in V2 thick/pale stripes, but not in V1 (Lu et al.,
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2010). Recent optical imaging studies in anesthetized monkeys

(H.L., Chen, and A.W.R., unpublished data) reported clustering

of direction-selective response in foveal regions of V4. The pres-

ence of directional domains suggests that motion information

plays a significant role in V4 processing and that directionality

is not merely a residual signal inherited from earlier visual areas.

Motion Contrast-Defined Shape. If there is such significant

presence of directional response in V4, what role does it play

in the ventral processing stream? One possibility is that motion

information in V4 is used for figure-ground discrimination during

object motion (Figure 5D). As elegantly put forth by Braddick

(1993), a moving object contains a velocity map that separates

itself from its background. Based on this velocity map, two types

of information are extracted: one for determining the direction

and speed of the moving object, one for identifying the object

from its background. To determine the global direction and

speed of an object, a motion integration process is required

because early direction neurons only detect local motion (i.e.,

the ‘‘aperture problem’’). On the other hand, to distinguish an

object from its background, a differential process is required

(cf. Zhou et al., 2000). As previously hypothesized, these two

motion functions may be subserved by two different motion

pathways, a motion integration process in the dorsal stream

(V1/MT/MST) and a motion differentiation process in the

ventral stream (V1/V2/V4) (Braddick, 1993).

There is some evidence to support this hypothesis. Ventral and

dorsal stream motion signals are anatomically distinguishable

from the initial stages of cortical processing. As early as V1, two

classes of directional cells can be distinguished in different sub-

layers of layer 4B (Nassi and Callaway, 2007). MT-projecting V1

cells, which are large cells in lower layer 4B underlying blobs,

mediate fast transmission of magnocellular-drive input. V1

neurons projecting to the ventral stream are smaller, slower,

and positioned to integrate magnocellular and parvocellular

derived inputs. At the next stage in the ventral pathway, in V2,

Figure 6. Transformations in V4 for Figure-Ground
Segregation
(A) Differentiation of In versus Out.
(B) Surface-border integration (e.g., border assigned
surface color in watercolor effect, Pinna et al., 2001).
(C) Figural integration (e.g., integration of contour, and
inference behind occluders).
(D) Invariance of shape across multiple cues.
(E) Context-dependency (e.g., face-vase).

neurons in the thick stripes are known to

be sensitive to coherent-motion-defined lines

(Peterhans and von der Heydt, 1993) and exhibit

orientation selectivity for both differential

motion-defined borders and luminance con-

trast-defined borders (Marcar et al., 2000).

Consistent with these electrophysiological find-

ings, optical imaging studies demonstrate that

orientation domains in thick/pale stripes are

invariant for luminance borders and motion

contrast-definedborders (H.L. et al. unpublished

data), suggesting a common functional organi-

zation for contour processing in V2 thick stripes.

This cue-invariant border recognition process is also found in

V4. Mysore et al. (2006) examined V4 responses to motion

contours (borders between two patches of random dots drifting

in different directions). They found that a significant proportion of

V4 neurons showed selectivity to the orientation of such second-

order contours and similar orientation selectivity to first- and

second-order contours. Imaging studies have also revealed

motion-contour orientation maps in V4 similar to conventional

orientation maps (H.L. et al. unpublished data). Thus, the nature

of motion signals described thus far is consistent with the role of

V4 in detecting differential motion. Such a ‘‘motion differentiation

process’’ may play a central role in figure-ground segregation.

Role in Figure-Ground Segregation

The summaries presented here suggest that V4 plays a role in the

representation of a complex array of visual stimulus features.

These include: surface features such as color, luminance,

shading, texture (Arcizet et al., 2008, 2009); color constancy

and lightness constancy (Figure 5A); contour features such as

orientation and curvature (Figure 5B); depth cues that contribute

to binocular correspondence, relative disparity, and size con-

stancy (Figure 5C); and motion cues that are used for motion

contrast border identification (Figure 5D). However, the func-

tional role of V4 in visual processing is not yet clear. Is there

a common functional transformation that V4 performs across

these multiple feature modalities? A better understanding of V4

function may come from studies that directly compare re-

sponses to multiple featural spaces, akin to those that have

been conducted in V2 (e.g., Roe et al., 2009 for review) and in

inferotemporal areas (e.g., Vinberg and Grill-Spector, 2008).

Although we as yet lack a unifying hypothesis of V4 function,

several lines of evidence point to V4’s role in figure-ground

segregation. Such a role would require at minimum the following

computations (depicted in Figure 6):

In versus Out (Figure 6A). As early as V1, neurons exhibit

enhanced activity when their receptive fields lie in figure regions
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compared to ground regions (Lamme, 1995; cf. Knierim and van

Essen, 1992; Kastner et al., 1999), consistent with placing

greater emphasis on figure over ground.

Featural Integration (Figure 6B). In V2, studies suggest associ-

ations are first created between borders and surfaces. By

measuring responses to Cornsweet stimuli (a stimulus in which

a luminance contrast at an edge induces an illusory surface

brightness contrast across the edge), studies using both imaging

(Roe et al., 2005) and neuronal cross correlation (Hung et al.,

2007) showed that edges ‘‘capture’’ surfaces, and thereby lead

to integration of border and surface. These Cornsweet re-

sponses were found in thin stripes of V2, a well known source

of inputs to V4. Such surface capture has also been described

with disparity cues for V2 cells (Bakin et al., 2000). In this case,

Kaniza-induced illusory edges perceived in depth due to

disparity cues ‘‘capture’’ texture elements on the surface despite

the fact that those elements lack any disparity cues. Border-

surface association has also been demonstrated by von der

Heydt and colleagues. In what they call ‘‘border ownership’’

response, they find that responses in V2 and V4 depend on the

side on which a luminance-defined figure belongs (Zhou et al.,

2000). Such surface capture is also associated with stereo-

scopic depth, as near disparity response at edges tends to be

associated with the figure-side of displays (described for V2 cells

in Qiu and von der Heydt, 2005). Thus, using different feature

cues, V4 enhances ‘‘figureness’’ by differential neuronal re-

sponse to the figure versus the ground side of the border.

Figural Integration (Figure 6C). Featural integration has been

examined in studies of colinearity (e.g., Li et al., 2006) and

contour completion. The existence, in early visual pathway, of

neural response underlying contour completion across gaps is

well described (e.g., in V1, Sugita, 1999; in V2, Peterhans and

von der Heydt, 1989; Bakin et al., 2000). There are to date few

studies of the role of V4 in figural completion behind occluders.

However, one recent study compared responses of V4 neurons

to real and ‘‘accidental’’ contours (contours produced by the

occluder which do not provide information about the true shape

of the object) (Bushnell et al., 2011a). This study found that

responses to accidental contours were suppressed relative to

real object contours, a suppression that disappeared with intro-

duction of small gaps between the occluder and occluded

objects. This suggests that V4 is an important stage in image

segmentation.

Cue Invariant Shapes (Figure 6D). As objects typically can be

defined by multiple features (e.g., color, motion, depth, contour),

another important step in figure-ground segregation involves

border-surface associations across multiple cues. As shown in

Figure 6D, a square shape can be defined by luminance contrast,

color, depth, or motion contrast cues. Whether such invariance

at mid-level processing stages is established by integration

across multiple feature-specific input maps from V2 or via

intra-V4 circuitry is unknown. Although the number of studies ex-

amining invariance in V4 is still limited, recent reports do support

cue invariant shape coding in V4. Mysore et al. (2008) have

described invariant V4 responses to shapes defined by either

static or moving cues. In a study by Handa et al. (2010), monkeys

were trained on a cue dependent shape discrimination task

(dependent on either a motion cue or luminance cue). About

a third of the neurons in V4 responded selectively to a shape

under both themotion and the luminance cue conditions. Further

studies are needed to support V4’s role in cue invariant shape

recognition.

Context Dependency (Figure 6E). Central to the task of figure-

ground segregation is the ability to modify what is perceived

as figure and ground depending on situational cues such as

stimulus context and attention. Indeed, there are numerous

demonstrations of the ability of the visual system to modify the

interpretation of what is figure and what is ground (e.g., the

classic vase/face example where the figure is perceived as either

a vase or as a pair of face profiles). That neuronal response in V4

is highly adaptable and modifiable will become particularly

evident in the following section on attentional modulation. In

particular, the role of top-down and bottom-up attentional influ-

ences on V4 activity has been a topic of intense investigation in

the last two decades. However, only recently has the relationship

between object representation and attention come into sharper

focus.

IV. V4 Is an Area of Attentional and Contextual
Modulation
In the sections above, we have summarized studies on V4’s role

in processing object features. There is also a vast literature on

attentional effects in V4 (for reviews, Desimone and Duncan,

1995; Chelazzi et al., 2011). Our purpose here is to try and

draw ties between these two disparate bodies of literature. In

some sense, these two bodies of investigation—object feature

encoding and attentional effects—could be classified as studies

on ‘‘bottom-up’’ and ‘‘top-down’’ influences in V4, respectively.

Both interface in V4 and both selectively shape networks in V4

(cf. Reynolds and Desimone, 2003; Qiu et al., 2007). (Note that

for the purposes of this review, although object ‘‘salience’’ may

influence attention, we consider this part of the bottom-up

process. Here, we use the term ‘‘attention’’ to refer to internally

generated, top-down influences.)

We frame our conception of V4 function in terms of

‘‘selection’’. The visual attention literature commonly uses the

term ‘‘select’’ to indicate either a region of space that is selected

(spatial attention) or specific object features that are selected

(feature attention). In the same vein, objects in the visual scene

‘‘select’’ the neuronal networks in V4 that encode their features.

We propose that these two ‘‘selection’’ processes share a

common framework. More specifically, we propose that the

functional architecture in V4 is the substrate through which

both sets of influences are mediated and that, at the neural level,

selectivemodulation of networks in V4may be fundamentally the

same, albeit directed from different sources.

Neuronal Enhancement of Visual Representation in V4

Our perceptual system is continuously confronted with much

more information than it can actively deal with. One way to

reduce processing load is to select a fraction of the incoming

visual information for scrutinized processing. Visual attention

achieves this by focusing on a particular location in space (spatial

attention) or on certain features of objects (feature attention).

The ability to attend appropriately can be negatively affected

by having other competing objects (distractors) in the visual

field. In the biased competition model of visual attention
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(Bundesen, 1990; Desimone and Duncan, 1995; Grossberg,

1980), attentional selection is achieved via a competition for

neural resources; this competition can be biased in several

ways. One source of this bias comes from involuntary, sensory-

driven bottom-up mechanisms (e.g., salient attention-attracting

stimuli). Another biasing mechanism is voluntary attentional

top-down feedback (e.g., internally generated goal-directed

attention), which presumably originates in areas outside the

visual cortex. The biased competition model states that only

those stimuli that win the competition against surrounding dis-

tractor stimuli will have further access to higher order neural

mechanisms linking percepts to mechanisms sustaining goal-

directed actions including systems involved in memory, deci-

sion-makingandgeneratingmotor plans (Desimone andDuncan,

1995; Luck et al., 1997; Moran and Desimone, 1985). One goal of

this review is to consider this integrative bottom-up and top-

down view in the context of functional organization in V4.

Spatial Attention

Spatial attention has often been characterized as a ‘‘spotlight’’

on a region in space where visual processes appear heightened

(e.g., Posner, 1980). At the neural level, attention to a location in

space boosts the neural activity of neurons with receptive fields

within that attended locale. Such effects have been observed

both in dorsal and ventral pathways. It is reported that the levels

of enhancement are low in V1 and V2 (typically < 5%) and more

robust in areas such as V4 and IT (15%–20% with single stimuli)

(e.g., Moran and Desimone, 1985; Desimone and Duncan, 1995;

Treue and Maunsell, 1996; Reynolds et al., 1999, 2000; Kastner

and Ungerleider, 2000; McAdams and Maunsell, 2000; Chelazzi

et al., 2001; Mitchell et al., 2003; Reynolds and Chelazzi, 2004;

Cohen and Newsome, 2004). Usually the presence of distractors

leads to a reduction of neural response to the stimulus in the

receptive field. However, attention can significantly enhance

neural response in the presence of distractors (or to low contrast

stimuli). This boost in neural activity by spatial attention has been

equated with increased sensitivity to stimuli (e.g., to contrast

levels), thereby, in a sense, boosting the apparent visibility of

an object (e.g., Reynolds et al., 2000; Carrasco et al., 2004).

Although the relationship of neuronal response and BOLD re-

sponse is still not well understood, boosting of response by

attention is also observed in imaging studies. When human

subjects attend to cued locations in the visual field, regions of

visual cortex that are topographically mapped to these locations

exhibit elevated BOLD response (Tootell et al., 1998; Brefczynski

and DeYoe, 1999; see also Sasaki et al., 2001; Buracas and

Boynton, 2007). In macaque monkeys, optical imaging of V4 in

monkeys performing spatial attention tasks also exhibit topo-

graphically appropriate elevated hemodynamic signals (Tani-

gawa and A.W.R., unpublished data). With respect to functional

organization in V4, this spatial attention enhances activity of all

functional domains falling topographically within the attended

locale. Thus, although there are many questions surrounding

the relationship between neuronal spiking activity and hemody-

namic response, both measures indicate enhancement of re-

sponse by spatial attention.

Feature-Based Attention

The term ‘‘feature attention’’ has been used to refer to both

feature value (e.g., red, green, blue) and feature dimension

(e.g., color). Thus the oft-used phrase ‘‘feature-based attention’’

can be understood as both ‘‘feature selection’’ and ‘‘dimension

selection’’. These are two sets of perceptual phenomena with

distinct underlying neural mechanisms; both involve specific

modulations of V4 neuronal activity. At the neural level, when

multiple stimuli are simultaneously presented within the neuron’s

RF (e.g., a red vertical bar and a green horizontal bar), attention

to the item matching the cell’s preferred stimulus enhances the

neuronal response beyond that to the items presented alone.

Feature-Based Attention for Object Selection. One form of

feature-based attention uses feature values to identify relevant

items in the scene (e.g., the red item; Motter, 1994; Bichot

et al., 2005; Chelazzi et al., 1998, 2001). In contrast to spatial

attention, behavioral evidence in humans indicates that feature-

based attention can affect processing throughout the entire

visual field, in a parallel fashion (Sàenz et al., 2003; Maunsell

and Treue, 2006). Consistent with this, single-unit recordings

fromarea V4ofmacaque conducting feature-based search tasks

have revealed that neuronal responses to elements that share the

target-defining features are enhancedduring the searchprocess,

even before the animal locates the designated target. Motter

(1994) demonstrated that V4 neurons are differentially activated

depending on a match or nonmatch between an instructional

cue and the receptive field stimulus. In other words, regardless

of spatial geometry, this form of feature-based attention is able

to ‘‘highlight’’ all the objects in the visual array that are potentially

relevant for the task at hand (Motter, 1994; Chelazzi et al., 1998,

2001; Bichot et al., 2005). Essentially, the mechanism allows

privileged processing of these objects, while other objects are

effectively filtered out in parallel across the visual array.

Dynamic Feature-Directed Grouping. An important aspect of

V4 function is its dynamic and context-dependent response to

the visual scene. Here we supply three examples.

Dynamic Shifts in Orientation and Spatial Frequency Tuning.

Evidence from a recent study (David et al., 2008) showed that

feature-based attention can alter spatial tuning properties of

neurons in area V4. Neuronal responses were recorded while

animals were deploying both spatial and feature-based attention

within the context of a modified match-to-sample task or a free-

viewing visual search task. It was found that orientation and

spatial frequency tuning of many V4 neurons tended to shift in

the direction of the orientation and spatial frequency content of

the sought target. The data appeared to be consistent with

a matched filter mechanism in which neurons shift tuning to

increase the neural representation of relevant features, at the

cost of representation of irrelevant features. Thus, feature ‘‘high-

lighting’’ can occur not only by response enhancement but also

by biasing the sensitivity of the neuronal population toward

attended features.

Dynamic Tagging of Feature-Associated Objects. Enhancing

activity of neurons that encode attended features allows the

system to also enhance the representation of whole (or bound)

objects containing that feature. For instance, feature-based

attention of this sort can aid selection of a designated target

element on the basis of color information, e.g., the red item,

which then translates into selective processing and discrimina-

tion of another feature of the same item, e.g., its shape (e.g.,

Sohn et al., 2004).
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Dynamic Tuning Based on Motor Output. A second form of

feature-based attention involves identifying a specific object

feature while at the same time ignoring other features of the

same object (Fanini et al., 2006; Nobre et al., 2006; Mirabella

et al., 2007; Wegener et al., 2008). In contrast to feature tagging

of objects, sorting or classifying of objects on the basis of one

elemental feature dimension (e.g., color of fruit or shape of fruit,

Figure 7A) requires that the unity of perceptual objects be broken

down. This type of feature attention was directly examined in

a study in which the activity of V4 neurons was recorded while

an animal was attending to either the color or the orientation

feature dimension of colored oriented bars (four possible colors

and four possible orientations) (Mirabella et al., 2007). Monkeys

were trained to turn a response lever to the left in response to two

of the four colors (red and blue) and two of the four orientations

(0� and 45�), and to the right in response to the other two colors

(yellow and green) and two orientations (90� and 135�). Monkeys

responded (left or right) to color-orientation pairings. To perform

the task correctly, the monkeys had to selectively attend to the

feature dimension that was cued, while ignoring the other feature

dimension. The study reported that responses of V4 neurons to

otherwise identical stimuli are modulated depending on the

task cue (Figure 7B); remarkably, the selected task-relevant

features were ‘‘selected’’ into one of two behaviorally relevant

response categories (left versus right). This type of task-depen-

dent neuronal response grouping provides the first evidence that

network associations in V4 can be directed, not only by sensory-

defined features, but also by top-down motor output categories.

Role of Synchrony

Neuronal firing rate may not be the only means by which atten-

tional signals are mediated. Recent findings suggest that

feature-based attention may also act by increasing synchroniza-

tion among the neurons selective for the relevant features,

particularly in the gamma-band (35–70 hz) frequency range

(Bichot et al., 2005; Taylor et al., 2005; Womelsdorf and Fries,

2007). In a visual search task that contained an array of objects

defined by both color and shape, Bichot et al. (2005) showed

that gamma band oscillations occurred more frequently when

attended targets fell in the receptive field (both initially and prior

to eye movements), suggesting a role for synchrony in feature-

guided serial and parallel search. Such enhancements in gamma

band oscillation have also been reported to occur during spatial

attention tasks (Fries et al., 2001). Furthermore, other studies

report that attentional modulation leads to decreased firing

rate synchronization in V4, and proposed this as a way to reduce

correlated noise and thus enhance signal-to-noise (Mitchell

et al., 2009; Cohen and Maunsell, 2009). Participation of en-

hanced versus decreased correlation may be cell type specific.

Mitchell et al. (2007) demonstrated that attentional modulation

acts particularly strongly on fast spiking neurons (interneurons)

in V4, highlighting a potential role of interneurons in enhance-

ment of gamma synchrony (Tiesinga et al., 2004; Buia and

Tiesinga, 2006). Anderson et al. (2011a) found attention affected

firing rate differently for bursty versus nonbursty pyramidal cells.

How the effects on gamma synchrony relate to neuronal firing

enhancement during attention is not clear.

Synchrony has also been proposed to underlie binding of

object features, thereby enabling perceptual unity (e.g., Singer

andGray, 1995). Neuronal oscillations of cells in different cortical

columns in cat visual cortex may or may not synchronize

depending on stimulus geometry (such as spatial separation

and feature orientation) (Gray et al., 1989). Enhanced neural

synchrony has also been demonstrated when contours are

perceived to be part of the same surface but not when inter-

preted as belonging to different surfaces (Castelo-Branco

et al., 2000). Thus, synchrony is a potential way to temporally

bind different stimulus features in a cell assembly and provide

coherent global percepts. Although our current understanding

of the role of synchrony is still evolving (indeed synchrony has

been implicated in many mental processes), perhaps it can be

viewed as a mechanism for establishing relations (Singer,

1999), whether it be relations within a shape, within an attentional

focus, or within a memory trace (e.g., Harris et al., 2003).

Figure 7. Feature-Dependent Sorting
(A) Apples and peppers can be sorted based on color while disregarding shape
(top-left, bottom-right), or based on shape while disregarding color (top-right
and bottom-left). One feature is attended and the other must be ignored.
(Courtesy of G. Bertini and M. Veronese.)
(B) A single V4 neuron showing modulation of responses to colored oriented
stimuli. Monkeys were trained to respond Left to some color-orient pairings
and to respond Right to other pairings. The neuronal firing rate shifts
depending on instruction to attend to color or to orientation (modified from
Mirabella et al., 2007). See text for further details.
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Relation to Functional Organization in V4

One hint comes from the association of gamma band oscillation

with hemodynamic signals. Hemodynamic signals are thought to

be more closely related to local field potentials (LFPs) than to

action potentials (Logothetis et al., 2001). In fact, Niessing

et al. (2005) reported that optically imaged hemodynamic

response strength correlated better with the power of high-

frequency LFPs than with spiking activity. Optical imaging of

attentional signals in V4 in monkeys has shown enhancement

of the hemodynamic response during spatial attention tasks

(Tanigawa and A.W.R., unpublished data). This is consistent

with reported enhancements in gamma band synchrony (Fries

et al., 2001) and predicts that spatial attention acts by elevating

responsemagnitude in all functional domainswithin the attended

locale (Figure 8A). This study also showed that feature-based

attention (e.g., attention to color) may be mediated, not via en-

hancement of imaged domain response, but rather via enhanced

correlations between task-relevant functional domains (e.g.,

color domains) in V4. Thus, feature attention may be mediated

via correlation change across the visual field, but only within

domains encoding the attended feature (Figure 8B). These differ-

ential effects of spatial and feature attention suggest that

domain-based networks are dynamically configured in V4.

Top-Down Influences

We briefly give some consideration to how attentionally medi-

ated reconfiguration of networks in V4 might be directed

by top-down influences. V4 receives feedback influences from

temporal (DeYoe et al., 1994; Felleman et al., 1997), prefrontal,

and parietal areas (Stepniewska et al., 2005; Ungerleider et al.,

2008; Pouget et al., 2009). In this sense, V4 is well positioned

for integrating top-down influences with information about

stimuli from the bottom-up direction.

Causal Interactions between Frontal and Visual Cortical Areas?

Although imaging and neuropsychological studies strongly sug-

gested that feedback signals from fronto-parietal cortex interact

with sensory signals in visual areas such as V4, it has been diffi-

cult to prove a causal link between activity in frontal (or parietal)

cortex and modulation of visually driven activity. One area in

prefrontal cortex that has been proposed as a source of top-

down influence is the frontal eye fields (FEF), a cortical area

responsible for directing eye movements. During overt attention,

FEF initiates circuits which direct the center of gaze toward

salient objects. During covert attention, similar neuronal mecha-

nisms may be at play (which has led to the ‘‘pre-motor theory of

attention’’) (Corbetta et al., 1998; Corbetta, 1998; Hoffman and

Subramaniam, 1995; Kustov and Robinson, 1996; Moore et al.,

2003; Moore and Armstrong, 2003; Moore and Fallah, 2001;

Moore and Fallah, 2004; Nobre et al., 2000; Rizzolatti et al.,

1987). If so, then FEF should play a causal role in directing atten-

tion and in influencing V4 activity.

Currently, the only evidence of causal influences from FEF

comes from studies of spatial attention. Moore and colleagues

provided the first elegant evidence showing such a causal link

(Moore and Fallah, 2004). By using microstimulation in FEF, they

showed a causal relationship between altered activity in the FEF

and spatially specific enhanced visual representations within

V4. Second, they showed that microstimulation in FEF increased

perceptual abilities at the stimulated visuotopic locations.

More recently, using fMRI methods, Ekstrom and colleagues

examined the effect of electrical microstimulation in FEF on visu-

ally driven responses in V4 and other extrastriate cortical areas

of behaving monkeys (Ekstrom et al., 2008, 2009). They found

that voxels in V4 which showed the strongest enhancement of

fMRI activity caused by FEF microstimulation were not the voxels

with the strongest visual responses, but rather adjacent voxels. In

fact, strongly visually driven voxels themselveswereunaffectedor

even suppressedbyFEFmicrostimulation. These results led them

to test whether effects of electrical stimulation on visually driven

activity in V4 would be stronger in the presence of ‘‘distractor’’

stimuli. Without distractors, electrical stimulation increased fMRI

activity in V4. With distractors (which normally cause a decrease

in activity), the activity in V4 voxel increased substantially beyond

the effect without distractors. These results are consistent with

neurophysiological studies that show stronger enhancement in

the presence of competitive distractors. The same authors

showed in a second study that FEF microstimulation leads to

a nonproportional scaling of the contrast-response curve in visual

areas including V4, suggesting that attention-induced increase in

neural sensitivity can be mediated by top-down influences.

In sum, existing data indicate that top-down feedback modu-

lates activity in V4 in a way that parallels spatial attention effects,

and, furthermore, the magnitude of effect depends on specifics

of bottom-up stimuli (i.e., presence/absence of distractors,

salience). This is clear evidence that V4 integrates both sensory

and attentional effects. It remains unknown how such specificity

is achieved via anatomical feedback which is described as

diffuse, broad and divergent (cf. Rockland and Drash, 1996;

Pouget et al., 2009; Anderson et al., 2011b).

V. Conclusion
Association between Feature Representation

and Attention: A Proposal

We conclude by trying to link the feature encoding and atten-

tional encoding (cf. Reynolds and Desimone, 2003; Qiu et al,

Figure 8. Means of Attentional Modulation in V4
(A) Attention can enhance neuronal response within
attended region. There is ample evidence for this in
spatial attention tasks. Within a topographic region of
V4, all functional domains within this region (red disk)
exhibit enhanced activation (Tanigawa and A.W.R.,
unpublished data).
(B) There is accumulating evidence that attention can
modulate synchrony between neurons. Here, we depict
during a task requiring attention to color, enhancement of

synchrony in a network of color domains in V4 (heavy lines) and either no change or decrement in synchrony in a network of orientation domains (light lines).
Enhancement of gamma band oscillations has been reported both for tasks requiring feature attention and those involving spatial attention.
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2007) aspects of V4 with its functional organization. We have

seen that V4 encodes a range of stimulus properties (contour,

color, motion, disparity) and have proposed that these

contribute to figure-ground segregation processes. We have

also seen that V4 is prime real estate for mediating bottom-

up and top-down attentional effects. We propose (1) as sug-

gested by studies cited in this review, that these feature repre-

sentations are tied to feature-specific domains within V4, (2)

that domains of shared feature selectivity are anatomically

and/or functionally linked into feature-specific networks, and

(3) that attentional mechanisms map onto these domain

networks and shape them in spatially and featurally specific

ways.

Wesuggest that the unifying function of V4 circuitry is to enable

selective extraction, whether it be by bottom-up feature-speci-

fied shape or by attentionally driven spatial or feature-defined

selection (Figure 9). Thus, during bottom-up driven processes,

stimulus features select which domains to modulate. During

top-down attentional processes, feedback influences select

which domains to modulate. This selective modulation creates

an active network of functional domains that can be dynami-

cally configured. Under what conditions such selection is

mediated by enhancement of activity versus domain-domain

correlation requires further investigation. For example, in case

of spatial attention, all domains within a restricted region of V4

are networked. In the case of color constancy, a color network

is selected. In case of shape representation, orientation domains

are networked. In case of color search a color network is also

selected, albeit driven by top-down sources. Subsets of color,

shape, depth, and motion domains can all be dynamically

reconfigured into stimulus-specific or task-specific networks.

Shifting attention from one feature to another would be imple-

mented by enhancement of one feature domain network and

suppression of another.

When viewed in this fashion, there may be surprisingly little

difference between object-induced effects and attentionally

induced effects. In brief, in terms of functional organization in

V4, attending to an object (considered a mental state) may be

very similar tomaking it more visible (considered an object state).

Of course, finer neuronal selection is expected beyond domain-

based selection. However, when viewed from a domain-based

perspective within V4, vision and visual attention may not be

so different and may differ largely by association with other brain

regions.
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