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What are the units of storage in visual working memory?

Department of Psychology, Vanderbilt University, @
<

Nashville, TN, USA
IR
==

Daryl Fougnie

Neuroscience Graduate Program, Vanderbilt Brain Institute,

Christopher L. Asplund Nashville, TN, USA

Department of Psychology, Vanderbilt Brain Institute,

René Marois Nashville, TN, USA

An influential theory suggests that integrated objects, rather than individual features, are the fundamental units that limit our
capacity to temporarily store visual information (S. J. Luck & E. K. Vogel, 1997). Using a paradigm that independently
estimates the number and precision of items stored in working memory (W. Zhang & S. J. Luck, 2008), here we show that
the storage of features is not cost-free. The precision and number of objects held in working memory was estimated when
observers had to remember either the color, the orientation, or both the color and orientation of simple objects. We found
that while the quantity of stored objects was largely unaffected by increasing the number of features, the precision of these
representations dramatically decreased. Moreover, this selective deterioration in object precision depended on the multiple
features being contained within the same objects. Such fidelity costs were even observed with change detection paradigms
when those paradigms placed demands on the precision of the stored visual representations. Taken together, these findings
not only demonstrate that the maintenance of integrated features is costly; they also suggest that objects and features affect

visual working memory capacity differently.
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Introduction

Objects, not features, are commonly viewed as the
elementary building blocks of our visual representations,
not only for perception (Blaser, Pylyshyn, & Holcombe,
2000; Duncan, 1984; Kahneman, Treisman, & Gibbs,
1992; Scholl, 2001) but for visual working memory
(VWM) as well (Luck, 2008; Luck & Vogel, 1997;
Rensink, 2002; Vogel, Woodman, & Luck, 2001). Exper-
imental support for the view that VWM is object-based
comes from change detection tasks in which participants
memorize a sample display of objects in order to identify
whether a subsequent probe object is the same as, or different
from, one of the sample objects (Delvenne & Bruyer, 2004;
Luck & Vogel, 1997; Olson & Jiang, 2002; Vogel et al.,
2001; Wheeler & Treisman, 2002). Consider, for example,
the change detection task shown in Figure 1A. On each trial
of this task, three colored triangles are first briefly presented,
followed by a blank retention interval, and then by a probe
stimulus presented at the location of one of the three sample
stimuli, with the observers instructed to remember the color,
orientation, or both color and orientation of the sample
stimuli in different blocks of trials. Performance on this type
of task is the same regardless of whether participants have to
maintain both color and orientation or either color or
orientation alone (Delvenne & Bruyer, 2004; Luck &
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Vogel, 1997; Olson & Jiang, 2002; Vogel et al., 2001;
Wheeler & Treisman, 2002). There are two specific
circumstances under which costs for multi-feature objects
have previously been found: when features form distinct
object parts (Davis & Holmes, 2005; Delvenne & Bruyer,
2004, 2006; Xu, 2002; Xu & Chun, 2006) and when they
come from the same feature dimension (e.g. multiple
colors) (Delvenne & Bruyer, 2004; Olson & Jiang, 2002;
Wheeler & Treisman, 2002). However, these findings have
not dispelled the notion that objects are the sole units that
constrain VWM capacity. Specifically, it has been suggested
that complex, multi-part objects are stored in multiple object
‘slots’ (Luck, 2008; Vogel et al., 2001), and that costs for
two features in the same dimension occur during perceptual
processing rather than working memory storage (Luck,
2008). Moreover, studies that have added multiple distinct
features to simple standard objects have replicated Luck
and Vogel’s (1997) initial finding (Delvenne & Bruyer,
2004; Olson & Jiang, 2002; Vogel et al., 2001; Wheeler &
Treisman, 2002). Hence, the theory that VWM storage is
constrained only by objects and not features continues
to dominate the field (Huang, 2010; Kyllingsbaek &
Bundesen, 2009; Raffone & Wolters, 2001; Wolters &
Raffone, 2008), and has been recently reinforced (Zhang
& Luck, 2008).

Although change detection studies indicate that the
number of objects stored in VWM is independent of the
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Figure 1. Experimental tasks. (A) Trial design for change detection experiments (Experiment 5). For feature report experiments
(Experiments 1-4), the probe display was replaced with a feature response wheel for (B) color or (C) orientation. Note that the orientation
wheel was presented around the probed location, and not fixation. (D—E) Example sample displays when the colors and orientations were
in distinct objects in (D) separate locations or at the (E) same location.

number of distinct features they contain (Luck & Vogel,
1997), it is well established that VWM is not just limited
by the number of object representations; there are also
limits in the precision of these representations (Bays,
Catalao, & Husain, 2009; Bays & Husain, 2008; Jiang,
Shim, & Makovski, 2008; Magnussen & Greenlee, 1992,
1999; Wilken & Ma, 2004; Zhang & Luck, 2008). It is
therefore conceivable that objects’ featural complexity
primarily affects the fidelity of object representations
rather than the number of representations held in working
memory. We tested this hypothesis in Experiment 1 using
a recently developed mixture modeling method that
provides independent measures of the quantity and reso-
lution of VWM representations (Bays et al., 2009; Zhang &
Luck, 2008, 2009).

Methods
Participants

Fifteen young adults (6 males) participated for course
credit or monetary reward. One participant’s data were
excluded from analysis because he/she showed a 100%
guess rate for color probes in the conjunction condition.

Stimuli

The VWM sample consisted of three colored isosceles
triangles presented in equally spaced positions along an

imaginary ring 1.5° from fixation (Figure 1A). Each
triangle had angles of 30°, 75° and 75° and sides
subtending 0.6° x 1.4° x 1.4°. The orientation of the
corner corresponding to the small angle was randomly
determined for each triangle from one of 180 orientations
(2°-360°, in 2° steps), with the restriction that no two
triangles had orientation values within 30° to minimize
the possibility that participants would encode two items
as a single value. Each triangle was assigned to one of
180 equiluminant colors evenly distributed along a circle
in the CIE L*a*b* color space (centered at L = 54,
a =18, b = —8, with a radius of 59), with any two
triangles separated by at least 15 color steps.

Procedure

Depending on the block, participants were instructed to
memorize the color, orientation, or both color and
orientation of the triangles (conjunction blocks). During
conjunction blocks, probe type was selected at random
each trial. Each participant completed two color, two
orientation, and four conjunction blocks of 76 trials per
block. Instructions at the beginning of each block
informed participants about the block type. Prior to the
study, participants completed 12 practice trials of each
condition.

A trial began with the presentation of a central cross
that participants were instructed to fixate. Additionally,
the central cross signaled participants to begin repeating
the word ‘the’ at a 3 Hz rate for the duration of the trial.
This articulatory suppression was monitored remotely and
required in all studies, and served to minimize verbal
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Figure 2. Histogram of all response errors (in degrees) for participants in (A—B) Experiment 1 and (C-D) Experiment 2 separated by
condition: three (blue) or six (red) features and color (left) or orientation (right) probe. Note that the histogram has 20 equal bins, each
18° wide. The solid black line in each panel shows the best fitting mixture distribution for the data combined across participants. The
continuous mixture distribution has been scaled to match the histogram’s frequency values (y-axis).
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3 Features 6 Features

Color Orientation Color Orientation

Experiment 1 18.79 (0.87) 16.83 (0.96) 25.28 (1.73) 19.73 (0.87)

Experiment 2 21.5 (1.14) 18.51 (0.91) 22.78 (1.81) 23.98 (1.44)

Experiment 3 20.04 (1.36) 16.53 (0.85) 25.06 (1.82) 16.59 (0.97)

Experiment 4 20.21 (0.94) 14.68 (0.63) 22.77 (0.93) 15.25 (0.63)

Table 1. The o parameters of the mixture modeling analysis, before perceptual/response correction, for Experiments 1-4. Between-

subject SE is shown in parentheses.

encoding and rehearsal of the visual stimuli. One second
after the onset of fixation, the VWM sample appeared for
1200 ms. After a 900 ms retention interval, a solid white
circle appeared at the location of the probed VWM
stimulus (subtending 0.8° diameter), and hollow circles
appeared at non-probed locations. A response wheel
(subtending 0.7° wide, 6° radius) appeared around the
probe display. For color probes the wheel was centered on
fixation and consisted of 180 colored segments corre-
sponding to the possible stimulus colors (Figure 1B). For
orientation probes, a black wheel was centered on the
probed item (Figure 1C). A black indicator line, with
position determined by angular position of the cursor,
appeared outside the color wheel to indicate the selected
color or orientation. Participants selected one of 180 values
by clicking the mouse when the indicator line matched
the desired value. Responses were unspeeded. Feedback
on response error (in degrees) was provided during the
1000 ms ITI. Mixture modeling analysis (Zhang & Luck,
2008) was conducted on the response error data (see
Figure 2 for a histogram of response error data across all
participants) in order to derive the guess rate and standard
deviation of the error of non-guess responses for each
experimental condition.

Mixture modeling analysis

A measure of response error for each participant and
each experimental condition (single-feature color, single-
feature orientation, dual-feature color, and dual-feature
orientation) was calculated by subtracting the probed
item’s value (6 for color or orientation) from the response
(0). Note that response error was a mixture of two
distributions, one corresponding to trials in which partic-
ipants made a random guess and the other to trials in
which participants made a non-guess response. Random
guess responses came from a uniform distribution with a
height parameter (1 — P,,). Target responses likely came
from a von Mises (circular normal) distribution scaled by
P,, with mean (1) and standard deviation (o) parameters
(Zhang & Luck, 2008). To determine whether guessing
rate or the precision of non-guesses changed across
conditions, the response error distributions for each
condition were fit using maximum likelihood estimation
for the parameters P,,, o, and pu in Equation 1. The

probability in memory parameter (P,,) reflects the pro-
portion of non-guesses and is thus the inverse of the
height of the uniform distribution. The p and o parameters
of the von Mises distribution detail the bias (either
clockwise or counterclockwise on the response wheel)
and precision of target responses, respectively. A higher o
for the von Mises distribution represents lower precision
of stored representations. In all studies, we observed no
significant biases, so these are not reported (Zhang &
Luck, 2008).

(Pu) o (0 = 0) + (1= Pu)/2m. (1)

Importantly, each measured o does not represent a pure
measure of VWM imprecision: perceptual and/or response
errors may also contribute. To specifically isolate the
precision of VWM representations, we first estimated non-
mnemonic contributions to o from a perceptual task
performed on a separate set of eleven participants. In this
perceptual task, participants reported the color or orienta-
tion of a single colored triangle presented 3° to the bottom
left of fixation (using the appropriate response wheel).
Crucially, unlike the WM task, the colored triangle was
presented throughout the duration of the feature report.
Participants completed two color and two orientation
response blocks of 76 trials in a random order. Predict-
ably, mixture modeling on the resulting error distributions
revealed that participants never guessed. More impor-
tantly, estimates of o were significantly above zero:
10.91° for color responses and 7.42° for orientation
responses. This demonstrates that the VWM task involves
a surprisingly high amount of error not attributable to
imprecision in memory. The o of memory representations
(o) can be inferred by removing perceptual error (oper)
from the observed o (o) according to the following
Equation 2:

o= 6z2)hs - G;zmr' (2)

While corrected o’s are reported in all figures, a similar
pattern of results was found for both corrected and non-
corrected o’s. (See Table 1 for non-corrected c’s by
condition.)
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Figure 3. P, (left) and o (right) values for feature report experi-
ments for both color (C) and orientation (O) probes. (A) Results for
Experiments 1 and 2, in which the data was fit with a 3-parameter
model (Zhang & Luck, 2008) with P,,, o, and u parameters (see
Methods). (B) Results for Experiments 3 and 4, in which the data
was fit with a 3-parameter model (Bays et al., 2009) with P,,, o,
and 8 parameters (see Methods). Yellow shows the cost in P,
(lower P,,) as the number of features increases from three to six.
Red shows the cost in o (increased o) as the number of features
increases from three to six. Error bars represent between-subject
SE.

Results and discussion

The o and P,, parameter values of the mixture modeling
analysis are shown, by feature-load and feature-type, in
Figure 3A. To determine how P,, and o differed across
experimental conditions we conducted a 2 (feature-load) x
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2 (feature-type) ANOVA on each parameter. P,, did not
significantly differ between three feature and six feature
conditions, F(1, 13) =2.81, p > 0.1. In contrast to the null
for P,,, o was increased for six features, F(1, 13) = 36.37,
p <0.01. The results also showed a main effect of feature-
type such that P, (F(1, 13) =20.94, p <0.001) was higher
and o (F(1, 13) =5.18, p = 0.04) was lower for orientation
than color probes (The feature-load X feature-type
interaction was not significant for P,, F(1, 13) = 0.77,
p =0.4, and was marginal for o, F(1, 13) = 3.63, p = 0.08).

These parameter estimates were then combined across
features and expressed on a common standardized scale to
measure the percentage change in P,, and o as feature
load was increased. As shown in Figure 4A, the
probability that an object was stored in VWM (P,,,) was
not affected by feature-load, #13) = 1.15, p = 0.27. In
contrast, the precision (o) of the stored features decreased
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Figure 4. The percent costs in o (blue) and P,, (red) for
increased feature-load in feature report experiments. Feature-
load was added either in the same (left) or distinct (right) objects.
(A) Parameter estimates for Experiments 1 (left) and 2 (right) were
derived using the standard mixture modeling method. (B) Param-
eter estimates for Experiments 3 (left) and 4 (right) were derived
from the modified mixture modeling method that includes a non-
target (B) response distribution. Error bars represent between-
subject SE.
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when the task required the maintenance of both color and
orientation, #(13) = 6.21, p < 0.001. The markedly
different effect of feature load on the probability that an
object was stored in VWM, versus the precision at which
it was stored, can be observed by comparing the P,, and o
costs (3.5% vs. 35.8%; t(13) = 4.82, p < 0.001). Thus, the
results of Experiment 1 clearly indicate that increasing
the feature load of VWM representations does not affect
the likelihood that those representations are encoded (P,,),
but does reduce their precision (o).

In Experiment 1, the distinct features were contained
within the same objects. Does the selective cost in
precision of VWM representations that feature load
imposes depend on these features being added to the
same objects? To test this possibility, orientation and
color features were distributed across segregated objects
in Experiment 2, such that doubling the number of
features to be encoded also doubled the number of objects
to be encoded.

Methods

Fifteen young adults (7 males) participated for course
credit or monetary reward. The sample display was
similar to Experiment 1 except that colors and orientations
were presented as separate objects at distinct spatial
locations (Figure 1D). Black isosceles triangles (0.9° x
0.9 x 0.3°) and colored circles (0.4° diameter) appeared in
an interleaved fashion at six evenly spaced positions from
fixation. Triangles appeared at positions corresponding
to 60°, 180°, and 300°. Circles appeared at positions
corresponding to 0°, 120°, and 240°. In all other respects,
including data analysis, this study was the same as
Experiment 1.

Results and discussion

P,, and o values by feature-load and feature-type are
shown in Figure 3A. P,, was significantly lower (F(1, 14) =
212.36, p < 0.001) and o was significantly higher for six
features (F(1, 14) = 4.75, p < 0.05). There was a main
effect of feature-type for P,,, F(1, 14) =4.75, p <0.05, with
better performance for orientation probes, but no main
effect of feature-type on o, F(1, 14) = 47, p = 0.5 (The
feature-load x feature-type interaction was significant for
P, F(1,14) = 6.13, p =0.03, but not o, F(1, 14) = 3.45,
p = 0.09).

These parameter estimates were then combined across
features to measure the percentage change in P,, and o as
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feature load was increased. This yielded both P,, (33.0%;
t(14) = —13.35, p <0.001) and o costs (22%; t(14) = 2.26,
p = 0.04; Figure 3A). Thus, unlike in Experiment 1,
increasing the feature load across objects also increased
P,, costs (see also Olson & Jiang, 2002; Xu, 2002).
Indeed, the pattern of costs was different between Experi-
ments 1 and 2 (interaction between Experiments and
Parameters (P,, and o) in a 2 x 2 ANOVA, F(1, 27) =
11.38, p <0.005). We therefore conclude that the selective
costs on the precision of VWM representations is depend-
ent on features being added to the same objects, as
distributing the features across objects also imposed costs
on the number of objects encoded in VWM.

Experiments 3 and 4

It has recently been argued that the mixture modeling
approach may overestimate costs in P,,, because it assumes
that all responses that don’t originate from the target
response distribution are the result of random guesses,
ignoring the possibility that participants may report the
value of a non-cued item (Bays et al., 2009). To determine
whether this issue affects the pattern of costs obtained in
Experiments 1 and 2, we replicated these two experiments
in Experiments 3 and 4 using a modified mixture modeling
analysis that included an additional parameter (; corre-
sponding to the percentage of trials in which participants
report a non-cued item) to dissociate guess rate from
misreports (Bays et al., 2009). These additional experi-
ments were necessary because the non-random assignment
of feature values in Experiments 1 and 2—no two stimuli
could be within 30° of color or orientation space—
prevented the use of this modified mixture modeling
analysis. Moreover, to rule out the possibility that the P,
costs observed when features are spread across objects
is due to an increase in the number of attended loca-
tions instead of in the number of objects, the orientation-
and color-defined objects were spatially overlapped in
Experiment 4 (Figure 1E) (Lee & Chun, 2001).

Methods
Experiment 3

Fifteen young adults (7 males) participated for course
credit or monetary compensation. Stimulus presentation
for Experiment 3 was the same as Experiment 1 except for
the following change. In Experiments 1 and 2, the feature
values for the stimuli were restricted such that no two
objects had a value within 30° in the same feature.
Because the f analysis requires that features be uncorre-
lated (Bays et al., 2009), in Experiment 3, the color and
orientation values were assigned a random value inde-
pendently for each object.
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Experiment 4

Ten young adults (3 males) participated for course
credit or monetary compensation. This experiment was
identical to Experiment 3 except that colors and orienta-
tions of the sample display were presented as distinct but
spatially overlapping objects (Figure 1E) by superimpos-
ing the colored circles on the black triangles (to increase
object distinctiveness, a white outline was added to the
circles).

Modified mixture modeling analysis

To examine the contribution of non-target responses, we
adopted a modified mixture modeling analysis that
includes an additional parameter (f8) corresponding to the
probability that participants reported the identity of a non-
probed item (Equation 3). Specifically, the error distribu-
tions obtained from the VWM responses were fit as a
mixture of three distributions: 1) a ‘target-response’
distribution that was a von Mises distribution with mean
at 0 and a standard deviation of o, 2) a ‘mis-report’
distribution that was an average of n — 1 von Mises
distributions (where n = set size) with means at each non-
target value and the same standard deviation as the
‘target-response’ distribution), and 3) a ‘random guess’
distribution that was a uniform distribution with height
(1 — P,,). This analysis could not be applied to Experi-
ments 1 and 2 since it requires the feature values of
stimuli to be assigned independently of one another.

(P, —ﬁmo( 0) + (1 = Py)/2n
+ﬁ*n_12,1¢609 0;). (3)

Results and discussion

P,, and o values by feature-load and feature-type, for
each experiment, are shown in Figure 3B, while the
percent changes in P,, and o as feature load was increased
are shown in Figure 4B. 8 values are presented in the text
below.

Experiment 3

The B values were 7.5%, 2.9%, 20.6%, and 8.2% for
3-feature color, 3-feature orientation 6-feature color, and
6-feature orientation conditions, respectively. f was
significantly higher in six than three feature conditions
(F(, 9) = 18.42, p < 0.005), and higher for color than
orientation probes (F(1, 9) = 6.97, p <0.05). These results
indicate that responses to non-cued items do affect
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feature-report responses, and that such responses occur
more frequently with increased feature load.

Importantly, excluding responses to non-cued items
from P,, estimation (by the inclusion of the 8 parameter
to the mixture modeling analysis) did not eliminate the
selective costs in precision with increased feature load.
P, still did not significantly differ between three feature and
six feature conditions, F(1, 9) = 0.15, p = 0.71. In contrast,
o was significantly higher for six features, (1, 9) = 20.18,
p < 0.005. Correspondingly, measures of the percentage
change in P,, and o costs as feature-load increased
(averaged across features) revealed costs in o (19.3%,
t9) = 3.6, p <0.005), but not in P, (0%, t(9) = —0.58,
p = 0.58).

Experiment 4

The S values were 4.5%, 2.8%, 10.3%, and 6.8% for
3-feature color, 3-feature orientation, 6-feature color,
and 6-feature orientation conditions, respectively. f was
higher in six than three feature conditions (F(1, 9) = 5.64,
p < 0.05), but it was not different for color or orientation
probes (F(1,9) = 0.6, p = 0.46), Thus, as in Experiment 3,
B increased with increased feature load.

As in Experiment 2, P, was lower (F(1,9) =30.77, p <
0.001), and o was higher (F(1, 9) = 6.37, p <0.05), for six
features. There was no main effect of feature-type for
P, (F(1,9) =0.11, p = 0.75), but & was higher for color
than orientation probes (F(1, 9) = 23.01, p < 0.001).
Finally, measures of the percentage change in P,, and o as
feature-load increased (averaged across features) found costs
in both P, (10.3%, 1(9) =5.29, p <0.001) and o (14.1%,
1(9) = 2.57, p <0.05).

Thus, increasing the feature load within an object led to
a selective decrease in VWM precision, and this pattern of
costs is different from that obtained when features are
distributed across objects (comparison of percentage costs
in P, and o across Experiments 3 and 4 revealed an
interaction between Experiments and Parameters (P,, and o),
F(1, 18) = 4.27, p < 0.05). Because these results replicate
those of Experiments 1 and 2, we conclude that the
influence of responses to non-target items cannot explain
the distinct pattern of costs for increases in feature load
within versus between objects. Thus, these studies provide
further evidence that increasing the feature load within
objects selectively impairs representational precision, and
that such costs differ from those observed when feature
load is increased by the addition of task-relevant objects.
Of course, we cannot rule out that such results may be
specific to the experimental design and analysis technique
employed in the current studies, and future experiments
will be required to determine whether these findings
generalize to other WM paradigms. However, because
Experiment 5 shows that costs in representational preci-
sion for increased feature load can be observed when the
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response probe is replaced with a typical change detection
task, we can conclude that our results generalize to at least
two distinct methods of probing visual working memory.

If the storage of multiple features incurs costs in the
precision of memory, then why haven’t these costs been
observed in previous change detection tasks? We consid-
ered the possibility that precision costs went unnoticed
because change detection tasks used featural changes
between sample and probe items that were too large for
precision to affect response accuracy. Consistent with this
possibility, the magnitude of the orientation change
between sample and probe items in previous studies
(Luck & Vogel, 1997; Vogel et al.,, 2001; Xu, 2002,
2006) (90°) were much larger than the estimated o for six
features in Experiments 1 and 2 (20.4° and 16.6°,
respectively). While the ability to detect substantial feature
changes depends primarily on whether the changed item is
stored in memory (Awh, Barton, & Vogel, 2007; Barton,
Ester, & Awh, 2009), detecting small-magnitude changes
may also depend on whether items are maintained at
sufficient fidelity to notice a difference. We tested this
hypothesis in a change detection task with identical
stimulus presentations to Experiment 1 except that the
feature probe task was replaced with a change detection
task in which participants indicated whether the single-
item VWM probe matched the sample in the task-relevant
feature(s). Participants were given separate blocks of
large-magnitude (90°) and small-magnitude (20°)
changes. We expected that increasing the featural load of
VWM representations would affect performance when
detecting small magnitude changes, but not when detect-
ing large magnitude changes (Luck & Vogel, 1997; Vogel
et al., 2001).

Methods

Thirteen young adults (5 males) participated in Experi-
ment 5. One participant was excluded because change
detection performance was not above chance, leaving 12
for analysis. Half of these participants completed the
large-magnitude change detection task prior to the small-
magnitude change detection task, and task order was
reversed for the other participants.

The methods were as in Experiment 1 except that the
VWM probe was either a colored circle (.4° diameter) or a
black triangle at the position of one of the sample items
with hollow circle placeholders at the non-probed loca-
tions (.4° diameter) (Figure 1A). For dual-feature blocks,
probe type (color or orientation) was selected at random
on each trial. On half of the trials the probe item was the
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same in color or orientation as the probed sample item.
Otherwise, the stimuli differed by £90° (large-magnitude
blocks) or +20° (small-magnitude blocks) in color or
orientation space. Participants made one of two key
presses to indicate whether the probe was ‘same’ or
‘different’. Responses were unspeeded, and accuracy was
stressed. Response accuracy feedback was provided after
each response.

Results and discussion
Change detection accuracy for each condition is shown

in Figure 5. Participants’ ability to detect large-magnitude
changes did not differ between three and six feature

A 100
B Single feature
90 [l Dual feature
S
o 804
o)
(&]
T 70
(0]
o
(0]
0 60-
50
Color Orientation
Feature
B 100-
< 90+ B Single feature
:o’ [l Dual feature
® 80-
o
(@]
S 70-
o
(0]
& 60
504

Orientation
Feature

Color

Figure 5. Percent correct in the change detection task of Experi-
ment 5 (averaged across ‘same’ and ‘different’ trials). (A) Large-
magnitude (90°) feature changes between sample and probes.
(B) Small-magnitude (20°) feature changes between sample and
probes. Error bars represent within-subject standard error (SE).
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conditions (F(1, 11) = 0.04, p = 0.85), or between color
and orientation probes (F(1, 11) = 0.04, p = 0.85), with no
interaction between these factors, F(1, 11) = .80, p = 0.4.
However, for small-magnitude changes, change detec-
tion performance was better for three than six features
(F(1, 11) = 943, p = 0.01), with no difference between
color and orientation probes (F(1, 11) = 0.04, p = 0.85),
and no interaction between feature-load and feature-type
(F(1, 11) = 0.01, p = 0.77). Moreover, the costs for
encoding multiple features per object were greater in
small-magnitude than large-magnitude blocks, F(1, 11) =
5.23, p < 0.05. Note that the large- and small-magnitude
conditions also differed in terms of task difficulty. It is
therefore possible that the differential multiple-feature
costs for the small-magnitude condition occurred simply
because that condition was more difficult. To rule out this
possibility, ten naive participants were run in a control
experiment consisting of the large-magnitude change
detection condition with an increased set size (six items).
To accommodate the increased display size, the display
radius was doubled. Otherwise this experiment was the
same as Experiment 5. Even though task performance
(69%) was now comparable to the small-magnitude con-
dition of Experiment 5 (independent-sample t-test, p =
0.71), we found no difference in detecting large magnitude
changes between the six (70%) and twelve (68%) feature
conditions (p = 0.63), suggesting that it was the require-
ment to detect small changes rather than differences in
task difficulty that led to costs for the six feature condition
of Experiment 5. We therefore conclude that VWM
impairments from storing multi-feature objects can even
be observed in change detection tasks if the task is
rendered sensitive to the precision of stored items.

General discussion

It is commonly believed that VWM storage is sensitive
to the number of objects, but not to the feature-load of
objects (Luck & Vogel, 1997; Vogel et al., 2001; Wolters
& Raffone, 2008; Zhang & Luck, 2008). However, in the
current study we observed that increasing the feature-load
of objects resulted in decreased precision of stored rep-
resentations (Experiments 1 and 3). We propose that the
failure of previous studies to find costs due to increased
feature load is a result of those tasks being insensitive to
representational precision. Indeed, increased feature load
resulted in worse performance when the change detection
task was rendered sensitive to representational precision
(Experiment 5). The current results clearly indicate that
the theory that VWM performance is limited by the
number of objects but not features is untenable (Luck &
Vogel, 1997; Vogel et al., 2001; Zhang & Luck, 2008):
Maintenance of multiple features per object imbues strong
costs in the precision of our VWM representations.
However, the current results also demonstrate that VWM
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performance isn’t entirely determined by feature load,
as the manner in which features were distributed across
objects determined whether there were costs in quantity
and/or precision (Experiments 2 and 4).

The finding that storing features in VWM is costly is
generally consistent with the suggestion that increasing
object information complexity in a VWM task reduces
change detection performance (Alvarez & Cavanagh,
2004; Eng, Chen, & Jiang, 2005). Worse change detection
performance for complex stimuli has previously been
attributed to the costs of comparing the probe and sample
during retrieval (Awh et al., 2007; Barton et al., 2009)
rather than limitations in working memory storage per se.
This ‘comparison error’ account, however, cannot easily
explain the present findings because the retrieval stage of
our VWM task is equivalent across single and dual-feature
conditions. We therefore conclude that at least a specific
form of increased information complexity, i.e. feature load,
can affect VWM storage. Moreover, this cost is manifested
as a selective loss in the resolution of our mental
representations and is therefore inconsistent with the
proposal that VWM capacity is determined by representa-
tional slots of fixed precision (Zhang & Luck, 2008).

The present work also indicates that feature load and
object load constrain WM differently. The impairment in
VWM caused by the doubling of feature load was distinct
when the features were in the same or in distinct objects,
with only the latter showing costs in both P, and o.
Evidently, adding more objects lowers both the proba-
bility that these objects will be encoded into VWM and
the precision with which they are encoded, whereas
adding additional features to the same objects primarily
affects the resolution of these encoded objects. The fact
that increased feature load didn’t significantly raise
guessing rate suggests that the probability of an object
being stored in memory is independent of its information
load, consistent with theories proposing a fixed upper limit
on the quantity of representations in VWM (Cowan, 2006;
Luck & Vogel, 1997; Zhang & Luck, 2008). However,
representational precision decreased in the six-feature
condition, which indicates that representational quality is
inversely related to the amount of information that has to
be stored in VWM, consistent with resource-based views
of VWM (Alvarez & Cavanagh, 2004; Bays & Husain,
2008; Wilken & Ma, 2004). Thus, there may be distinct
limits for representational quantity and representational
precision, and these limits may have characteristics of
slot-based and resource-based theories, respectively. Spe-
cifically, the quantity of stored representations may be
governed, not by the information load of the to-be-stored
information, but by the costs of keeping representations
encapsulated such that information from multiple repre-
sentations will not mutually interfere. In contrast, repre-
sentational quality may rely on the division of WM
storage resources to the information to be remembered.
Increasing the information load of objects will inevitably
spread resources thinner, leading to less precision in the
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stored representations. This proposed distinction is sup-
ported by functional neuroimaging evidence that distinct
regions of the parietal cortex respond to the number of
objects and the number of features (Xu, 2008; Xu & Chun,
2006, 2009).

In sum, our findings are inconsistent with the hypothesis
that objects are the sole elementary units of our mental
representations, but neither do they advocate that features
are these basic building blocks. Rather, both hierarchical
levels of perceptual organization appear to limit our
mental representations of the visual world.
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