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Unsupervised Spatiotemporal Analysis of FMRI Data
Using Graph-Based Visualizations of
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Abstract—We present novel graph-based visualizations of self-
organizing maps for unsupervised functional magnetic resonance
imaging (fMRI) analysis. A self-organizing map is an artificial neu-
ral network model that transforms high-dimensional data into a
low-dimensional (often a 2-D) map using unsupervised learning.
However, a postprocessing scheme is necessary to correctly in-
terpret similarity between neighboring node prototypes (feature
vectors) on the output map and delineate clusters and features of
interest in the data. In this paper, we used graph-based visualiza-
tions to capture fMRI data features based upon 1) the distribution
of data across the receptive fields of the prototypes (density-based
connectivity); and 2) temporal similarities (correlations) between
the prototypes (correlation-based connectivity). We applied this
approach to identify task-related brain areas in an fMRI reaction
time experiment involving a visuo-manual response task, and we
correlated the time-to-peak of the fMRI responses in these areas
with reaction time. Visualization of self-organizing maps outper-
formed independent component analysis and voxelwise univariate
linear regression analysis in identifying and classifying relevant
brain regions. We conclude that the graph-based visualizations
of self-organizing maps help in advanced visualization of cluster
boundaries in fMRI data enabling the separation of regions with
small differences in the timings of their brain responses.

Index Terms—Functional MRI (fMRI), SOM visualization,
reaction time, self-organizing map.

I. INTRODUCTION

UNCTIONAL magnetic resonance imaging (fMRI) is a
II noninvasive imaging technique that has emerged as a
powerful tool to identify brain regions involved in cognitive
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processes. FMRI offers spatial and temporal resolutions ade-
quate to measure the location, amplitude, and timing of brain
activity. However, the low contrast to noise and generally poor
resolutions of fMRI data present challenges in accurately map-
ping task-related brain regions.

The analysis of fMRI data aims to correctly identify the re-
gions in brain that are activated during the course of a cognitive
task. Several methods for analyzing fMRI data have been re-
ported in the literature. These methods can be broadly classified
into two categories: hypothesis-driven and data-driven methods.
Statistical parametric mapping (SPM) based on the general lin-
ear model (GLM) is acommonly used hypothesis-driven method
that assumes a simple parametric linear model for signals with
a specific noise structure and uses voxel-based linear regres-
sion analysis [1]. The success of SPM for fMRI analysis is due
mainly to the simplicity of the approach in principle and ap-
plication. More complex parametric models based on Markov
random field models [2], [3] and hidden Markov models [4]
have also been used in fMRI analysis. These methods require
information about stimulus timings and assumption about the
shape and timing of the hemodynamic response and are more
suitable for simple task paradigms. A typical SPM analysis per-
forms linear convolution of an assumed hemodynamic response
function (HRF) with the deterministic stimulus timing function
to construct reference functions. These modeling assumptions
and the deterministic character assigned to the stimulus timing
function may be too restrictive to capture the broad range of
possible brain activation patterns in space and time and across
subjects. SPM performs voxel-by-voxel analysis which is mas-
sively univariate. Due to spatial coherence and temporal auto-
correlation between brain voxels [5], a multivariate approach
may be more appropriate than the voxel-by-voxel approach for
fMRI analysis.

Data-driven methods follow multivariate approach for ex-
ploratory fMRI analysis. The most commonly used data-driven
techniques for fMRI analysis include principal component anal-
ysis (PCA) [6], [7], independent component analysis (ICA) [8],
[9], and data clustering [11]-[23]. Several data clustering algo-
rithms have been used including K-means clustering [11], fuzzy
clustering [12]-[14], hierarchical clustering [15], [16], and self-
organizing maps (SOMs) [17]-[23]. The data-driven methods
make few or no assumptions about HRF shape and do not re-
quire a priori knowledge about stimulus timings. However, each
of these methods has its own shortcomings. PCA assumes that
each component is mutually orthogonal and considers only sec-
ond order statistics (variance). However, second order statistics
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is not sufficient to characterize noisy fMRI datasets, and mutual
orthogonality between components may not be applicable to
fMRI data [7]. ICA works with higher order statistics (entropy
or non-Gaussianity) to separate maximally independent sources
from fMRI data. However, it makes strong assumptions about
independence between spatial or temporal components that may
result in biased decomposition [9], [10]. Additionally, the com-
ponents are unranked and sometimes difficult to interpret. The
K-means algorithm is constrained by the assumption that the
clusters are spherically symmetric which is not applicable in the
context of fMRI. K-means clustering results depend largely on
the initial cluster assignment and the number of clusters, which
must be defined a priori [11]. The results from fuzzy clustering
also depend on the initial cluster assignment and fuzzy fac-
tor [20]. Hierarchical clustering overcomes the limitations of
K-means and fuzzy clustering but suffers from computational
complexity and inability to adjust once a merge or split decision
has been made [11].

An SOM overcomes these limitations by topology-preserving
unsupervised mapping of the high-dimensional data onto a low-
dimensional (often a 2-D) lattice of nodes (neurons). Kohonen’s
SOM is an artificial neural network model that uses unsuper-
vised learning to reveal underlying structures of the data [24],
[25]. The SOM has been successfully used as a data-driven
technique in fMRI for detecting brain activity and functional
connectivity in an unsupervised way [21], [22].

The SOM transforms data through an adaptive vector quan-
tization that ensures an orderly arrangement (map) of the pro-
totypes (feature vectors) in the output space [25]. This helps in
visualization of natural clusters in the data. However, a post-
processing scheme is required to capture cluster boundaries in
the map. The learned map has several components that may
represent neighborhood relations and connectivity between pro-
totypes in the data space. These include sizes of the receptive
fields, local density distribution or distance (or similarity) across
node prototypes. These components have been exploited for vi-
sualization of data clusters via several visualization schemes
such as U-matrix [27] or its variants [28], [29], visualization-
induced SOM [30], or double SOM [31]. A more comprehen-
sive review on various visualization schemes of the SOM can
be found in [26], [32], and [33].

FMRI data typically comprise a large noisy dataset where
the magnitude of detectable signals could be very low and sig-
nals of interest may be confined to a few voxels in the high-
dimensional image space. This makes the task of delineating
important features and fine structures of data in fMRI data more
difficult. In some previous fMRI studies, a two-stage clustering
approach has been employed where the SOM is accompanied by
a second-stage of clustering for effective delineation of fMRI
signal patterns. The first stage constitutes the SOM with suf-
ficient number of output nodes to ensure flexibility and good
quality of mapping of the data. In the second stage, similar and
redundant SOM output nodes are merged. To this end, fuzzy c-
means [20], hierarchical clustering [22] or special node merging
criteria employing least square distance [21] or reproducibility
of the fMRI data across epochs [23] have been used to merge
similar SOM nodes in fMRI analysis.
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The two-stage clustering techniques have made use of tem-
poral and spatial relationships between node prototypes in the
SOM for cluster delineation. However, a critical measure of
data topology provided by the distribution of data across the
SOM nodes has been overlooked. The local density distribution
is indicative of how the data are distributed within the receptive
fields of node prototypes with respect to their neighbors. The
inclusion of data topology in the visualization of the SOM pro-
vides important clues for delineation of fine cluster structures
especially in high-dimensional, large and noisy datasets [26].
The data topology can be visualized by rendering of a topology-
representing graph over SOM lattice.

In this study, we use a combination of two graph-based visual-
ization techniques that incorporate 1) local density distribution
across SOM prototypes; and 2) local similarities (correlations)
between the prototypes. The combined visualization effectively
captures cluster boundaries and delineates detailed connectivity
structures of the meaningful data [34], [35]. We show that this
approach improves detection of signals in fMRI data, including
effective separation of regions that have small differences in
the timings of their responses. We use this approach on a sim-
ulated dataset to identify and classify activated regions based
on timings of the signals they constitute. We also use this ap-
proach to study the relationship between fMRI signal timing
and reaction time (RT) during a visuo-motor task. We extract
average fMRI signals from the regions identified via the SOM
and compute time-to-peak using an inverse logit (IL) model
of the hemodynamic response. We compare the SOM visual-
ization method with ICA, another data-driven technique, and
GLM-based multiple regression analysis using SPM. We fit a
linear mixed-effects model on the time-to-peak measures and
compare the slopes and intercepts of the fits to compare the
timing accuracy of measurements obtained via the SOM, ICA,
and GLM.

II. RELATED THEORY
A. SOM

Kohonen’s SOM is a two-layer feedforward artificial neural
network model that maps high-dimensional input data into a set
of nodes arranged in a low-dimensional (often a 2-D) rigid lattice
using unsupervised learning [24], [25]. A weight vector of the
same dimension as the input vector is associated with each SOM
node. The SOM algorithm consists of a series of training steps
that tune the weight vectors of the nodes to the input vectors. At
the end of training, this process generates a learned SOM with
each node having an associated weight vector or prototype. Each
prototype is associated with a different set of input vectors. This
transformation helps in effective visualization and abstraction
of high-dimensional data for exploratory data analysis.

B. The SOM Algorithm

The SOM algorithm consists of two major steps: 1) determin-
ing the winner node; and 2) updating the weight vectors associ-
ated with the winner node and some of its neighboring nodes.
Prior to training, the weight vectors associated with each node
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of the map are suitably initialized. Random initialization often
suffices. For a profitable initialization, the vectors are sampled
evenly from the subspace spanned by the two largest principal
component eigenvectors [25].

The training expands over several iterations and is based
on competitive learning. In each iteration, a vector x =
[1, 29,..., x,]7 € R™ (where n is the length of fMRI data)
from the input space is compared with the weight vectors
of the nodes m; = [m;1,mya,...,m;,|T € R" (where i =
1, 2,..., N; N being the total number of nodes) to determine
the winner node, often referred to as the best matching unit
(BMU). The BMU refers to the node whose weight vector is the
closest match of the input vector based upon a similarity metric.
The most commonly used metric is the Euclidean metric:

||w—mc||:miin{||az—mi||} i=1,....,N (1)

where || || represents the Euclidean norm, x is the vector under
consideration, ,; denotes the weight of the i*" node on the map,
and m,. represents the weight of the BMU. Once the BMU is
determined, the weight vectors associated with the BMU and
some of its neighbors in the map are updated to make them more

similar to the input vector
m;(t+ 1) =m;(t) + hei(t) [2(t) — m; ()] 2)

where ¢ is the current iteration number; h.;(t) is defined as the
neighborhood kernel that controls the number of neighboring
nodes to be updated and the rate of update in each iteration. The
magnitude of this update decreases with time (iteration) and for
nodes farther away from the BMU with a suitable kernel. In
general, the neighborhood kernel takes the form of a Gaussian
function:

hei(t) = a(t) exp (—||n e / 252 (t)) 3)

where r; and r, are spatial coordinates of the i™ node and the

winner node, respectively, in the output space; o is the full-
width at half-maximum (FWHM) of the Gaussian kernel that
determines the neighboring nodes to be updated. o denotes the
learning rate that controls how fast the weights get updated.
Both ¢ and « decrease monotonically with the increase in the
learning iteration ¢.

C. Graph-Based Visualizations of the SOM

We delineated clusters in the output map using a combination
of two graph-based visualization techniques that incorporated 1)
local density distribution across SOM prototypes (density-based
connectivity); and 2) local similarities (correlations) between the
prototypes (correlation-based connectivity) [34].

1) Density-Based Connectivity Visualization, CONNDDvis:
The density distribution refers to the number of input vectors
(BOLD signals in fMRI) included in the receptive fields of the
SOM prototypes. The local density distribution within the re-
ceptive fields represents the distribution of data with respect to
neighboring prototypes and can be visualized with a topology
representing weighted Delaunay graph. It is realized by ren-
dering of the connectivity matrix, CONNDD, over the SOM
lattice [26]. The existence of an edge between two prototypes
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m,; and m; on the graph indicates that they are neighbors in
the input data space and the weight of the connection between
them gives its connectivity strength:

where |RF;;| denotes the number of input vectors in the recep-
tive field of prototype m; for which m; is the second BMU (m;
being the first BMU). CONNDD provides finer density distribu-
tion by showing the connection between adjacent prototypes in
terms of the number of data points for which these prototypes are
the top two BMUs. The connectivity strengths can be normal-
ized to 1 by dividing each value with the mean of the strongest
connection of each prototype [26]. Any stronger connections
will be assigned a value of 1. Outliers can be excluded by
discarding connectivity strength smaller than a threshold. One
heuristic for the threshold is the mean connectivity strength
of the fourth strongest connection (rank 4) of each prototype
when the mean strength falls sharply [26]. The normalized con-
nectivity strengths can be effectively visualized in grayscale and
binned widths where darker and thicker edges represent stronger
connections. The binarized CONNDD is equivalent to the in-
duced Delaunay graph and when rendered over the SOM lattice,
it intersects Delaunay triangulation with the data manifold. This
captures cluster boundaries and makes the discontinuities with
the dataset visible. We refer to the visualization of CONNDD
on the SOM lattice by CONNDDyvis, analogous to CONNvis
in [26]. Previous works have demonstrated that CONNDDyvis
helps in the extraction of details in the data structure when the
data vectors outnumber the SOM prototypes [26].

2) Correlation-Based Connectivity Visualization, CONNC-
Cvis: The correlation coefficient matrix, CONNCC, which in-
cludes temporal similarities (correlation coefficients) of neigh-
boring prototypes, can be visualized graphically to display lo-
cal similarities in the prototypes. The weight on the edges be-
tween two prototypes gives the measure of their similarity. The
visualization of CONNCC on the SOM lattice is termed as
CONNCC Clvis, similar to DISTvis in [26] where local Euclidean
distances or dissimilarities were visualized. We used correla-
tion coefficients between prototypes as measures of their local
similarities. CONNCCYvis highlights prototypes from the out-
put map that have high temporal similarities in their neighbor-
hood. This helps to distinguish signals from noise in fMRI data
visualization.

3) Combined Connectivity Visualization, CONNDDCCVvis:
The visualization obtained from CONNDDvis and CONNC-
Cvis can be merged to obtain a combined connectivity visual-
ization that emphasizes delineation of connectivity structures of
prototypes representing task-related signals. We refer to this vi-
sualization as CONNDDCCYvis, which combines CONNDDvis
and CONNCCvis by multiplying (element-by-element) the nor-
malized density-based connectivity matrix, CONNDD, with the
normalized correlation-based connectivity matrix, CONNCC

CONNDDCC(i, j) = CONNDD(i, j) x CONNCC(i, j). (5)

CONNDDCC denotes overall connectivity strength between
m; and m; and includes both density-based connectivity
and correlation-based connectivity between prototypes. The
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Fig. 1. (a) Synthetic brain slice (128 x 128) comprising five activated clusters

(A-E). The clusters were divided into three groups (indicated in different colors)
based on delay between the signals (SNR = 6, TR = 250 ms) they constituted.
The signals from red clusters led the signals from green clusters by 100 ms
and from blue by 200 ms. F represents gray or white matter constituting noise.
(b) Average simulated BOLD responses from red (A and D), green (B and C),
and blue (E) clusters in the respective colors after averaging across trials.

resulting visualization suppresses the visualization of noise
and delineates detailed connectivity structures of correlated
signals [34].

III. MATERIALS AND METHODS
A. Simulated Data

To illustrate the application of the method, we created syn-
thetic fMRI dataset with timing variability. Synthetic BOLD sig-
nals simulating an event-related acquisition were created with a
stimulus time series comprising a 2-s box car-shaped stimulus
followed by a 16 s rest repeated over 17 trials with a total runtime
of 306 s. The stimulus time series was convolved with a canon-
ical hemodynamic response based on a gamma variate function
with a 100 Hz sampling frequency. It was downsampled to create
the synthetic BOLD signal with a 250 ms repetition time (TR).
Gaussian noise was added to the resulting signal such that the
signal-to-noise ratio (SNR) was 6. The SNR was calculated as
the ratio of the amplitude of the signal to the standard deviation
of the noise.

Three sets of simulated stimuli, shifted in time to introduce
known delays between the simulated BOLD signals, were used.
The first set led the second by 100 ms and the third by 200 ms.
A synthetic brain slice (128 x 128) was created to simulate the
spatial distribution of activated regions on brain [see Fig. 1(a)].
The first set of simulated BOLD signals was assigned to the red
regions (A and D). Regions B and C (green) constituted signals
from the second set, and blue pixels were assigned the signals
from the third set. Region F represented the gray or white matter
in brain and consisted of noise only. BOLD responses from these
regions are shown in Fig. 1(b) after averaging across trials.

B. Real FMRI Data

1) Experimental Design: We used the fMRI dataset orig-
inally collected for a study of the unified attentional bottle-
neck [36]. The original experiment was composed of trials that
comprised either an auditory-vocal (AV) task, a visual-manual
(VM) task, or both tasks simultaneously (dual tasks, DT). Nine
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Fig. 2. Experimental design of the face discrimination task comprising visual
stimulus-manual response trial (adapted from [36]).

functional runs with six VM trials, six AV, and six DT trials,
presented randomly, were acquired. For this work, we extracted
only the VM trials while excluding other tasks from our anal-
ysis. The VM face discrimination task used one of three male
faces (6.4° of visual angle). Each trial comprised 12 s of a black
fixation marker (0.1° of visual angle) followed by the stimuli
presentation for 200 ms. The last 2 s of the fixation included an
enlargement of the fixation point to alert the subjects about the
following stimulus presentation (see Fig. 2). With the stimulus
presentation, a 4 s response interval was initiated, which was
followed by a 200 ms postresponse period before the start of the
next trial. Responses were made with right index, middle, and
ring fingers for the respective faces.

2) Data Acquisition: The data were collected after approval
from the institutional review board at Vanderbilt University [36].
Twelve healthy volunteers (five female; aged 21-33) partici-
pated. Functional (T2*) images (TR = 1200 ms, TE = 35 ms,
flip angle = 70°, FOV = 220 mm; 64 x 64 matrix) consist-
ing of 20 slices (4.5 mm thick, 0.5 mm skip) were acquired
parallel to the anterior commissure—posterior commissure line
on a Philips Achieva 3T Intera MR scanner. Stimuli were pre-
sented on a liquid crystal display panel and back-projected onto
ascreen in front of the scanner. Manual responses were collected
with five-key keypads (Rowland Institute of Science). RT was
recorded for each trial. Stimulus presentation was synchronized
with fMRI volume acquisition with the interleaved design such
that the intervening trials began 600 ms (1/2 TR) after the scan-
ner pulse. There were in total nine runs. One subject completed
only seven runs due to discomfort.

3) Data Preprocessing: Before analyzing the data for voxel
selection, we ran them through a preprocessing pipeline that
included motion correction and slice-time correction. We then
extracted VM trials (a total of 54) from all runs for a given sub-
ject, and using the K-means algorithm, divided the trials based
on RTs into two groups (clusters): slow RT and fast RT. If one
cluster ended up having just a few trials, we discarded it as
outliers and divided the remaining trials into two groups. We
concatenated fast and slow RT trials to choose voxels from the
combined signals. The concatenated time series was temporally
filtered with a 120 s (0.0083 Hz) high-pass filter including de-
trending to remove low-frequency drifts and linear trends in the
data.

C. Voxel Selection

1) SOM: The preprocessed signals were used as inputs to
the SOM algorithm to detect voxels responding to the task. The
total number of nodes IV, initial learning rate o, and number of
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iterations for the SOM algorithm were chosen from the test for
convergence procedure used in [21]. This would optimize the
parameters to achieve the best possible results with minimum
iteration and time. An initial learning rate of 0.1 produced the
least total squared error between the input data vectors and the
representative node prototype vectors for the total number of
nodes of 100 (arranged in a 10 x 10, 2-D lattice grid format)
and 100 iterations.

We initialized the weight vectors associated with the nodes
with the first two principal components of the input data from
the brain region. The winner node (BMU) was selected using
the lagged correlation coefficient metric:

corr(xz, m.) = max {lagcorr(x, m;)}, i=1,..., N
(6)
where lagcorr(x, m;) denotes the lagged correlation coeffi-
cient between the input « and the weight vector of the i*" node,
m,;. We used lag-1 correlation in the simulation so it would
improve the sensitivity to timing differences between signals.
Lag-0 versus lag-1 did not make a difference in the real fMRI
data so we used lag-0. The initial value of the FWHM of the
Gaussian kernel (o) in the neighborhood function was set to be
equal to the radius of the lattice, equal to seven nodes for the
10 x 10]attice [21], [22]. The learning rate o was set to an initial
value of 0.1. Both learning rate («) and FWHM of the Gaussian
kernel (o) were decreased exponentially with the increase in the
learning iteration. The training resulted ina 10 x 10 map of out-
put nodes with a prototype and a voxel map for each node. Using
our visualization scheme, we delineated clusters on the map. For
the fMRI experiment, the clusters whose voxels mapped to the
visual and motor regions were chosen for further analysis.

2) ICA: We used GIFT (Medical Image Analysis Lab),
which implements spatial ICA, to extract task-related signals
from the fMRI dataset. We ran the ICA for each individual
subject using the FastICA algorithm incorporated in GIFT. The
number of components was determined by the minimum de-
scription length principle. We examined the spatial map for each
component and selected the one whose voxel map included the
visual and motor regions. Brain signals from the regions were
extracted using a suitable threshold to match the number of
voxels obtained from the SOM.

3) GLM: We performed GLM-based multiple regres-
sion analysis using statistical parametric mapping (SPM8—
http://www.fil.ion.ucl.ac.uk/spm/software). The regressor was
constructed by convolving the event related stimulus time series
with a canonical hemodynamic response based on gamma vari-
ate functions. GLM was fitted to the response using SPM8 and
regression parameter was estimated. A suitable threshold for the
t statistic was chosen so the number of voxels from visual and
the motor regions matched with other methods.

D. Measuring Timing Differences Using an IL Model

Inverse logit functions were used to model the hemodynamic
response. We fitted the model on average BOLD responses from
visual and left motor regions for two RT groups and estimated
their timing parameters.
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To model the HRF, a superposition of three IL (sigmoid)
functions, L(z) = (1 +e )", was used. The first function
modeled the rise after activation, the second modeled the sub-
sequent fall and undershoot, and the third function modeled the
stabilization or return to baseline [37]. The model of the HRF
was given by:

h(t]0) = cn L((t = T1)/D1) + e L((t — T3)/Ds)
+az L((t —T3)/Ds). (7)

Each function had three variable parameters representing the
amplitude, position, and slope of the response. The «; parameter
controlled the amplitude and direction of the curve, T; controlled
the position, and D; controlled the angle of the slope of the
curve. We constrained the values of oy and a3 (so that the
fitted response begins at zero at the time point ¢ = 0 and ends
at magnitude 0) and used a four parameter model where the
position of each function and the total amplitude were allowed
to vary. We used following constraints for the amplitude:

ay = a1 (L((=T3)/D3) — L((—=11)/D1))
/(L((~=T3)/D3) + L((=T»)/D2)). (8)
And
a3 = |OLQ| — |Oél|. (9)

We used a gradient descent solution to fit the model and used
the parameter estimation procedure described in [37] to calcu-
late the height I, time-to-peak 7', and FWHM W from fitted
HREF estimates. The difference in time-to-peak (TTPD) between
average motor and visual responses was used to measure RTs.

IV. RESULTS
A. Simulated Data Analysis

Signals from synthetic brain regions, denoted by the inner
gray area comprising five activated regions (A-E) in Fig. 1(a),
were fed as input to the SOM algorithm. There were 5498 total
brain pixels with 341 (~6%) that constituted synthetic BOLD
signals and rest noise. Fig. 3 shows the 10 x 10 SOM output map
showing traces of prototypes (average across trials) of the nodes.
The prototypes corresponding to task are on the top right-hand
corner of the map. We then applied the graphical visualization
scheme to delineate clusters on the output map. Fig. 4(a) shows
CONNDDyvis obtained by draping the local density distribu-
tion matrix CONNDD over the SOM lattice. The strength of
the connection between prototypes is indicated in grayscale and
binned width of the lines where darker and wider lines repre-
sent stronger connections. Outliers and connections involving
noise were removed by discarding connectivity strength smaller
than the mean connectivity strength of the fifth strongest con-
nection of each prototype when the mean strength fell sharply.
A number of connections appeared between the nodes includ-
ing three distinct clusters at the top right-hand corner of the
map. Fig. 4(b) shows CONNCCyvis obtained by draping the
CONNCC matrix over the SOM lattice. The prototypes at the
top right-hand corner, possibly including task-related signals,
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Fig. 3. 10 x 10 matrix of SOM output node prototypes (averaged across
trials) from the simulated dataset. The prototypes corresponding to task are on
the right-hand corner of the map.
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Fig. 4. (a) Density-based connectivity visualization (CONNDDyvis): Visual-
ization of node connectivity based on local density distribution on the 10 x 10
SOM lattice. Connectivity is interpreted in grayscale where darker and wider
lines mean strong connections. (b) Correlation-based connectivity visualization
(CONNCCYvis): Visualization of connectivity based on local correlation (corre-
lation coefficient between the neighboring prototypes) on the SOM lattice. (c)
Combined connectivity visualization (CONNDDCCVvis): Visualization of con-
nectivity based on local density distribution and local correlation on the SOM
lattice. Three clusters of nodes were identified as indicated in red, green, and
blue. (d) The output map showing traces of prototypes in different colors for
three different clusters.
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Cluster 3

Fig. 5. (a) The graph-based visualizations of the SOM successfully detected
three clusters based on the delay groups: 0, 100, and 200 ms. (a) The blue cluster
in Fig. 4(d) included voxels shown in left (Cluster 1), red cluster included voxels
shown in middle (Cluster 2), and green cluster included voxels shown in right
(Cluster 3). (b) ICA detected two components that could not distinguish the
delay groups separately, and (c) GLM analysis with uncorrected and FWE
corrected p values (p < 0.001 and p < 0.05) could not distinguish the delay
groups either.

showed high correlations. Fig. 4(c) shows CONNDDCCYvis ob-
tained by draping the density and correlation combined matrix
CONNDDCC over the lattice. The three distinct clusters at the
top right-hand corner of the map became dominant while other
connections including noise were suppressed. The same clusters
are shown with the node prototypes in Fig. 4(d) and are mapped
to the image space in Fig. 5(a).

The pixels included in the prototypes indicated in blue in
Fig. 4(c) are shown in Fig. 5(a), left. These represented blue
pixels in the image space. Similarly, the prototypes shown in
red in Fig. 4(c) included red pixels [see Fig. 5(a), middle] and
green prototypes included green pixels as shown in Fig. 5(a),
right. This shows the ability of the graph-based visualization
schemes of the SOM in 1) detecting voxels responding to the
task; and 2) distinguishing voxels on the basis of timings of the
signals they constituted.

We compared the performance of the SOM with ICA and
GLM. The ICA produced two independent task-related compo-
nents from the simulated dataset but could not distinguish the
three timing groups [see Fig. 5(b)]. The results did not change
even when the number of components to be determined was
set to more than 3. GLM with uncorrected or FWE corrected p
values also detected the activated voxels but could not distin-
guish the delays in them [see Fig. 5(c)]. In summary, the SOM
with graph-based visualizations provided highest sensitivity in
detecting voxels responding to tasks and distinguishing them
based on timings of the corresponding signals in the simulated
data.

We compared the performance of the visualization technique
with the two-stage clustering approach where SOM prototypes
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Fig. 6. Clustering of SOM prototypes using hierarchical clustering with dif-
ferent “optimal” partitions (Np). The colors represent clusters. The prototypes
corresponding to signals at the top right-hand corner all belonged to one cluster
irrespective of the number of partitions. This indicates the inability of the two-
stage clustering approach using hierarchical clustering of the SOM to distinguish
delays in the signals. (a) N;, =2. (b) N, =9. (c) N, =13.(d) N}, =16.

from the first stage were clustered using hierarchical clustering
in the second stage [22]. The quality of the partition was assessed
by the within-class inertia measure [11]. We clustered the SOM
prototypes (in Fig. 3) with the hierarchical clustering approach
using optimal partitions that resulted in 2, 9, 13, and 16 optimal
numbers of clusters (see Fig. 6). None of these partitions were
able to distinguish the delay groups in the signals. The proto-
types related to signals belonged to one cluster in all partitions.
We increased the cluster number further, but the signal-related
prototypes always remained in one cluster.

Although the learning parameters and size of the SOM were
optimized using the test for convergence procedure described
in [21], we tweaked these parameters to see their effects on the
result. Fig. 7 shows the effect of map size. For the same set of
delays (0, 100, and 200 ms) and SNR level 6, a smaller map
size (8 x 8) delineated only two groups of delays in the signals
[see Fig. 7(a)]. Map size 9 x 9 (not shown here) could still
delineate the three delay groups. A larger map size (11 x 11)
could distinguish the delays resulting in three clusters as shown
in Fig. 7(b), however, took longer to converge due to increase
in the number of output nodes. We also tested the effect of
the learning rate (see Fig. 8). For slower initial learning rate
(av = 0.05, half the original), the three delay groups were still
clearly delineated. These clusters became apparent for faster
learning rate (o = 0.5) as well. However, there were more false
positives in the results than those at « = 0.1 [see Fig. 5(a)]. The
initial learning rate did not have much impact on the results when
varied from 0.05 to 0.5. However, it should be remembered that
if the learning rate is too slow or too fast than the optimum, the
results may not converge or in this study, it may fail to clearly
delineate the clusters.
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Fig. 7.  Effect of map size (a) 8 x 8 map size could not distinguish the three
delay groups: 0, 100, and 200 ms separately. (b) 11 x 11 size successfully
delineated the three delay groups in three distinct clusters.
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Fig. 8. Effect of initial learning rate. (a) Slower initial learning rate, & = 0.05,
which was half the original, could still classify the three delay groups: 0, 100,
and 200 ms. (b) Faster learning rate, & = 0.5, could also delineate the three
delay groups. However, there were more false positives in the results.

We tested the robustness of the method by changing the delays
and SNR of the signals. For the same SNR level 6 but shorter
delays (0, 50, and 100 ms), the SOM visualization could not
distinguish the delays (not shown here) while longer delays (0,
200, and 400 ms) resulted in distinct clusters as expected (see
Fig. 9). However, ICA still resulted in only two components, and
GLM could not distinguish these longer delays in the signals
[see Fig. 9]. For lower SNR of level 4, SOM visualization gave
only two clusters for delays: 0, 100, and 200 ms [see Fig. 10].
However, longer delays (0, 200, and 400 ms) were clearly sep-
arable even at SNR level 4. When SNR increased beyond 6,
even shorter delays started to become distinct. Fig. 11 shows re-
sults for delays 0, 50, and 100 ms between signals at SNR level
7. While SOM visualization could delineate two clusters, ICA
and GLM could not distinguish the delays at all. In summary,
our results showed that longer delays and higher SNR were fa-
vorable for clear delineation of timing differences in signals.



KATWAL et al.: UNSUPERVISED SPATIOTEMPORAL ANALYSIS OF FMRI DATA USING GRAPH-BASED VISUALIZATIONS

Cluster 1

0_200_400ms 0_200_400ms

Fig.9. Effectof delays. Larger delays between the signals (0, 200, and 400 ms)
at the same SNR = 6 improved the clustering by resulting in fewer false positives
than at shorter delays [0, 100, and 200 ms—Fig 5(a)]. However, the results from
ICA and GLM were not much different.
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. P

0_100_200ms

Cluster 1 Cluster 3
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Fig. 10.  Effect of SNR. (a) At a lower SNR = 4, the resulting clusters could
not distinguish 0, 100, and 200 ms from each other. (b) For larger delays (0,
200, and 400 ms), three distinct clusters resulted for the delay groups.

Visualization of the SOM was the most sensitive and capable of
delineating small timing differences compared to ICA or GLM.

B. FMRI Data Analysis: RT Study

The extracted functional time series data from brain regions
was fed as input to the SOM algorithm. The density-based con-
nectivity (CONNDDvis) showed a number of clusters at dif-
ferent regions of the map [see Fig. 12(a)] for a subject. The
correlation-based connectivity showed strong and weak con-
nections on the map as well [see Fig. 12(b)]. The combined
connectivity delineated clusters that could be relevant to our
analysis [see Fig. 12(c)]. A number of (about 12) clusters be-
came apparent on the map. The clusters indicated in blue and
red included prototypes whose voxels mapped to visual and left
motor regions, respectively, in Fig. 13(a). Average signals from
these regions were extracted and split into fast and slow RT
groups/trials. The IL hemodynamic model was fit on the aver-
age signals for both groups. Fig. 14 shows average signals from
(a) visual and (b) motor regions for the subject and their cor-
responding model fits. The RT difference is quite evident from
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Cluster 2

Cluster 1

(b) (c)

Fig. 11.  Effect of SNR. (a) At a higher SNR = 7, two clusters resulted for
delay groups: 0, 50, and 100 ms. (b) ICA and (c) GLM could not distinguish
the delays at all.

the motor signals [see Fig. 14(b)]. The estimated HRFs for the
two regions and RT groups for the same subject are shown in
Fig. 15. Timing differences between visual and motor functions
and slow and fast RT functions are evident. We estimated time-
to-peak parameters of each signal. The TTPDs between visual
and motor signals for the two RT groups were compared with
the mean of the recorded RTs. The TTPDs increased (from 1.52
to 1.8 s) with the increase in RT (from 0.8 to 1.19 s). This is
indicative of the ability of average signals from visual and left
motor cortices to reflect the RT differences.

We also chose voxels using ICA [see Fig. 13(b)] and GLM
[see Fig. 13(c)] and computed the time-to-peak measures from
average responses for slow and fast timing groups. The TTPD
between motor and visual cortices for both timing groups were
compared with the corresponding RTs. Fig. 16 shows relation-
ships between the computed TTPD measures and the mean RTs
for 12 subjects for all three voxel selection techniques. The linear
relationships between TTPD and RT were strongest for the SOM
[see Fig. 16(c)] as indicated by the linear mixed-effects model
(dark line, p = 0.007). For voxels selected by ICA, the TTPD
increased with RT in some subjects while decreased for others
[see Fig. 16(b)]. The mixed effects model indicated weaker lin-
ear relationship (dark line, p = 0.06). For GLM [see Fig. 16(a)],
the linear relationship was not apparent (dark line, p = 0.82).

C. Performance Comparison

We fit a linear mixed-effects model on the TTPD measures
and computed slope and intercept of the fit for each voxel selec-
tion method. The ¢ statistic for the slope of the model was cal-
culated to compare the precision of each method in terms of the
standardized effect size. The precision compares the strength of
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Fig. 12.  (a) CONNDDyvis: Density-based connectivity visualization from a
subject performing the visual stimulus-manual response (VM) task. (b) CON-
NCClvis: Correlation-based connectivity visualization: (c) CONNDDCCYvis:
Combined connectivity visualization. A number of node clusters were iden-
tified including those shown in red and blue. (d) The same clusters shown on
the output map with traces of prototypes. The prototypes indicated in blue and
red contained voxels in visual and motor regions, respectively [see Fig. 13(a)].

(©)

Fig. 13.  Voxels identified by (a) SOM (Voxel count: Visual—21, Motor—16),
(b) ICA (Voxel count: Visual—18, Motor—12), and (¢) GLM (Voxel count:
Visual—22, Motor —14) for the subject. The same voxels are shown with the
colormap (based on correlation with the reference function) on the right.
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Fig. 14.  Average signals from (a) visual and (b) motor regions (chosen via
SOM) for the subject for fast and slow RT groups. The broken lines are average
fits from the IL model. The timing difference between fast and slow RT groups
is evident from the motor signals.
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Fig. 15. Estimated HRFs from visual (blue) and motor (red) regions (chosen

via SOM) for two RT groups for the subject. Motor—Visual (solid curves) time-
to-peak difference: TTPD; = 1.52 s. Motor—Visual (broken curves) time-to-
peak difference: TTPD2 = 1.8 s. Actual mean RTs were: RT; = 0.80 s and
RTy = 1.19s.
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Fig. 16. TTPD between average motor and average visual cortex signals ob-

tained via (a) GLM, (b) ICA, and (c) SOM versus mean RTs from 12 subjects.
TTPD increased linearly with RT in most of the subjects for voxels selected by
the SOM as indicated by the linear mixed-effects model (dark line, p = 0.007).
For voxels selected by ICA, the TTPD increased with RT in some subjects while
decreased for others (dark line, p = 0.06). For GLM, a linear relationship was
not apparent (dark line, p = 0.82).

the linear relationship between TTPD and RT against the amount
of variability in the data. Similarly, the ¢ statistic for the intercept
was measured to compare the bias of the fits. Fig. 17 shows (a)
precision and (b) bias of the fits on the measures from the SOM,
ICA, and GLM. The error bars indicate 95% confidence inter-
vals from 2000 bootstrap samples using the case-resampling
bootstrap. Signals identified by the SOM produced the highest
precision of all. No bias was evident statistically for any of the
methods [see Fig. 17(b)].
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Precision

SOM ICA GLM SOM ICA GLM
(a) (b)
Fig. 17.  Performance comparison of the voxel selection methods using results

from linear mixed-effects modeling. (a) Precision was measured with the ¢
statistic for the slope (linear term of the fit) describing the relationship to RT.
(b) Bias was measured with the ¢ statistic for the intercept of the fit. The error
bars indicate 95% confidence intervals from 2000 bootstrap samples generated
by case-resampling bootstrap.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a data-driven method for fMRI
analysis using a novel graph-based visualization scheme for self-
organizing maps (SOMs). The visualization scheme was formu-
lated using two metrics of SOM node connectivity based on 1)
density distribution across nodes; and 2) correlation between
the node prototypes of the SOM output. The correlation-based
connectivity (CONNCC) considered relationships between the
neighboring prototypes in terms of their correlation. This helped
to segregate signal from noise, because prototypes containing
noise were less likely to be correlated. If the signals were highly
correlated and had small timing differences, CONCC might not
reveal the differences because the within-cluster similarity and
between-cluster similarity among these signals would be com-
parable. Hence, all signals would seem to fall in one cluster. The
density-based connectivity (CONNDD) on the other hand did
not directly use correlation between prototypes. It considered
relationships between the neighboring prototypes in terms of
data distribution across the prototypes. The number of data vec-
tors (fMRI time series) for which the prototypes were the best
two matching prototypes accounted for connectivity between
the neighboring prototypes in CONNDD. Separation between
clusters could be seen when the neighboring prototypes did not
have data distribution. This finer density distribution visual-
ization helped to distinguish small timing differences within the
signals. This visualization scheme was applied on simulated and
fMRI datasets in this study to identify activated voxels and clas-
sify them based on differences in timings of their corresponding
signals. The SOM applied in conjunction with the graph-based
visualization scheme outperformed ICA and GLM by providing
highest sensitivity in classifying regions based on the timing of
their responses. On the real fMRI dataset, we fit the average sig-
nals using IL functions to model the hemodynamic response and
measured TTPD measures to compare to RTs. Signals identified
by the SOM suggested a statistically strong linear relationship
between RTs and TTPDs.
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A. Significance of Graph-Based Visualizations of SOMs in
FMRI-Based Timing Studies

We used three methods for voxel selection in this study: GLM,
ICA, and SOM. GLM was a univariate method that followed a
hypothesis-driven approach whereas ICA and SOM were mul-
tivariate methods that followed a data-driven approach.

GLM followed voxel-based linear regression analysis based
on the GLM using SPM. The modeling assumptions and deter-
ministic characteristics of the reference function in GLM anal-
ysis may have been too restrictive to capture the full range of
stimulus-driven BOLD transitions [22]. Additionally, the voxel-
by-voxel hypothesis testing approach in SPM was massively
univariate, not making full use of the neighborhood relation-
ships or intervoxel dependencies that could improve sensitivity.
This may have resulted in lower sensitivity of GLM in identify-
ing and classifying task-evoked voxel responses based on their
timings.

For ICA, we used spatial ICA that determined maximally
independent components from the data by maximizing non-
Gaussianity. This ensured segregation of task-related signals
from other nonrelevant signals and noise. Although data driven,
ICA made a strong assumption of independence between com-
ponents which may have resulted in biased decomposition and
decreased ability to detect task-related signals [10], [38]. This
may have resulted in lower sensitivity of ICA as shown by the
results (see Fig. 16). Our implementation of SOM used neigh-
borhood correlation to group data based on similarities in their
temporal patterns. The neighborhood function essentially made
use of intervoxel relationships that increased its sensitivity. The
graph-based visualization scheme delineated small structures of
clusters in the data that could distinguish early BOLD signals
from late signals. This was demonstrated by our results from
simulation. This may have helped in reducing interference from
late signals coming through draining veins in the real fMRI
experiment.

A weakness of the graph-based visualizations of the SOM
is that connections between nonneighboring SOM prototypes
can obscure the visualization, especially when the dataset is
noisy like a typical fMRI dataset. Using a suitable threshold to
discard noise and outliers is important for clear distinction and
visualization of meaningful clusters.

B. Time-to-Peak From IL Fits for Timing Studies

A comparative study of the hemodynamic response models
conducted in [37] suggested that the IL model was immune
to a large degree of model misspecification providing the least
amount of bias and confusion between the response parameters
than other models such as canonical gamma and finite impulse
response. In [39], hemodynamic response timing parameters
were investigated concluding that the time-to-peak estimate was
stable across separate datasets for the same region within a sub-
ject and was a reliable measure of the hemodynamic response.

Our estimates of TTPDs parameters obtained from IL fits
did not match the corresponding mean RTs in absolute terms
[see Fig. 15] although their linear relationship was evident [see
Fig. 16(c)]. This was understandable as the HRF is a complex,
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nonlinear function of the neuronal or vascular changes. The HRF
model is limited in terms of its statistical accuracy for accurate
recovery of the true response parameters (time-to-peak, width
and height) [37].

We observed large variation in TTPD measurements in some
subjects across methods [see Fig. 16]. This could be due to
small difference between slow and fast mean RTs for these
subjects. In this case, even a slight difference in the voxels
selected by the methods could result in large difference in timing
measurements. Also, inclusion of voxels contributing to late
signals from sources such as draining veins can introduce bias
to timing measurements. Our approach of voxel selection using
graph-based visualizations of the SOM was more sensitive to
timing differences than other methods. It might have been able
to avoid voxels contributing to late signals thereby reducing
their interference on these timing measurements.

A major source of bias may arise in fMRI-based timing stud-
ies in the form of hemodynamic variability. The hemodynamic
shape may vary across brain regions and subjects [40], [41]
which could give misleading inferences on the actual delay. In
this case, modulation of the delay (in our case RT differences) by
experimental demands and cognitive context can be employed
to rule out hemodynamics as the cause of the results and val-
idate the measured timing differences. The linear relationship
between TTPD measures and RTs, especially with signals iden-
tified by the SOM in our study, is compelling evidence that these
measurements are not source of hemodynamic artifacts.

In summary, with careful consideration of experimental de-
sign, graph-based visualizations of SOMs can be used to identify
spatiotemporal patterns of activated brain regions and measure
relative timings of brain activities using fMRI.
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