Specificity of Color Connectivity Between Primate V1 and V2

ANNA WANG ROE AND DANIEL Y. TS’O

1Section in Neurobiology, Yale School of Medicine, New Haven, Connecticut 06510; and 2Department of Neurobiology, The Rockefeller University, New York City, New York 10021

Roe, Anna Wang and Daniel Y. Ts’o. Specificity of color connectivity between primate V1 and V2. J. Neurophysiol. 82: 2719–2730, 1999. To examine the functional interactions between the color and form pathways in the primate visual cortex, we have examined the functional connectivity between pairs of color oriented and nonoriented V1 and V2 neurons in Macaque monkeys. Optical imaging maps for color selectivity, orientation preference, and ocular dominance were used to identify specific functional compartments within V1 and V2 (blobs and thin stripes). These sites then were targeted with multiple electrodes, single neurons isolated, and their receptive fields characterized for orientation selectivity and color selectivity. Functional interactions between pairs of V1 and V2 neurons were inferred by cross-correlation analysis of spike firing. Three types of color interactions were studied: nonoriented V1/nonoriented V2 cell pairs, nonoriented V1/oriented V2 cell pairs, and oriented V1/nonoriented V2 cell pairs. In general, interactions between V1 and V2 neurons are highly dependent on color matching. Different cell pairs exhibited differing dependencies on spatial overlap. Interactions between nonoriented color cells in V1 and V2 are dependent on color matching but not on receptive field overlap, suggesting a role for these interactions in coding of color surfaces. In contrast, interactions between nonoriented V1 and oriented V2 color cells exhibit a strong dependency on receptive field overlap, suggesting a separate pathway for processing of color contour information. Yet another pattern of connectivity was observed between oriented V1 and nonoriented V2 cells; these cells exhibited interactions only when receptive fields were far apart and failed to interact when spatially overlapped. Such interactions may underlie the induction of color and brightness percepts from border contrasts. Our findings thus suggest the presence of separate color pathways between V1 and V2, each with differing patterns of convergence and divergence and distinct roles in color and form vision.

INTRODUCTION

Cross-correlation techniques have been used to reveal the cooperative computations between groups of neurons both within and between areas. In the case of the lateral geniculate nucleus and primary visual cortex (V1), correlated firing reveals pairs of neurons with overlapping receptive fields, i.e., computation of spatial similarity (Reid and Alonso 1995; Tanaka 1985). Within V1, correlated firing is found between neurons with matching orientation and color preferences (Ts’o and Gilbert 1988; Ts’o et al. 1986). Thus far, little is known about the computations performed in V2 nor the relationship of the functional maps to those computations. By studying pairs of V1-V2 neurons, identified according to anatomic location and classified by color and orientation, we have begun to address the question of what the relevant computations between V1 and V2 may be.

Within the primate visual pathway, area V2 receives its primary ascending input from area V1 and is considered the next hierarchical level beyond area V1. V1 and V2 are characterized by quite distinct functional organizations and share strong functional and connectional relationships (Girard and Bullier 1989; cf. Mignard and Malpeli 1991; Salin and Bullier 1995). As revealed by anatomic methods, the interdigitated lattices of “blobs” and “interblobs” in area V1 project selectively to the thin and pale cytochrome oxidase stripes in V2, respectively. Although each of these organizational structures contains a range of cell types, each is dominated by different populations of visual cells: thin stripes and blobs are characterized by nonoriented color-selective cells and pale stripes and interblobs by oriented broadband cells (DeYoe and Van Essen 1985; Hubel and Livingstone 1987; Livingstone and Hubel 1984; Roe and Ts’o 1995; Tootell 1988; Tootell and Hamilton 1989; Ts’o and Gilbert 1988; Ts’o et al. 1990a; cf. Gegenfurtner et al. 1996; Leventhal et al. 1995; Levitt et al. 1994). These anatomic studies establish a concrete structural framework for parallel color, form, and disparity/motion pathways in V1 and V2 (DeYoe and Van Essen 1988; Hubel and Livingstone 1987; Livingstone and Hubel 1984, 1987a,b). Some subsequent studies, however, have diverged from a strictly segregated view of connectivity (e.g., for review, see Merigan and Maunsell 1993).

In this study, we address the issue of what type of interactions exist between the color and form cortico-cortical pathways and whether within the color pathway there is further specification of connectivity. To approach this issue, we have assessed functional connectivity by using cross-correlation analysis to detect the coincidence of spike firing of simultaneously recorded V1/V2 cell pairs in Macaque monkeys. Previous studies using cross-correlation techniques to study cortico-cortical connectivity have focused on interactions between V1 and V2, interhemispheric interactions, or thalamocortical relationships (cf. Bauer et al. 1995; Brosch et al. 1995, 1997; Frien et al. 1994; Girard and Bullier 1989; Nowak et al. 1995; Reid and Alonso 1995; Salin et al. 1992; Toyama et al. 1977a,b). However, these studies have not examined selectivity of interaction with respect to known functional compartments within visual cortex. In this study, we have first optically imaged visual areas V1 and V2 and subsequently targeted imaged structures (e.g., the blobs and stripes) with multiple microelectrodes. This approach permits the examination of interaction with respect to cell type and functional compartment. Our findings suggest a highly specific set of interactions between color cells that differ depending on color selectivity,

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

0022-3077/99 $5.00 Copyright © 1999 The American Physiological Society.
orientation selectivity, and spatial overlap. In this report, we have chosen to focus on V1/V2 interactions involving color cells. Interactions within the orientation system will be presented in a subsequent paper.

**METHODS**

**Surgical prep**

Eleven hemispheres in nine adult monkeys (*Macaca fascicularis*) were used for these experiments. Four of these monkeys also were used for V2 mapping experiments (Roe and Ts’o 1994; cf. Roe and Ts’o 1992, 1993a,b). After an initial anesthetic dose of ketamine hydrochloride (10 mg/kg), animals were intubated endotracheally and a 22-g catheter implanted in the saphenous vein for drug delivery. Anesthesia was maintained throughout the experiment by a constant infusion of sodium thiopental (1–2 mg · kg⁻¹ · h⁻¹). Animals were paralyzed (pancuronium bromide, 100 µg · kg⁻¹ · h⁻¹) and respirated; after paralysis the level of anesthetic sufficient during surgical procedures was maintained. To further assess depth of anesthesia, vital signs including heart rate and electroencephalogram (EEG) were monitored continuously. Rectal temperature was maintained at 38°C ± 1°C. To further assess depth of anesthesia, signs including heart rate and electroencephalogram (EEG) were monitored continuously. Rectal temperature was maintained at 38°C and expired CO₂ at 4%.

**METHODS**

**Surgical prep**

Eleven hemispheres in nine adult monkeys (*Macaca fascicularis*) were used for these experiments. Four of these monkeys also were used for V2 mapping experiments (Roe and Ts’o 1994; cf. Roe and Ts’o 1992, 1993a,b). After an initial anesthetic dose of ketamine hydrochloride (10 mg/kg), animals were intubated endotracheally and a 22-g catheter implanted in the saphenous vein for drug delivery. Anesthesia was maintained throughout the experiment by a constant infusion of sodium thiopental (1–2 mg · kg⁻¹ · h⁻¹). Animals were paralyzed (pancuronium bromide, 100 µg · kg⁻¹ · h⁻¹) and respirated; after paralysis the level of anesthetic sufficient during surgical procedures was maintained. To further assess depth of anesthesia, vital signs including heart rate and electroencephalogram (EEG) were monitored continuously. Rectal temperature was maintained at 38°C and expired CO₂ at 4%. After dilation of the pupils (atropine sulfate 1%), eyes were refracted and fitted with appropriate contact lens to focus on computer monitor 57 inches in front of the animal. Fovea was projected onto the monitor with a Topcon fundus camera. A craniotomy and a durotomy, ~1 cm in size, were made over a region around the lunate sulcus (centered 15 mm anterior to occipital ridge and 10 mm lateral to midline), exposing a visual cortical area near the V1/V2 border representing ~2° eccentricity. Analgesics and antibiotics were administered on recovery. All procedures were conducted in accordance with National Institutes of Health guidelines.

**Studying interactions between specific functional structures in V1 and V2**

**OPTICAL IMAGING.** To guide placement of microelectrodes, optical imaging of intrinsic cortical signals (Frostig et al. 1990; Grinvald et al. 1986, 1988; Ts’o et al. 1990a) first was used to localize functional compartments within V1 and V2. The details of imaging procedures have been described elsewhere (cf. Grinvald et al. 1986; Ts’o et al. 1990a) and only will be described briefly here. For increased cortical stabilization during optical recording, an optical chamber was cemented over the craniotomy, filled with lightweight silicone oil, and sealed with a coverglass. The cortical surface was illuminated through the chamber window with 630-nm wavelength light provided by optic fiber light guides. A slow-scan CCD (charge coupled device) camera (Photometrics) fitted with standard camera lenses then was positioned over the chamber.

Images of the cortical surface were collected during visual stimulation of the eyes. All stimuli were presented with a Barco color monitor controlled by an IBM PC/AT with a Sargent Pepper Number Nine graphics card. A variety of visual stimuli, including luminance and chromatic contrast gratings, stationary and moving, of different spatial frequencies and orientations were presented in a pseudorandom fashion. For color stimuli, the monitor was calibrated to present isoluminant color contrast gratings. An electromechanical shutter in front of each eye allowed for independent stimulation of each eye. Images were digitized, collected, and processed. In a typical session, all frames acquired for each stimulus condition were summed and divided by the sum of blank stimuli trials; this procedure maximizes signal-to-noise ratios and minimizes effects of uneven illumination. For each functional property (e.g., ocular dominance, color/luminance preference), the sum of images obtained under one stimulus condition (e.g., left eye) was subtracted from that obtained under another (e.g., right eye). These difference images then were scaled, clipped, smoothed, and displayed on a color monitor, and printed out for further inspection and comparison.

**OPTICAL IMAGING AS A GUIDE FOR TARGETING ELECTRODES.** Multiple functional maps, including those for ocular dominance, orientation, blob/interblob patterns in V1, and stripe locations in V2 (Ts’o et al. 1990a), were obtained. By revealing cortical organizations relative to cortical surface vasculature, we could precisely target cortical structures for purposes of electrophysiological recording with microelectrodes or for tracer injections. Once generated, these maps could be used for multiple recording sessions within the same cortical region.

Figure 1 illustrates our experimental strategy. At the beginning of an experimental session, we generated a series of functional maps of a cortical region including central portions of both V1 and V2. These maps revealed ocular dominance, orientation, blob/interblob patterns in V1, and stripe locations in V2 (Ts’o et al. 1990a). As shown in Fig. 1B, imaging for ocular dominance (right eye light, left eye dark) clearly localizes the V1/V2 border (indicated by bars at left and right). Centers of monocular activity were useful for localizing blobs (Ts’o et al. 1990a unpublished data). Blobs and thin stripes also were localized by imaging for color versus luminance stimuli (Fig. 1D). Orientation maps (Fig. 1C) of the same cortical region revealed mosaics of orientation columns in V1 as has been described previously (Blasdel 1992a,b; Ts’o et al. 1990a). Dark regions in this orientation map indicate cortical regions preferentially activated by horizontal (0°) oriented gratings and light regions those preferring vertical (90°) gratings.

Thin, pale, and thick stripes and their subcompartments in V2 also were imaged (cf. Roe and Ts’o 1995). Optical imaging of orientation-selective regions in V2 (upper part of Fig. 1C, stripes of dark and light patches oriented perpendicular to the V1/V2 border) revealed the locations of pale and thick stripes (cf. Roe and Ts’o 1995; Ts’o et al. 1991). These stripes were separated by regions without clear orientation domains (uniform gray), regions that overlay the color (or thin) stripes, as confirmed by imaging for color activation (Fig. 1D) (cf. Roe and Ts’o 1995, 1997; unpublished data). Because cytochrome oxidase stripes have higher levels of metabolic activity, locations of thin and thick stripes also were confirmed by imaging for general activation. In some cases, disparity (or thick) stripes were imaged directly by comparison of monocular versus binocular stimulation; because of the preponderance of obligatory binocular cells, thick stripes are relatively less activated by monocular stimulation and therefore appear white in these images (not shown) (cf. Ts’o et al. 1989). Further subcompartmentalization within individual V2 stripes were also visible. For example, imaging for color versus luminance (cf. Figs. 18 and 20 from Roe and Ts’o 1995) often revealed substructure within thin stripes in V2. These functional domains within V2 stripes were examined further electrophysiologically and their interactions with V1 organizations studied.

**ELECTROPHYSIOLOGICAL CHARACTERIZATION.** By using optical maps generated either from the same recording session or from previous recording sessions, multiple independently drive microelectrodes (2–5) were targeted in selected V1 and V2 locations (see Fig. 1, C and D). Because we have concentrated primarily on the color and orientation domains, electrodes targeted primarily blobs and interblobs in V1 and thin and pale stripes in V2. In a typical session, one or two electrodes were held in V1 while one or more electrodes sampled multiple targeted zones in V2 stripes. This arrangement enabled the concurrent recording and comparison of interactions of a given cell type (e.g., a V1 color nonoriented cell) with several other cell types (e.g., a V2 color nonoriented cell and a V2 color oriented cell), using identical and simultaneous visual stimulation conditions. Recordings were obtained from superficial layers only (recording depths ranged from 0 to 600 µm).

On each electrode, single cells were isolated and physiologically characterized. To characterize cells, receptive fields were plotted with
a hand-held projection lamp. By listening to raw amplified and to discriminated pulse outputs of neural responses (window discriminator by BAK or Gawnwave, courtesy Tim Gawne and Barry Richmond), we qualitatively characterized each unit for ocular dominance, peak and width of orientation tuning, degree of direction selectivity, degree of end inhibition, and color selectivity. Orientation selectivity was rated on a qualitative scale A–D, where A is most narrowly (≤30°) and D is most broadly tuned (cf. Livingstone and Hubel 1984); cells rated A or B were considered oriented. Color selectivity was determined by using narrowband interference filters equalized for luminance, ranging from 450 to 630 nm in 30-nm increments. We use the term color selective to mean preferentially responsive to nonwhite stimuli, such as red, green, blue, and yellow, over equiluminant white stimuli as determined with narrowband interference filters. We classified cells as broadband if they responded most strongly to white light. This qualitative method of color classification was used due to the time constraints of these experiments and was adequate for the conclusions drawn. Nonoriented color cells without antagonistic surrounds were classified as Type II and those with broadband antagonistic surrounds were classified as modified Type II (Ts’o et al. 1990). Occasionally true double-opponent cells were encountered (Livingstone and Hubel 1984). Cells with broadband center-surround organization were classified as Type III. For more detailed description of our characterization of V2 receptive field properties, see Roe and Ts’o (1995, 1997).

**VISUAL STIMULATION, SPIKE TRAIN COLLECTION AND CROSS-CORRELATION ANALYSIS.** After isolation of single cells on each electrode, neural spike trains were collected from each cell during visual stimulation. Several neuronal spike trains and stimulus sync pulses were recorded simultaneously and time stamped (temporal resolution, 0.1 ms) using a Spike 9 board driven software package (HIST written by Kaare Christian). Poststimulus time histograms and raw cross correlograms were calculated and displayed on-line. Because of the low spontaneous firing rates typical of cortical neurons, we collected spike trains during the presentation of visual stimulation. Typically, stimuli (STIM software written by Kaare Christian) comprised moving bars of preferred orientation, size, color, and velocity presented on a computer monitor. The eyes subsequently were converged by placing a Risley prism in front of one eye and achieving precise overlap of right and left eye receptive fields of a V1 or V2 binocular cell. This setup ensures stimulation at a known and consistent disparity (roughly 0).
When possible, separate stimuli were presented for each isolated cell. For cells with nonoverlapping receptive fields, we presented stimuli optimal for each cell (usually moving light bars the orientation, color, and speed of which were tailored for each cell’s preferences). For cell pairs with overlapping receptive fields, we presented stimuli that were effective in stimulating both neurons in the cell pair (e.g., a single bar suboptimal for one or both cells). For example, for two cells with overlapping receptive fields, one of which is red selective and one that is broadband, a red stimulus, which is less effective for the broadband cell but effective in driving each cell, was used.

To correct for the increase in spike firing because of visual stimulation, shuffle correlograms were calculated (the shift predictor) (Perkel 1966) and subtracted from the raw correlogram. Stimulus-induced increases in spike firing coincidence therefore (in principle) were removed by shuffle subtraction. Correlograms (≥400 ms, 1.6-ms binwidths) were normalized for spike firing rate ($1/\sqrt{numspike1*numspike2}$) and smoothed (weighted, moving Gaussian average 7 bins). Baseline means and SD were calculated from the first and last 100 ms in the correlograms. Peak position and peak height were determined and peak widths (at 0.25, 0.5, and 0.75 heights) calculated. Only peaks that were 2 SD above baseline were considered for peak analysis. Strength indices were calculated as the sum of deviation from baseline over the region of the peak (Ts’o et al. 1986). For comparison of peaks, we found peak height to be the most reliable indicator of interaction strength, as strength indices often were complicated by excessively broad peaks commonly found in V1/V2 interactions. In our data set, peak values ranged from 0 to 0.05. These values then were divided into quartiles and indexed from 0 to 3 (index 0: 0–0.0034, $n = 69$; index 1: 0.0035–0.0069, $n = 68$; index 2: 0.007–0.012, $n = 64$; index 3: >0.012, $n = 71$). Because of the breadth of the peaks, it is difficult to infer specific monosynaptic or polysynaptic connectivity. However, correlograms are used to indicate simply the presence or absence of functional interaction. Correlograms with significant peaks (e.g., Fig. 1A, solid line) were taken as evidence of the presence of functional interaction and flat correlograms (e.g., Fig. 1A, dotted line) the lack of interaction.

TRACER INJECTIONS AND HISTOLOGY. To aid in localizing recording sites post mortem, in some experiments pressure injections of red rhodamine or green beads (Lumafluor) were made with a glass pipette. In other experiments, during the recording session electrolytic lesions were made along each penetration by passing current (4 μA for 4 s) through the electrode tip. At the end of data collection, animals then were given a lethal dose of pentobarbital sodium and perfused through the heart with 4% paraformaldehyde. After extraction of the brain, the desired cortical region was removed, flattened, and immersed in 30% sucrose solution. The cortical tissue then was sectioned tangentially at 30 μm and alternate sections either were reacted for cytochrome oxidase histochemistry or coverslipped for visualization of fluorescent bead labeling. We reconstructed our recording site locations on the tissue by aligning electrolytic lesions, tracer injection sites, and imaged surface vasculature patterns with locations and sizes of vascular lumens in superficial sections of cortical tissue. Because our recording locations were indicated directly on the image of cortical surface vasculature (which is in exact registration with the functional images collected), we could accurately align recording sites with the optical images and with cytochrome oxidase stained sections.

RESULTS

Little is known about how color information from V1 is distributed to color-selective structures in V2 and what new properties may arise from such interactions. To examine this issue, we studied the interactions of color-selective cells in V1 with those in V2. Recordings from both V1 and V2 were in the superficial layers. Cross-correlograms were collected between 249 pairs of V1–V2 cells, 146 of which were between color-selective cell pairs (see Table 1). Of the 146 V1/V2 color-color cell pairs studied, 42% ($n = 61$) were nonoriented/nonoriented, 25% ($n = 36$) were nonoriented/oriented, 7% ($n = 11$) oriented/oriented, and 26% ($n = 38$) oriented/oriented cell pairs (see Table 1). We also examined interactions between 38 color V1 and broadband V2 cell pairs, 23 broadband V1/color V2 cell pairs, and 42 broadband V1 and broadband V2 cell pairs. Interactions between oriented-oriented cell pairs will be presented in a separate paper.

TABLE 1. Number of V1–V2 cell pairs recorded by type

<table>
<thead>
<tr>
<th>Type</th>
<th>$n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color-color cell pairs</td>
<td>146</td>
</tr>
<tr>
<td>Nonoriented/nonoriented</td>
<td>61</td>
</tr>
<tr>
<td>Nonoriented/oriented</td>
<td>36</td>
</tr>
<tr>
<td>Oriented/nonoriented</td>
<td>11</td>
</tr>
<tr>
<td>Oriented/oriented</td>
<td>38</td>
</tr>
<tr>
<td>Color-broadband cell pairs</td>
<td>38</td>
</tr>
<tr>
<td>Nonoriented/nonoriented</td>
<td>9</td>
</tr>
<tr>
<td>Nonoriented/oriented</td>
<td>20</td>
</tr>
<tr>
<td>Oriented/nonoriented</td>
<td>3</td>
</tr>
<tr>
<td>Oriented/oriented</td>
<td>6</td>
</tr>
<tr>
<td>Broadband-color cell pairs</td>
<td>23</td>
</tr>
<tr>
<td>Nonoriented/nonoriented</td>
<td>3</td>
</tr>
<tr>
<td>Nonoriented/oriented</td>
<td>3</td>
</tr>
<tr>
<td>Oriented/nonoriented</td>
<td>15</td>
</tr>
<tr>
<td>Oriented/oriented</td>
<td>2</td>
</tr>
<tr>
<td>Broadband-broadband cell pairs</td>
<td>42</td>
</tr>
<tr>
<td>Nonoriented/nonoriented</td>
<td>3</td>
</tr>
<tr>
<td>Nonoriented/oriented</td>
<td>3</td>
</tr>
<tr>
<td>Oriented/nonoriented</td>
<td>6</td>
</tr>
<tr>
<td>Oriented/oriented</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>249</td>
</tr>
</tbody>
</table>

$n = 249$ cell pairs.

RECEPTIVE FIELD PROPERTIES. We have used the classification system of Wiesel and Hubel (1966) and further extended by Livingstone and Hubel (1984) and Ts’o and Gilbert (1988). Whereas most V1 nonoriented color cells recorded were dominated strongly by a single eye, almost all V2 cells were strongly binocular. The vast majority of nonoriented cells we encountered fell in the Type II (57% in V1, 50% in V2) or modified Type II (50% in V1, 40% in V2) classification. Two true double-opponent cells, recorded in V1, were encountered. In some cases (18/81), broadband cells in V2 displayed strong secondary responses to specific colors (nonoriented: 5 red, 1 blue, 2 yellow; oriented: 5 red, 5 green). In both V1 and V2, roughly 20–25% of all color cells were related to the blue-yellow system, and the remaining to the red-green system, consistent with previous reports of RG/BY ratios in V1 (Ts’o and Gilbert 1988).

Although V1 and V2 contain similar receptive field types (cf. Yoshioka and Dow 1996; Yoshioka et al. 1996), some properties were found only in V2. Of nonoriented color cells, we encountered red-selective cells that displayed secondary responsiveness to white (16/102) but not to other colors individually; these were classified as red selective. Clusters of off-response cells commonly were encountered in V2 (cf. Roe and Ts’o 1995). In addition, more complex color combinations were seen, such as cells with both red and blue preference. In other instances, we observed Type II cells with green and blue on-center/red off-center ($n = 1$), blue and yellow on-center response ($n = 2$), or red and green off-center response ($n = 3$).
Color-oriented cells also displayed more complex color combinations, such as red/blue, green/red, and red on/green off-oriented receptive fields. Consistent with reports of a greater prominence and clustering of color oriented cells in V2 (Roe and Ts'o 1995; Ts'o et al. 1990b), a greater proportion of color cells in V2 (42%, 73/175) than in V1 (25%, 52/199) were oriented. Other receptive field types previously described, such as the color-selective spot cell (Hubel and Livingstone 1987) or cells selective for the direction of color contrast across a color border, were not studied here.

**NEURAL INTERACTIONS.** Interactions between V1 and V2 color cells exhibit a strong dependency on similarity of color selectivity. To illustrate, four examples are shown in Fig. 2. In Fig. 2A, the correlogram between two R+/G− modified Type II cells, one located in a V1 blob and the second in a V2 thin stripe. The receptive field sizes are drawn to scale and visual locations indicated (azimuth, elevation). Each receptive field was stimulated repeatedly by a red vertically oriented bar sweeping across its receptive field, during which spike trains were collected; stimuli were presented through a single eye only. Figure 2A illustrates a strongly peaked correlogram (strength index = 0.074, peak = 0.0158), indicating a strong interaction between these two neurons.

In contrast, a Y+ B− Type II V1 cell and an R+/G− modified Type II V2 cell and demonstrate a lack of interaction, as indicated by a flat correlogram (strength index = 0.0092, peak = 0.001, Fig. 2B). Likewise, V1–V2 cell pairs with similar blue-yellow color preferences (B+ Y− II V1 and B+ Y− II V2) show peaked correlations (strength = 0.124, peak = 0.0259, Fig. 2C), whereas those with different color preferences (R+ Type IV V1, B+ Y− mod Type II V2) exhibit little interaction (strength = 0.015, peak = 0.0018, Fig. 2D). As can be seen, strong correlations between nonoriented color cells were observed even when receptive fields lacked overlap.

Figure 3 quantifies this finding for nonoriented color cell pairs (n = 80). Correlograms first were rated for strength of interaction (see METHODS) from 0 to 3, where 0 indicates flat correlograms and 3 indicates strong peaks. Each cell pair was then classified as similar (n = 52) or different (n = 28) in color selectivity. Cell pairs with red-green color selectivity (any pairing of R+ G−, G+ R−, R+, G+) were considered similar as were those with blue-yellow selectivity (any pairing of B+ Y−, Y+ B−, B, Y); cell pairs differing color selectivity (e.g., R+ G− and B+ Y−) were considered different. Indeed, some color cell pairs of opposing polarity (e.g., R+ G− and G+ R−) exhibited highly correlated interactions (8 cell pairs with peak index 2 or 3). As shown in Fig. 3, strongest inter-
actions occurred between cells with similar color selectivities. 71% of cell pairs with matching colors (n = 52) exhibited peak strengths of 2 or 3, and 68% of color nonmatched cell pairs (n = 28) exhibited 0–1 peak strengths. The difference in these two distributions was highly significant [$\chi^2 (0.995) = 18.41$, df = 3], indicating that color similarity and peak size are strongly related parameters.

Because receptive field separation is also a determinant of interaction strength between cortical cells (see following text) (cf. Nowak et al. 1995; Ts’o et al. 1986), we further examined a subset of color cell pairs the receptive fields of which were of a similar distance apart. Figure 3B illustrates interaction strengths only for cell pairs with receptive fields within 0.5° of each other (n = 27). Again, for this population, similar color specificity predicted strong correlations and different color specificity predicted weak correlations [$\chi^2 (0.995) = 16.26$, df = 3]. This is bolstered further by examining the entire nonoriented color cell pair population (Fig. 3C, n = 80). Because electrode targeting was guided by optical images, our sample population was not evenly distributed across visual separations. However, at well sampled visual separations (between 0 and 1° and between 2 and 3°), a wide range of peak strengths was found. Cell pairs with strong correlations were as likely to occur with small (<1° separation) as with large (>2° separations) receptive field separations. In fact, strong correlations occur even when receptive field separations are 2–3° distant (e.g., Fig. 2A, see following text). Thus for nonoriented color cell pairs, receptive field separation is not a primary determinant of neural interaction for V1/V2 color cells.

**Receptive field overlap**

**NONORIENTED COLOR V1/NONORIENTED COLOR V2 CELL PAIRS.** We also examined receptive field overlap (defined as the larger of the relative proportion of receptive field area in common) and center-to-center receptive field distance as other possible determinants of interaction strength. For nonoriented color cell pairs, neither receptive field separation nor receptive field overlap correlated with interaction strength (data not shown). Both of the color-matched cell pairs shown in Fig. 2, A and C, had an interaction strength of 3; however, the receptive fields in Fig. 2C are overlapped (20%), whereas those of Fig. 2A are not overlapped and, in fact, are >2.0° apart in visual space. Thus nonoriented color cells do not require receptive field overlap for functional interaction and, in fact, can interact over appreciable visual cortical distances.

**NONORIENTED COLOR V1/ORIENTED COLOR V2 CELL PAIRS.** Like nonoriented color cell pairs, similar color preference was a strong predictor of strong interactions between color-selective nonoriented V1 and oriented V2 cells (n = 30 pairs). In this population, of the seven cell pairs with strong peak strengths (peak size 3), six had similar color specificity.

However, in contrast to the nonoriented color system, oriented cells in V2 exhibit a strong dependency on spatial overlap (Fig. 4). Of 22 (of 30) cell pairs that were considered color matched, 85% (11/13) of those with nonoverlapping receptive fields had peak strengths of 0 or 1; 77% (7/9) of those with overlapping fields had peaks of 2 or 3. This distribution is significantly different [$\chi^2 (0.95) = 9.2$, df = 3] and suggests that nonoriented V1 cells that participate in orientation selectivity in V2 act only locally, whereas those that are involved in

![Diagram](image-url)
the propagation of nonoriented color information have a more spatially extensive influence.

Interestingly, there is no spatial dependency for inputs to broadband oriented cells in V2. Color inputs from V1 are as likely to interact with V2 oriented broadband cells when they are spatially distant as when they share receptive field overlap (Fig. 5A, n = 20, $\chi^2 = 1.7$, df = 3). Similarly for nonoriented broadband inputs from V1, no significant differences were found between overlapping and nonoverlapping interactions (Fig. 5B, n = 10, $\chi^2 = 0.73$, df = 3). This finding suggests a possible distinction in the convergence of V1 inputs to the color orientation versus the broadband orientation system in V2 (see Discussion).

**Oriented V1/Nonoriented V2 Cell Pairs.** Interactions between color-matched oriented V1 and nonoriented V2 cell pairs (broadband, n = 6; color, n = 10) were seen most often in cell pairs with `nonoverlapping` receptive fields (Fig. 6A). Of these cell pairs, all those with overlapping receptive fields (n = 5) had peak indices of 0, and 65% of those with nonoverlapping receptive fields (n = 11) had peak indices of 2 or 3. The significant dependency on lack of overlap [$\chi^2 (0.995) = 5.7$, df = 1] suggests an interaction between oriented cells in V1 with distant color-matched nonoriented cells in V2.

To examine whether this interaction is a feed-forward or feed-back interaction, we considered the peak position of the cross-correlogram. A positive peak position would indicate a greater probability of V2 spikes following V1 spikes, thus suggesting a feed-forward interaction. Similarly, a negative peak position would suggest a feed-back interaction. Peaks centered on zero would indicate primarily a common source of input. One example is illustrated in Fig. 6B. A red-selective V1 cell with a 90° orientation selectivity was recorded in a V1 blob; a second color cell (R+ G- Type II) cell was recorded in a V2 thin stripe. Although the receptive fields are quite distant (2.5° apart), their interaction showed a strongly peaked correlation (peak index 3). The latency of this peak is 5 ms, indicating a feedforward interaction from V1 to V2.

Correlograms with positive peak positions ($\geq$3 ms) was found in 80% of oriented V1/nonoriented V2 cell pairs (black bars, n = 5, Fig. 6C). The distribution of latencies is significantly different from either the color nonoriented/oriented cell pairs [Fig. 6C, white bars, $\chi^2 (0.95) = 6.0$, df = 2] or the color nonoriented/nonoriented cell pairs [Fig. 6C, gray bars, $\chi^2 (0.995) = 14.1$, df = 2]. These interactions are also dissimilar from the overall V1/V2 interactions the peaks of which are commonly centered on zero (n = 273, mean = 0.44 ms) (cf. Nowak et al. 1999; unpublished data). Although our sample is small, these data do suggest a feedforward transmission of oriented color information to distant regions of similar color selectivity in V2.

The relationship between color-matched and color-nonmatched cell pairs is quite different. Unlike the color-matched
interactions examined above, interactions between the color
and broadband system (which we will refer to as color-non-
matched) exhibit a strong dependency on receptive field over-
lap. Indeed, color-nonmatched oriented V1 and nonoriented V2
cell pairs (BB oriented V1-color nonoriented V2, n = 16; color
oriented V1-BB nonoriented V2, n = 2) exhibited strong
interactions only when receptive fields overlapped [Fig. 7; \( \chi^2 \) (0.95) = 4.4, df = 1]. These differences in spatial interactions
with respect to color-matching may reflect differences in the
relationships between boundaries and perceived surface prop-
erties.

**DISCUSSION**

**Summary**

Previous studies in primates have indicated selective ana-
tomic connectivity between the blobs in V1 and thin stripes in
V2, structures containing a predominance of color-selective
cells (Livingstone and Hubel 1984). However, no previous
study has examined the connectivity patterns of different types
of color cells. In this study, we have examined the functional
interactions between color-selective cells in V1 and V2 using
cross-correlation of simultaneously recorded spike trains. Al-
though these correlations do not afford us the ability to deter-
mine the precise circuitry underlying the interactions between
cell pairs, we can at least identify which types of interactions
commonly occur and which do not.

Using this method, we find V1 and V2 cells interact with a
high degree of specificity, with respect to color selectivity, with

---

**FIG. 6. Interactions between oriented V1 and nonoriented V2 cells.**

A: lack of dependency on receptive field overlap for color-matched cell pairs (broad-
band, n = 6; color, n = 10). B: illustration of feedforward interaction between
color-matched oriented V1 cell and nonoriented V2 cell. C: latency of corre-
logram peaks (for color cell pairs with peak size 3) for nonoriented/oriented
cell pairs (n = 7, c), nonoriented/nonoriented cells pairs (n = 26, c), oriented/
onoriented cell pairs (n = 5, s, one broadband oriented/nonoriented cell pair included). Latencies for oriented/nonoriented cell pairs are significantly dif-
f erent from either nonoriented/oriented cell pairs \( \chi^2 (0.95) = 0.95, df = 2 \) or
nonoriented/nonoriented cell pairs \( \chi^2 (0.95) = 14.1, df = 2 \).

---

**FIG. 7. Dependency on receptive field overlap for color-nonmatched cell
pairs (BB V1-color V2, n = 16; color V1-BB V2, n = 2).**

---
Functional and spatial specificity

In V1, interactions among color blob cells exhibit a strong dependency on color matching; both common input and monocular connections interact only when receptive fields exhibit spatial overlap (Fig. 8A, top). Nonoriented V1 and oriented V2 cell pairs interact only when receptive fields are overlapped (Fig. 8A, middle). In contrast, oriented V1 and nonoriented V2 cells interact when they are spatially distant and do not interact when overlapped (Fig. 8A, bottom).

We will discuss functional and spatial specificity of V1–V2 interactions, followed by possible anatomic bases of these specific interactions, and conclude with a discussion on the relevance of these findings to color vision. Thus our findings, while confirming the view that the extent of functional and anatomic segregations is not total nor complete within V1 and V2 (e.g., for review, see Merigan and Maunsell 1993), nevertheless support the notion of a remarkably high degree of functional segregation overall. Discrepancies or uncertainties as to the extent of segregation often can be attributed to variability in cytochrome oxidase staining, which should only serve as one, imperfect, factor in such analyses.

Sources of common input, feedforward, and feedback interactions

The fact that a majority of V1–V2 correlograms are centered on zero suggests that coincidence of firing is driven by common inputs (Bullier et al. 1992; Nelson et al. 1992; Roe and Ts'o 1997). However, the width of V1–V2 correlograms also suggest the presence of both feedforward (positive latencies) and feedback (negative latencies) interactions (discussed below). Possible sources of common input include the thalamus, V1, V2, or feedback from other cortical areas.

It is unlikely that these specific interactions are due to thalamic input, either geniculate or pulvinar in origin. The possibility that common drive arises from topographically appropriate LGN (lateral geniculate nucleus) color inputs to V1 and subsequently to V2 is inconsistent with peaks centered on zero, as this would result in peaks with positive shifts. Furthermore, such inputs would not result in differences in connectional specificity seen here. Neither are divergent inputs from the LGN to V1 and V2 likely to provide significant direct common drive. Direct inputs from the LGN to V2 are quite
spatial precision would not be necessary (Morgan and Aiba 1985). In contrast, spatial overlap is apparently crucial for the interaction between nonoriented V1 cells and oriented V2 cells. Such emphasis on spatial precision may underlie the encoding of color contours via the convergence of nonoriented V1 inputs, similar to the way in which nonoriented thalamic inputs are thought to converge onto V1 cells to generate orientation selectivity (Chapman et al. 1991; Hubel and Wiesel 1962; Reid and Alonso 1995; Toyama et al. 1977a,b). Interestingly, similarity in orientation selectivity is not a predictor of interaction between color oriented V1–V2 cell pairs (unpublished data), suggesting that orientation tuning of color oriented cells in V2 is not propagated from V1 but is generated de novo in V2.

The surprising finding that color-oriented cells in V1 interact only with nonoverlapping nonoriented V2 cells suggests yet a different functional role. These distant interactions between orientation-selective V1 cells and nonoriented V2 cells may play a role in color and brightness induction from object boundaries or from other types of inducing lines (e.g., see Ejima and Takahashi 1988; McIlhagga and Mullen 1996; Rossi et al. 1996). For example, in the Crâik-Cornsweet illusion, as a result of an intervening local border contrast, two distant regions of equal color/luminance appear different in color/luminance. The feed-forward interaction between oriented V1 cells and nonoverlapping V2 color cells may be a pathway by which border percepts are propagated to distant regions of color or brightness.

In conclusion, the specific color interactions described in this paper suggest multiple color pathways between V1 and V2, each with its specific spatial specificities. Interactions between some V1/V2 color cell pairs (nonoriented/nonoriented color cell interactions) occurred over large spatial extents, suggesting a role for these connections in perception of surface brightness/color properties. Other interactions observed suggested a dedicated processing pathway for color contour perception (nonoriented/oriented color cell interactions) and color border induction effects (oriented/nonoriented color cell interactions). The progressive elaboration in receptive field properties of the cells of V1 and V2, and the concomitant increase in the variety of possible interconnections and interactions between these cells then may form the neuronal basis for the wide variety of perceptual abilities and phenomena that we experience in our visual world.

We thank M. Shadlen for constructive comments on this manuscript and L. Hindesterstein and C. LoRusso for excellent technical support. This work was supported by National Eye Institute Grants EY-06347 and EY-08240 and by the McKnight and Whitaker Foundations. Address for reprint requests: A. W. Roe, Section in Neurobiology, Yale University School of Medicine, 333 Cedar St., SHM I-412, New Haven, CT 06510.

Received 23 December 1998; accepted in final form 17 June 1999.

REFERENCES


Color Vision

The marked differences in spatial dependence of the three types of interactions suggests differences in their functional roles in color vision. The fact that spatially distant nonoriented color cells are strongly correlated suggests a possible role for these interactions in the propagation of fill-in of color as a surface property. Not only would color-matching be important for the “coloring in” of a bounded surface, but a high degree of spatial precision would not be necessary (Morgan and Aiba 1985). In contrast, spatial overlap is apparently crucial for the interaction between nonoriented V1 cells and oriented V2 cells. Such emphasis on spatial precision may underlie the encoding of color contours via the convergence of nonoriented V1 inputs, similar to the way in which nonoriented thalamic inputs are thought to converge onto V1 cells to generate orientation selectivity (Chapman et al. 1991; Hubel and Wiesel 1962; Reid and Alonso 1995; Toyama et al. 1977a,b). Interestingly, similarity in orientation selectivity is not a predictor of interaction between color oriented V1–V2 cell pairs (unpublished data), suggesting that orientation tuning of color oriented cells in V2 is not propagated from V1 but is generated de novo in V2.

The surprising finding that color-oriented cells in V1 interact only with nonoverlapping nonoriented V2 cells suggests yet a different functional role. These distant interactions between orientation-selective V1 cells and nonoriented V2 cells may play a role in color and brightness induction from object boundaries or from other types of inducing lines (e.g., see Ejima and Takahashi 1988; McIlhagga and Mullen 1996; Rossi et al. 1996). For example, in the Crâik-Cornsweet illusion, as a result of an intervening local border contrast, two distant regions of equal color/luminance appear different in color/luminance. The feed-forward interaction between oriented V1 cells and nonoverlapping V2 color cells may be a pathway by which border percepts are propagated to distant regions of color or brightness.

In conclusion, the specific color interactions described in this paper suggest multiple color pathways between V1 and V2, each with its specific spatial specificities. Interactions between some V1/V2 color cell pairs (nonoriented/nonoriented color cell interactions) occurred over large spatial extents, suggesting a role for these connections in perception of surface brightness/color properties. Other interactions observed suggested a dedicated processing pathway for color contour perception (nonoriented/oriented color cell interactions) and color border induction effects (oriented/nonoriented color cell interactions). The progressive elaboration in receptive field properties of the cells of V1 and V2, and the concomitant increase in the variety of possible interconnections and interactions between these cells then may form the neuronal basis for the wide variety of perceptual abilities and phenomena that we experience in our visual world.

We thank M. Shadlen for constructive comments on this manuscript and L. Hindesterstein and C. LoRusso for excellent technical support. This work was supported by National Eye Institute Grants EY-06347 and EY-08240 and by the McKnight and Whitaker Foundations. Address for reprint requests: A. W. Roe, Section in Neurobiology, Yale University School of Medicine, 333 Cedar St., SHM I-412, New Haven, CT 06510.

Received 23 December 1998; accepted in final form 17 June 1999.

REFERENCES


