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1 Abstract

This paper describes an extention to Poggio and Edelman’s Gaussian Radial
Basis Function (GRBF) network for 3D object recognition. To achieve greater
lizati the new i utilizes a biologically plausible rotation
mechanism which is iterative, giving an explicit measure of the network’s re-
sponse time. In most object recognition models, an object is determined to
be different from the learned objects when the recognition method fails. The
d archi includes a hanism to determine recognition failure
without having to wait for all of the rotation alignments to be evaluated, thus
some ”different” decisions can be made quicker that some "same” decisions.




2 Introduction

Poggio and Edelman have suggested a Gaussian Radial Basis Function (GRBF)
neural network for object recognition [6, 7, 8). Their network uses a set of 2D
coordinates for n features that appear in a 2D image of the object. The GRBF
neural network them ”compares” the input view with several stored views to
make a recognition decision. Each radially symmetric basis function represents
a single study view of a specific object. The function compares the views by
computing a distance metric between the corresponding features of the test view
and a specific study view of the object. That distance metric is extended over
the m objects views using

§ =Y wa(iF - cil)
=1

where S is a measure of similarity, F is the set of coordinates of the test view,
and C;,1 < ¢ < m are vectors representing the feature coordinates in the m
study views. The function G can be any radially symmetric function, but is
usually chosen to be the Gaussian.

This paper describes a variant of the GRBF model which incorporates the
following features.

® An alignment mechanism is used to improve generalization performance,
and is impl 1 in a biologicall, ible manner.

* An explicit measure of the model’s response time is based on the alignment
process.

¢ A neural mechanism has been designed to allow quick negative recognition
decisions.

This variant of the GRBF model is called PERM (Poggio and Edelman’s
architecture with a Rotation Mechanism). The nomenclature brings to mind a
process by which hair styles are artificially created. While the object recognition
process described here has nothing to do with hair, the analogy is not totally
irrelevant. Both refer to artificial processes that are attempting to simulate
natural human characteristics.

3 PERM Notation and Architecture

3.1 Network Nodes

The PERM neural network is constructed using the 2D coordinates of the n
corresponding features visible in each of the study views of the object. These
are not actually network nodes, but are used as inputs to some nodes in the
hidden layers in the PERM architecture. These feature vectors are denoted

CieR™1<i<m



where m is the number of study views and C; is the vector containing the 2D
coordinates of the n features in study view 2. Thus, C; has the form

_ T
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where T denotes the transpose operator. The notation
ngalfﬁﬁmal 5.752”

will also be used to refer to individual elements from C;. The jth element of C;
is denoted by C;;. Similarly, F' € R*™ is defined as the vector containing the
2D coordinates of the n features in the test view of the object, and F; is the
jth element of F'. The network input consists of F;,1 < 7 < 2n. The model
assumes the coordinates of the features are relative to the center of mass of the

n features.
The first hidden layer of nodes in the network is denoted by

i), 1< j < 2n,t >0

where ¢ 1s a meaure of time, here representing a specific iteration number.
The m Gaussian radial basis functions comprise the second hidden layer of
nodes of the neural network. These are denoted

gV 1<i<m,t>0.

There are two additional "direction” nodes: d; and dgt) used in the archi-
tecture. The node d; i1s connected to the input F;,1 < 7 < 2n and denotes the
initial direction of rotation. The value of d; will remain constant during the

operation of the network (i.e. it does not vary with #). The node dgt) denotes

)

the network’s direction of rotation at time {. Inputs to node dgt come from

’rj(;t),l < 7 < 2n.
The output layer consists of two nodes: D) and S*). The node D® . called

the "diiferent” output node, is connected to nodes d; and dgt) and is used to
determine if the input object is different than the object represented by the
stored views. The node St called the ”same” output node, is connected to

the basis functions g§t) and is used to determine if the input view represents the
same object.

3.2 Network Connections

There are two sets of weights in the PERM network. The first is a set of 4n

weights denoted
vk, 1 <j<2n,1< k<2

These weights interconnect nodes rgt), 1 <7 < 2n in the first hidden layer, and
are responsible for rotating the representation of the test view of the object.



The weights v;; are initialized as constants, based on the parameter #.
v;,1 =cos(d),j =1,3..,2n—1
vz =sin(6),j =1,3..,2n -1
Vi1 = —Vje12,§ = 2,4...,2n
Vip = Vi1, = 2,4.,20

The second set of weights connects the second hidden layer of nodes, w;, 1 <
i < m, to the output node S*).
The weights w; are also initialized to equivalent values.

=l,1§i§m
m

This strategy weights the study views equally in the recognition decision. If
a particular view is thought to be more ”canonical” than the others [3], the
weights can be adjusted accordingly. Neither the w; weights or the v;; weights
are adjusted during the network’s operation.

3.3 Model Parameters

The following is a list of parameters (constants) used by the model.

® o is sometimes called the basis function "width” and controls the response
of the Gaussian basis functions.

e 0 is a constant that controls how many degrees the test view features are
rotated on each iteration.

e (3 is a constant bias term that controls how closely a test view and the
network basis functions must match before the test view is deemed the
same object.

4 PERM Network Activations
4.1 The Hidden Layer Nodes

The first layer of hidden nodes have initial activations
M =F1<i<m

but for ¢ > 0, the activations of the first hidden layer nodes are defined as
follows.

rﬁ” = vmri”"” + davj41 r;‘;,”,j =13..m-1

rj’” =dyv ,r "+ Uﬂr]""" ,Jji=2,4,...,2n
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Thus, at time ¢, node r;‘) is based on a weighted sum of its previous value
(i.e. at time ¢ — 1), and the previous value of its "partner node”. Recall that
the features are represented as 2D coordinates, so the nodes in this layer can be
logically grouped in pairs. Here ”partner node” refers to the other member of
the pair.

The Gaussian radial basis functions in the second hidden layer have activa-
tions defined by

2 2
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where ¢ is a network parameter. These equations illustrate that a multi-
i 1 Gaussian can be d d into a product of lower dimensional
Gaussians. The singly-dimensioned Gaussians will be denoted using two sub-

scripts i
_(-c)’
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t;
9 = exp

and will measure the similarity of feature j of the test view with feature j of
the ith study view.

4.2 The Direction Nodes

The direction nodes keep track of the direction of rotation. The node d; indi-
cates the initial direction of rotation, and node d(zn indicates the direction of
rotation at time t. In order to determine how to align a test view with a specific
study view, it is only necessary to use one feature of the object. Since this model
assumes the correspondence problem has been solved, the first feature in the
feature vector is used. This choice is arbitrary. Other strategies for choosing
the feature to use for alignment could include choosing a feature at random, or
using some metric such as the feature with the greatest distance from the center
of mass of the object features.

Once a single feature has been identified, the model estimates which of the
study views is "closest” to the test view. The model will rotate in the direction
of the smallest angle toward this "closest” test view. Estimating the closest
view is trivial, given the decomposition of the multi-dimensional Gaussians into
sinlge-dimensional Gaussians. The output of the Gaussian gf]‘) is a measure of
how close feature j in the study view is to feature j in study view i. Given a
specific feature, j, the maximum over the set gs), 1 <4 < m can be used as an
estimate of the closest study view, here denoted by i,qs. Currently, the model
chooses i,,q; as follows.




There are several ways to determine a in a neural architecture.
Edelman and Weinshall set a global threshold to an initial value larger than any
possible node output [4]. Their strategy for identifying the maximum involves
iteratively lowering the threshold until a ”winner” emerges. This ” winner” node
is the maximum.

Lippmann details another strategy for identifying a node whose output is
maximum. He describes a neural network structure called MAXNET which is
a layer of nodes interconnected with inhibiting weights [5]. After the initial
activations of the nodes in this layer, they iteratively inhibit the activations of
their neighbors until the competition has converged to a configuration where
only one node has a non-zero activation. This single node will be the one whose
initial activation was the highest.

Either of these strategies could be used in this network, and future imple-
mentations of PERM will incorporate such biologically plausible mechanisms.
Currently, however, iy, is found by using the max function available in the
Jjava programming language.

Given fmaz, the closest study view, the direction of rotation is determined
by computing a cross product. Consider the vector that originates at the center
of mass of the features and extends through the chosen feature (i.e. the one
feature being use to determine rotation direction). The cross product of the
two versions of this vector, one from the test view and one from the closest
study view, reveal the direction of rotation. The cross products are computed
by the neural network nodes d; and df) whose activations are

dy = O(Ci,pun B2 = Ci,p,e 2F1)

) = 0 (Copa it = Cinaa )

where ©(z)} = +1if z > 0 and ©(z) = —1 otherwise. An output of +1 indicates
a clockwise rotation, and —1 indicates a counter-clockwise rotation.

Given two different vectors with a common origin in a 2D plane, a rotation
in either direction will eventually produce an alignment of the two vectors. In
the process of determining the direction of rotation, the model is calculating
the direction which requires the shortest angular rotation. It can be shown that
the cross product described above will always yield the direction of the shortest
angular rotation, even if the object view has been distorted by a perspective
transformation.

4.3 The Output Nodes
The "different” output node D is computed as follows.
D =0 (-ddf)

Thus, as long as the initial direction of rotation and the current direction of
rotation are the same, D) = —1, which is interpreted as "the network cannot




determine if the test view is different at time £.” If D) = 1, then the network
has changed direction of rotation from the original direction. This means the
two corresponding features have rotated past one another and the network did
not respond "same”. Thus, D® = 1 can be interpreted as "the test view is
different from the study views.”

The ”same” output node S is computed using

n
s =9 (Z wigl - ﬂ)
i=1

where 3 is the bias, a model parameter. S® = —1, is interpreted as "the
network cannot determine if the test view is the same at time t.” §S® = 1 is
interpreted as ”the test view represents the same object as the study views.”

5 PERM Training and Testing
5.1 Training

Each PERM network represents multiple views for a single object. Training
consists of initializing the m basis function centers, C;, with the features of the
m study views for that specific object.

5.2 Testing

Given the n features of a test view, the network operates as follows.

—

. Sett=0

I

. Set the network input, F, equal to the feature vector of the test view.

[

. Feed the signals through the network
(a) Determine the value of the direction nodes d; and dA(;)
(b) Determine the value of hidden layer 1: r_;t),l <j<2n

(c) Determine the value of hidden layer 2: gf‘), 1<i<m
(d) Determine the value of the output nodes: D® and ()

If S® = +1 the answer is "same” (stop and report the answer).

-

If D®) = +1 the answer is "different” (stop and report the answer).

o

Otherwise, the network cannot answer yet. Increment ¢, and go back to
step 3.

b

When the network answers, the value of ¢ indicates the number of iterations
required to arrive at an answer and is a direct measure of the neural network’s
response time.



6 Future Directions
The current model could be improved by incorporating the following features.

* A biologically plausible maz operation similar to those described in section
4.2 should be implemented. These iterative strategies for computing a
maximum would add ancther term to the network’s response time.

o The current model assumes the origin of the 2D features coincides with
the center of mass of the n features. Future implementations of the model
could incorporate neural network structures to perform this translation
prior to input to the current PERM model. This would provide translation
invariance as well as rotation invariance.

Currently, the model always uses the first of the n features to determine
the direction of rotation. Other strategies mentioned in section 4.2 could
be imeplemented.

® The current model assumes the correspondence problem has been solved.
A neural ”pre-processor” could be added to determine feature correspon-
dence, or at least a subset of corresponding features.

This model could be expanded in several other ways. It is possible to inter-
mix training and testing. When a new training view is seen (or a test view is
recogruzed as the "same”), a node represesnting that view could be added to the
arch . Techni for d; ically adapting the architecture of a GRBF
network have been published [1, 2]. In addition, it is possible to use fewer basis
functions than training views. Either a subset of the study views can be selected
as canonical views, or the centers can be trained [1]. Training the centers would
be equivalent to creating prototypes in memory.

To account for virtual views, again the dynamic architecture could be ex-
ploited. For instance, to simulate the effects of apparent motion between two
views, the dynamic architecture scheme could be employed to add nodes to the
GRBF architecture. These additional nodes could correspond to views that
would be seen if the object actually was in motion. Using a rotation scheme
similar to the one presented above, the basis function centers, C;, could be
rotated to create the virtual views.

7 A Final Note

A version of PERM, implemented in java, can be run via the World Wide Web.
It can be found at the following URL.

http://turing.cn.edu/research/PERM.htm



