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Abstract Researchers and clinicians are interested in estimat-
ing individual differences in the ability to process conflicting
information. Conflict processing is typically assessed by com-
paring behavioral measures like RTs or error rates from con-
flict tasks. However, these measures are hard to interpret be-
cause they can be influenced by additional processes like re-
sponse caution or bias. This limitation can be circumvented by
employing cognitive models to decompose behavioral data
into components of underlying decision processes, providing
better specificity for investigating individual differences. A
new class of drift-diffusion models has been developed for
conflict tasks, presenting a potential tool to improve analysis
of individual differences in conflict processing. However,
measures from these models have not been validated for use
in experiments with limited data collection. The present study
assessed the validity of these models with a parameter-
recovery study to determine whether and under what circum-
stances the models provide valid measures of cognitive pro-
cessing. Three models were tested: the dual-stage two-phase
model (Hiibner, Steinhauser, & Lehle, Psychological Review,
117(3), 759-784,2010), the shrinking spotlight model (White,
Ratcliff, & Starns, Cognitive Psychology, 63(4), 210-238,
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2011), and the diffusion model for conflict tasks (Ulrich,
Schréter, Leuthold, & Birngruber, Cogntive Psychology, 78,
148—-174, 2015). The validity of the model parameters was
assessed using different methods of fitting the data and differ-
ent numbers of trials. The results show that each model has
limitations in recovering valid parameters, but they can be
mitigated by adding constraints to the model. Practical recom-
mendations are provided for when and how each model can be
used to analyze data and provide measures of processing in
conflict tasks.

Keywords Conflict tasks - Drift-diffusion model - Parameter
validity - Cognitive modeling

There is strong interest in identifying differences in cognitive
processes across individuals. Myriad studies have been con-
ducted to assess how cognitive processing varies as a function
of different factors like psychopathology, development and
aging, experimental manipulations, pharmacological interven-
tion, and personality traits (e.g., Logan, Yamaguchi, Schall, &
Palmeri, 2015; Ratcliff, Thapar, & McKoon, 2001; Ratcliff &
Van Dongen, 2009; van Wouwe et al., 2016; Verbruggen,
Chambers, & Logan, 2013; White & Poldrack, 2014; White,
Ratcliff, Vasey, & McKoon, 2010; Wylie et al., 2012).
Likewise, individual differences in cognitive function have
been used to probe neural activation in studies using method-
ologies like electroencephalography (Kelly & O’Connell,
2013; Philiastides, Heekeren, & Sajda, 2014; Servant,
White, Montagnini, & Burle, 2016), electromyography
(Servant, White, Montagnini, & Burle, 2015), and functional
magnetic resonance imaging (Forstmann, van den Wildenberg,
& Ridderinkhof, 2008; White et al., 2014). The traditional ap-
proach is to compare behavioral measures like reaction times
(RTs) or accuracy rates to infer differences in processing.
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More recently, choice RT models like the drift-diffusion
model (DDM; Ratcliff & McKoon, 2008, described below)
have been employed with great success to decompose behav-
ioral data into measures of different cognitive components,
providing deeper insight into the hypothesized mechanisms
underlying differences in task performance. However, stan-
dard DDMs are generally not applicable to tasks where there
is conflicting evidence for a response. To address this, newer
variants of the DDM have been developed to account for
decision behavior in such conflict tasks. The present study
investigates the validity and practical usage of these conflict
DDMs with a simulation-recovery study. The goal was to
identify whether and in what circumstances such models can
be used to recover valid parameters for measuring individual
differences in processing for conflict tasks. This work will
provide validation for the use of these models as well as prac-
tical guidelines for employing them on behavioral data.
Before the recovery study is presented, we describe the limi-
tations of using RTs and/or accuracy rates to infer differences
in cognitive processing. Then we discuss how models like the
DDM can circumvent these limitations and describe a new
class of conflict DDMs that can broaden the scope of DDM-
based analysis. Finally, we present the results of the recovery
study with practical guidelines for how and when the conflict
DDMs can be used for measuring individual differences in
processing.

Conlflict tasks are those in which multiple aspects of the
stimulus can provide conflicting evidence for the correct re-
sponse. These tasks include the Stroop task (Stroop, 1935),
where the written word can conflict with the color in which it
is rendered; the flanker task (Eriksen & Eriksen, 1974), where
the flanking items can conflict with the target item; the Simon
task (Simon & Small, 1969), where the location of the stimu-
lus can conflict with the response. These tasks are of particular
interest for comparisons of group or individual differences, as
they can provide measures of cognitive control, which for
these tasks reflects the ability to reduce/suppress conflicting
information when making a decision (Kornblum, Hasbroucq,
& Osman, 1990; Ridderinkhof, 2002).

Cognitive control is typically measured by taking the dif-
ference in RTs (or error rates) between compatible and incom-
patible trials, with larger differences indicating greater inter-
ference and thus weaker/slower cognitive control. However,
behavioral measures like RTs are determined by various fac-
tors like stimulus processing, how cautiously participants re-
spond, and whether they have a bias for one response over
another. This results in a reverse inference problem: An RT
difference between individuals in a conflict task is inferred to
reflect differences in conflict processing, but it might instead
reflect differences in some other factor like response caution.

This reverse inference problem can be circumvented by
using choice RT models to analyze the data. RT models can
decompose the behavioral data into measures of underlying

cognitive processes for stimulus discriminability, response
caution, response bias, and encoding and motor time. This
decomposition separates the effects of these processes that
are conflated in RT measures and provides greater specificity
for identifying the locus of differences between individuals.
The most commonly employed RT model is the drift-diffusion
model (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008),
which belongs to a broader class of stochastic accumulator
or sequential sampling models that assume noisy evidence is
accumulated over time until a threshold level is reached, at
which point the decision is committed (Forstmann, Ratcliff, &
Wagenmakers, 2016). Recent variants of the DDM have been
developed to account for behavior in conflict tasks. These
models, described below, specify how the decision evidence
varies over time as a function of the compatible and incom-
patible information. They all share the general assumption that
early conflicting decision evidence decays or can be sup-
pressed by controlled processing, resulting in decision evi-
dence that changes over time to improve behavior. While
these models can successfully account for data from conflict
tasks, it has yet to be established that they can be used to
analyze individual differences in the manner of the standard
DDM described above. For the models to be employed in this
manner, it is crucial that the model parameters estimated from
the data are valid estimates of the underlying parameters for an
individual. The present study seeks to assess the validity of
conflict DDMs using a parameter recovery study.

Conflict diffusion models

Early stochastic accumulator models of conflict tasks assumed
that decision evidence was the sum of automatic and con-
trolled processes, with only the former being subject to inter-
ference from irrelevant stimulus attributes (Cohen, Dunbar, &
McClelland, 1990; Logan, 1980, 1996). These models as-
sumed that the effect of automatic processing was constant
over time, but empirical evidence arose that showed the auto-
matic interference varied over time (e.g., Dyer, 1971; Glaser
& Glaser, 1982; Gratton, Coles, Sirevaag, Eriksen, &
Donchin, 1988). Consequently, newer models were proposed
in which the automatic activation decreased over time due to
spontaneous decay (Hommel, 1993, 1994) or active suppres-
sion (Ridderinkhof, 2002). The models tested in this study are
grounded in this concept of automatic and controlled process-
ing, the former of which varies over time as a function of
cognitive control.

Different assumptions about how automatic and conflict
processing combine to drive the decision process have been
incorporated into the DDM framework, resulting in conflict
DDMs that account for RT and accuracy data from conflict
tasks. Three conflict DDMs are considered in this study: the
dual-stage two-phase model (DSTP; Hiibner et al., 2010), the
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shrinking spotlight model (SSP; White, Ratcliff, et al., 2011),
and the diffusion model for conflict tasks (DMC; Ulrich et al.,
2015). At a broad level, each conflict DDM assumes there is
automatic processing that is typically fast and nonselective,
and controlled processing that is more selective to the relevant
aspect of the stimulus. The decision is thus driven by a com-
bination of automatic and controlled processing, with the for-
mer being subject to interference from the conflicting stimulus
attribute and the latter being free from such interference. The
differences among the models lie in how conflicting informa-
tion is processed to drive the drift rate, or average decision
evidence per unit time, that is accumulated during the deci-
sion. The models can be differentiated by their conceptual
generality and the tasks to which they can be applied, the type
of processes that are assumed, their theoretical foundation,
and the manner in which decision evidence changes over the
course of the decision (see Table 1).

Each of the models shares the general DDM framework in
which noisy evidence is accumulated over time until a bound-
ary is reached. Accordingly, all three models include the fol-
lowing parameters (see Fig. 1). Boundary separation (a) re-
flects differences in caution or speed/accuracy settings. A wide
boundary separation indicates a cautious response style,
which leads to slower but more accurate responses.
Nondecision time (7er) reflects the duration of stimulus
encoding and motor execution, both of which are assumed
to be outside of the decision process itself. Longer nondeci-
sion time indicates slower encoding and/or execution of the
motor response. Finally, starting point of evidence accumula-
tion (z) reflects a priori preference for one response over the
other. If the decision process starts closer to one boundary,
those responses will be faster and more probable than re-
sponses at the other boundary.

For coherence, each of the models shown in Fig. 1 is de-
scribed in terms of processing the interfering information,
which is automatic and early, and the target (relevant) infor-
mation, which is controlled and has stronger influence later in
the decision process. For further simplicity, the models are
described for a flanker task in which the flanking stimuli are
incompatible with the target stimulus (e.g., <<><<), and a
situation with no response bias so that the starting point of
evidence accumulation will be halfway between the two
boundaries (though this assumption can be relaxed if needed).

The general framework of each model is described below, but
readers are directed to the referenced papers for more detail.

Dual-stage two-phase model

The DSTP is based on theories of visual attention and assumes
that there is a late selection phase of processing that selects the
relevant target information and effectively suppresses early
interference (Hiibner et al., 2010). The model was developed
to provide a general account of conflict processing and thus
can theoretically account for data from various tasks like the
flanker and Stroop tasks (but not the Simon; see Servant,
Montagnini, & Burle, 2014). The model posits two simulta-
neous diffusion processes, one for the decision itself and the
other for target selection/categorization. During the first stage
of processing, attention is diffuse and distributed to both the
target and the flankers, resulting in a drift rate that is deter-
mined by a weighted average of target and flanker informa-
tion. While evidence is accumulated in the first stage, a second
diffusion process occurs that selects the target information
from the stimulus. If the target selection process reaches a
boundary before the first stage selects a response, the model
transitions into the second stage where the decision process is
driven by a new drift rate based on the selected target. Thus,
the DSTP assumes dual processes, one automatic and one
controlled, that occur sequentially to drive the decision evi-
dence over time. As shown in the right panel of Fig. 1, the drift
rate for incompatible trials favors the right (incorrect) response
early in the trial but switches to favor the left (correct) re-
sponse after target identification occurs.

The DSTP includes the following parameters to govern the
time-varying drift rate: early drift rate for the target (1i4,.), carly
drift rate for the interference (y44), boundary separation(c) and
drift rate (u,,) for the target selection process, and drift rate for
the selected target in the second stage (1,,). The piecewise drift
rate for the decision is given as:

v(t) = iy + py(Stage 1); v(t) = 1,5 (Stage 2) (1)

with the evidence coming from Stage 1 if the stimulus selection
process has not yet finished, or from Stage 2 thereafter. The
values of 11 can be positive or negative depending on whether
the flankers are compatible or incompatible with the target.

Table 1  Overview of drift diffusion models of conflict processing

Model Theoretical foundation Relevant tasks Nature of processes Change in drift rate over time
SSP Visual attention Flanker Continuous Gradual

DSTP Visual attention Flanker, Stroop Sequential Discrete

DMC Automaticity Flanker, Simon, Stroop Parallel Gradual

Note. SSP = shrinking spotlight model; DSTP = dual-stage two-phase model; DMC = diffusion model for conflict tasks
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Fig. 1 Schematic of conflict DDMs. Leff panels shows the processes by which the time-varying drift rate is determined. Right panel shows the time-
varying drift rate for an incompatible trial in the DDM framework. See text for description of parameters

Shrinking spotlight model

The SSP is based on theories of visual attention (Eriksen &
Schultz, 1979; Logan, 1996, 2002) and was developed for
tasks like the flanker task where attention is narrowed on the
target to overcome interference from flanking stimuli.
Accordingly the model is less general than DSTP or DMC
(see below) in that it is specified for the flanker task (and not
Stroop or Simon). The model assumes that attention is like a
spotlight centered on the stimulus, which can be narrowed/
focused over time on the target. In this model, early processing
is influenced by both the target and the flanking items, but the
interference is reduced as the spotlight shrinks to the target.
Thus, the model assumes gradual reduction of interference
over time and a continuous improvement in the drift rate.
The drift rate is the sum of perceptual evidence from each item
in the display weighted by the amount of attentional spotlight
dedicated to that item. The SSP includes the following param-
eters to determine the time-varying drift rate: perceptual
strength for the contribution of each item in the display (py
for flankers, p,,. for the target), spotlight width at stimulus
onset (sd,), and shrinking rate (r,;). With these parameters,
the drift rate is given as:

V() = an(t) X pp+ aar(t) X P ()
where a is the amount of attentional spotlight covering the item
governed by the spotlight width (sd,) and shrinking rate (r,;),
and p is the perceptual strength of each item that can be either
positive (compatible) or negative (incompatible). The attention
allocated to each item in a display that is (arbitrarily) centered at
zero and five units wide (one for each arrow) is given as:

a(1) :/:Sw(x}o, [sda(t)]z)dx (1) :/

©

gp(x|0, [sda(t)]2>dx
(3)

where (x| 0, [sd,(t)°] is the probability density function
of a normal distribution with mean zero and standard de-
viation sd,(?) = sd, — r,(t). It is typically assumed that the
value of p is numerically the same for targets and flankers
but differs in sign (positive/negative) based on the direc-
tion that the arrows are facing (White, Ratcliff, & Starns,
2011). With the SSP, on incompatible trials the drift rate
favors the incorrect response early in the trial but gradually
changes to favor the correct response as the attentional
spotlight narrows.

0.5
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Diffusion model for conflict tasks

The DMC is based on theories of automaticity and incorporates
the standard assumptions of the DDM but adds a component to
account for early, automatic activation that operates on task-
irrelevant sensory information. The DMC was explicitly devel-
oped for all cognitive conflict tasks (Simon, Stroop, and flank-
er). In the example flanker task, the model posits evidence
accumulation that is the combination of early automatic pro-
cessing, driven by the flanking arrows, and controlled process-
ing driven by the target arrow only. The early activation process
is modeled as a scaled gamma function which captures the
assumption that early activation is short-lived and only affects
the early portion of the decision process (see Fig. 1).

The controlled activation is modeled with a constant drift
rate akin to the assumption of the standard DDM. In the DMC,
the time-varying drift rate is equal to the superimposed auto-
matic and controlled activations, resulting in a gradual change
in evidence as the automatic activation diminishes over time.
The original implementation of the DMC also includes param-
eters to account for across-trial variability in the starting point
of evidence accumulation (variability in response bias) and in
the nondecision time (variability in encoding/motor time),
which have likewise been incorporated to standard DDMs
(see Ratcliff & McKoon, 2008). Note that these variability
parameters could be added to the DSTP and SSP, but were
left out of each model for sake of parsimony. The DMC has
the following parameters to govern the time-varying drift rate:
the shape («), peak amplitude (¢), and characteristic time (7)
for the automatic activation gamma function, and the drift rate
for the controlled process (u.). The peak latency of the auto-
matic activation is located at 7(a-1). In the DMC the time-
varying drift rate is calculated as the sum of the automatic
process, v,(?) and the controlled process, ..

V(1) = val) + (4)

The DMC is more general and flexible than the DSTP or
SSP because the automatic activation can occur early or later
in the process. Although DMC does not have more free pa-
rameters than DSTP or SSP, the parameters of DMC can pro-
duce a wider range of behavior and thus more flexibility than
the other models (Pitt & Myung, 2002). Specifically, a small
(large) value of the peak latency m(a-1) of the gamma function
generates an automatic activation that develops early (late)
and a decrease (increase) in the magnitude of the interference
effect (as assessed by RT differences) as decision time in-
creases. The decrease of the interference effect is a crucial
pattern of data seen in the Simon task (Schwarz & Miller,
2012). Because the SSP and DSTP can only produce an in-
crease of the interference effect on RTs as decision time in-
creases (Servant et al., 2014), they do not account for data
from the Simon task.

@ Springer

The DSTP and SSP models have proven to account for
flanker task data under a wide variety of experimental manip-
ulations (Dambacher & Hiibner, 2015; Hiibner, 2014; Hiibner
et al., 2010; Hiibner & Tdobel, 2012; Servant et al., 2014;
White, Brown, & Ratcliff, 2011; White, Ratcliff, et al.,
2011). The DMC has been successfully applied to both
Flanker and Simon task data (Servant et al., 2016; Ulrich
et al., 2015). While the models generally provide accurate
quantitative accounts of RT distributions and accuracy data
from these tasks, it has yet to be established whether they
are appropriate to use for analyzing individual subject data
under practical experimental constraints.

Estimating parameters from conflict models

The models are only useful as measurement tools to the extent
that when fitted to data the recovered parameters are accurate-
ly estimated. A pressing concern for practical implementation
of these models is that they can require a significant number of
RTs to accurately estimate the underlying model parameters.
This could restrict the application of the models because often
researchers are limited in the amount of data they can collect
from participants. For instance, certain patient populations
might be restricted to only 15 minutes of data collection,
which might not be sufficient for using the conflict DDMs.
To address the practical utility of these models, we performed
a simulation-recovery study to investigate (1) whether the
models can accurately estimate the different components of
the decision process, and (2) the necessary number of obser-
vations to provide accurate parameter estimates. The end goal
of the simulation-recovery study is to determine whether and
under what circumstances these conflict models can be used
by researchers who want a model-based analysis of data from
conflict tasks. We then perform a cross-fitting study to assess
model mimicry and help determine how to select among the
models when choosing one to interpret the data.

Method

The general approach in the recovery study was to (1) simu-
late data from each of the models across a range of parameter
values, (2) fit the models to the simulated data using different
data-fitting approaches, and (3) assess the reliability of the
recovered parameters as a function of the fitting procedure
and the number of simulated trials. Thus, the independent
variables in this exercise are the randomly selected parameter
values for simulation, and the dependent variables are the
recovered parameters and subsequent predictions for RTs
and accuracy. This exercise will reveal whether the model
parameters provide reliable estimates of the underlying cogni-
tive mechanisms and establish practical guidelines for the
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amount of data (i.e., number of trials) needed to use the
models to analyze individual differences. All of the codes
for simulating and fitting the models are available in the sup-
plementary material and on the Open Science Framework
website (osf.i0).

Model simulations

Because the SSP and DMC are mathematically intractable
(Ulrich et al., 2015; White, Ratcliff, et al., 2011), predictions
from the three models were approximated using the Euler-
Maruyama method (e.g., Kloeden & Platen, 1992) and an
integration constant df = 1 ms." The diffusion coefficient of
SSP and DSTP models was fixed at o = 0.1, similar to White,
et al. (2011) and Hiibner et al. (2010).

The diffusion coefficient of the DMC was fixed at o = 4,
similar to Ulrich et al. (2015) and Servant et al. (2016).
Models were coded in Python 2.7 using the Numpy and
Scipy packages for scientific computing.

For each model, we sampled 100 different parameter sets
from uniform distributions, with the mean and range taken
from previous studies using the models, specifically the flank-
er task for the SSP and DMC and the Simon and flanker tasks
for the DMC (see Table 2). These realistic parameters were
used to simulate 100 datasets in each of six conditions, defined
by the number of trials N per compatibility condition. We
chose N = 50, 100, 200, 500, 1000, and 5000 to examine the
performance of the models in real-world experimental situa-
tions (N = 50-500) and characterize the improvement in re-
covery as N increases (N = 1000-5000). Data were simulated
for a simple conflict task in which there was one compatible
and one incompatible condition.

Fitting procedure

Two approaches to fitting conflict-based DDMs have been
employed in the literature, and both were tested in this study.
Both approaches involve a comparison between observed ver-
sus predicted data through a chi-square statistic, and a mini-
mization of this statistic with a Simplex downhill algorithm
(Nelder & Mead, 1965). The data considered in the chi-square
formula differs between the two procedures.

The first procedure has been developed by Ratcliff and
Tuerlinckx (2002) and is commonly used to fit sequential
sampling models to behavioral data (e.g., Ratcliff & Smith,
2004; White & Poldrack, 2014). Models are simultaneously fit
to correct and error RT distributions (.1, .3, .5, .7, .9 quantiles)
and to accuracy data. Because the number of errors, Ne, is
generally low, particularly in the compatible condition, we

! The SSP and DSTP have traditionally been simulated in seconds, while the
DMC has been simulated in milliseconds. The present work preserves these
respective units.

used an adaptive procedure that only considered the median
RT if 0 < Ne < 5, three RT quantiles (.3, .5, .9) if 5 < Ne < 10,
and five RT quantiles (.1, .3, .5, .7, .9) if Ne > 10. If there are
no errors, the error RT distribution does not contribute to the
chi-square calculation. The chi-square statistic has the form:

2
2 X \p; ‘*Wij)
sy ) .
X ; tj:1 e ( )
where N; is the number of observations per compatibility con-
dition 7. p;; and 7t;; are, respectively, the observed and predicted
proportions of trials in bin j of condition 7, and sum to 1 across
each pair of correct and error distributions. The variable X
represents the number of bins bounded by RT quantiles across
each pair of correct and error distributions. Consequently, we
have X=8if0<Ne<5,X=10if5<Ne<10,and X=12 if Ne
> 10.

The second procedure is similar to the first one, with the
exception of error data provided by conditional accuracy func-
tions (CAFs; Hiibner, 2014; Hiibner et al., 2010; Servant et al.,
2016; Ulrich et al., 2015). CAFs represent accuracy as a func-
tion of decision time (Gratton et al., 1988). They are construct-
ed by sorting correct and error trials into five bins, each con-
taining 20% of the data. The proportion of errors in each bin
constitutes the error data considered in the fitting procedure.
Consequently, the variable X in the above formula equals 11
(six bins bounded by RT quantiles for correct trials and five
CAF bins). The difference between Procedures 1 and 2 is
subtle. Procedure 1 fits full error RT distributions. By contrast,
Procedure 2 fits relative densities of correct and RT distribu-
tions (i.e., CAF data). Chi-square statistics computed from
Procedures 1 and 2 were minimized using the same method-
ology. Because Simplex is sensitive to initial parameter
values, we used 20 different starting points, each one being a
random draw from the uniform distributions defined in
Table 2. For each model, 10,000 trials per compatibility con-
dition and fit cycle were simulated. To polish our results, we
submitted the two best parameter sets (obtained from different
starting points) to additional Simplex runs, and simulated
50,000 trials per condition and fit cycle. On average, fitting
one dataset on Vanderbilt’s advanced computing center for
education and research took approximately 15 hours for the
SSP, 25-30 hours for the DMC, and 35-40 hours for the
DSTP.

Assessment of goodness of fit and parameter recovery

Parameter recovery was assessed using two approaches. The
first was to compare the simulated versus recovered parameter
values to establish correspondence between the two. For each
model, condition, and fitting procedure, we computed corre-
lation coefficients between simulated and recovered
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Table 2 Ranges of parameter values used to simulate data

DSTP a Ter c Lhta Iy Lhss Lys2

Hiibner et al., 2010; Hiibner, 2014; .14-38 .15-45 .14-38 .05-.15 .05-25 .25-.55 4-12
Dambacher & Hiibner, 2015

SSP a Ter P sd, rq

White et al. (2011) .07-.19 .15-45 .2-.55 1-2.6 0.01-0.026

DMC a Ter e 4 o T

Ulrich et al. (2015); Servant et al. (2016) 90-160 270400 2-8 15-40 1.54.5 20-120

Note. The nondecision time parameter is expressed in units of the integration constant d¢ (seconds for SSP and DSTP, milliseconds for DMC). The
diffusion coefficient o was set at 0.1 for SSP and DSTP and 4 for DMC. These arbitrary conventions were used in previous applications of the models.
DSTP = dual-stage two-phase model; SSP = shrinking spotlight model; DMC = diffusion model for conflict tasks

parameters. We also computed the goodness-of-recovery sta-
tistic 7 defined as follows:

100 /.-
simulatedd—recoveredf
)3 )

6
— range) (6)

where 6 is a given parameter of a given model. The summa-
tion over i extends over the 100 simulated datasets and is
normalized by the uniform range for 6 defined in Table 2.
The statistic 7 allowed us to further quantify the discrepancy
between simulated and recovered parameters, and determine
the superiority of one fitting procedure over another.

Results

Table 3 shows the goodness-of-recovery statistic 7 for each
model parameter, condition, and fitting procedure. The first
fitting procedure generally provides a better recovery perfor-
mance than the second one, reflected by smaller ) values. The
superiority of the first procedure also tends to increase as the
number of simulated trials N decreases. This is explained by
the nature of the error data considered in the chi-square com-
putation. As detailed in the Method section, Procedure 2 takes
into account relative densities of correct and error RT distri-
butions (i.e., CAF data), while Procedure 1 embraces full error
RT distributions. Full error distributions provide more con-
straints on parameter estimates, particularly when the preci-
sion of the estimation increases (as N increases).
Consequently, the remaining of the section focuses on results
from fitting Procedure 1.

Goodness of fit
The goodness-of-fit of each model to its own simulated data
can be qualitatively appreciated in Fig. 2. The first, second,

and third columns,show predicted (y-axis) versus simulated
(x-axis) RT quantiles for correct responses, accuracy data,
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and RT quantiles for errors, respectively. Each row represents
a number of simulated trials N per compatibility condition.
The goodness of fit of each model is very good: data points
are gathered around the ideal predicted = simulated line, with
no systematic deviation. Because the precision of RT quantiles
and accuracy data estimation monotonically increases as N
increases, the fit quality increases as a function of N, reflected
by a smaller dispersion of scatterplots. As expected from our
adaptive procedure (see Method section), the number of RT
quantiles for errors increases as NV increases, providing more
constraints on parameter estimates. Optimized chi-square sta-
tistics averaged over the 100 datasets for each condition and
each model are shown in Table 4. Remember that the chi-
square statistic is weighted by the number of observations
(see Equation 5), which explains why it increases as N in-
creases. For realistic experimental settings (N = 50-500),
chi-square values appear relatively similar across models, en-
abling a fair parameter recovery comparison.

Parameter recovery

Figures 3, 4, and 5 show correlations between simulated ver-
sus recovered parameters as a function of N for the DSTP,
SSP, and DMC models, respectively. A rapid look at the fig-
ures shows that the general recovery performance decreases
when the number of free parameters of the model increases,
SSP (five parameters) > DMC(six parameters) > DSTP (seven
parameters). The general recovery performance of a model is
quantified by the sum of the goodness-of-recovery 7 statistic
over all parameters of a given model (see Table 3, rightmost
column). This statistic reveals a clear SSP > DMC > DSTP
performance pattern, whatever the condition N. In addition,
the general recovery performance monotonically increases as
N increases, due to stronger model constraints provided by
more precise RT quantiles and accuracy data estimates.
Standard diffusion parameters (boundary separation for the
decision process, a, and nondecision time, 7er) are generally
well recovered, particularly for SSP and DMC models, with
correlations ranging from .81 to .1 provided N > 100. To
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Table 3  Goodness-of-recovery 1 statistic for each model parameter, condition, and fitting procedure (1] values for fitting Procedure 2 are provided in

parentheses)

DSTP >m)

a Ter c Hia Ha Hss Hos2
N=50 16.5(16.2) 14.2(14.7) 25.8(27.5) 32(27.1) 16.2(20.2) 27.3(23.5) 30.7(30.5) 163(160)
N=100 14.2(15.3) 12.3(14) 24.8(28.1) 31.4(26) 15.2(14.5) 22.1(21.2) 30.2(27.9) 150(147)
N=200 16.7(16.9) 12.2(13) 22.4(23.7) 24.6(30.1) 12.5(13.4) 15.8(17.1) 26(27.5) 130(142)
N=500 14.6(16.1) 12(14.8) 24.2(22.3) 27.8(27.5) 10.5(11.4) 17.5(16.6) 30.5(29.8) 137(139)
N=1,000 12.6(12.9) 10.9(11.6) 21.5(23) 26.1(29.2) 10.5(12.2) 17.4(16.4) 27.5(26.1) 127(131)
N =5,000 12.5(13.9) 11.8(11.9) 21.4(20.6) 24.5(27.5) 10.3(11.6) 15.4(14.9) 24.927) 121(127)

SSP >m)

a Ter P sd, rq
N=50 9.9(9.6) 3.6(4.2) 9.4(10.9) 22.6(25.9) 32.3(38.4) 78(89)
N=100 6.9(8.5) 2.8(3.3) 6.8(7.2) 21.3(21.7) 33(30) 71(71)
N=200 5.9(6.4) 2.12.5) 5.9(5.2) 18.9(20.3) 31.2(32.7) 64(67)
N =500 3.7(4.5) 1.5(1.8) 3334 18.1(19) 29(30.1) 56(58)
N=1,000 3.2(3.3) 1.(1.3) 3.12.9) 17.2(19.5) 28.4(30.6) 53(58)
N =5,000 22(1.8) 0.7(0.7) 1.8(1.3) 17(20.8) 28.1(34.1) 50(59)

DMC X

a Ter Lhe ¢ «@ T
N=50 16.3(17.1) 6(6.8) 10.3(9.3) 22(22.9) 22(24) 22.7(27.2) 99(107)
N=100 12.5(14.2) 4.1(4.9) 8.3(7.1) 22.9(21.6) 23.3(22.5) 26.2(27.3) 97(98)
N=200 12.1(10.5) 4.53.4) 6.5(5.2) 19.5(14.9) 20.2(16.4) 23(17.8) 86(68)
N =500 7.7(8.1) 2.6(2.9) 4.3(4.3) 13.2(14.7) 16.2(16.8) 21.8(22.6) 66(69)
N=1000 7.6(7) 2.6(2.6) 3.8(3.4) 12.7(17.2) 15.6(19.6) 20.5(22.9) 63(73)
N =5000 6.4(6.7) 242.5) 2.6(3.2) 12.3(12.5) 15.8(17.2) 19.2(19.9) 59(62)

Note. Y (n)represents the sum of 1 values over all parameters of a model. DSTP = dual-stage two-phase model; SSP = shrinking spotlight model; DMC =

diffusion model for conflict tasks

facilitate the interpretation of other (model-specific) parame-
ters, we adopted the following criterion. The quality of the
recovery was considered poor if correlation coefficients be-
tween original and recovered parameters were below .5, fair if
S<r<.75, goodif .75 < r<.9, and excellent if » > .9. DSTP
parameters were poorly/fairly recovered, except for the early
drift rate for the interference ji4. The recovery of parameters
related to the processing of the relevant stimulus attribute in
SSP (perceptual input of the target p) and DMC (drift rate for
the controlled process i) models was excellent, with correla-
tions ranging from .89 to 1. However, the recovery of conflict-
related parameters (SSP: initial spotlight width sd,, and shrink-
ing rate r;; DMC: peak amplitude ¢, shape «, and character-
istic time 7 parameters of the gamma function) was poor/fair
for realistic experimental settings (N = 50-500).

Quantification of cognitive control

Experimental findings in conflict tasks suggest that the auto-
matic activation is short-living (reviewed by Ulrich et al.,
2015). It is unclear, however, whether the automatic activation
triggered by the irrelevant stimulus attribute passively decays
(e.g., Hommel, 1993, 1994) or is actively suppressed (e.g.,

Ridderinkhof, 2002). As detailed in the introduction section,
SSP and DSTP models assume that early interference is ac-
tively suppressed. The automatic activation in SSP is reflected
by the initial width of the spotlight sd,, and suppression is
quantified by the spotlight shrinking rate r,. Our recovery
results show that activation and suppression components can-
not be quantified separately within SSP. This is because a wide
initial spotlight width combined with a high shrinking rate
mimics a narrow spotlight width combined with a weak
shrinking rate. We therefore examined whether the ratio sd,/
r4 termed interference time, was better recovered. This ratio
quantifies the time it takes for the spotlight to narrow on the
target, or equivalently, the time it takes to suppress interfer-
ence from the flankers. Figure 4 (column 6) shows that the
recovery of the interference time is good for small values of N
(50 and 100), and excellent for N > 200. Notice that the inter-
ference time is a composite measure: a short interference time
can either reflect a weak automatic activation or a strong sup-
pression (or both).

Within the DSTP model framework, automatic activation is
quantified by the early drift rate for the interference 14, a
parameter that is well recovered. However, the recovery of
parameters that drive suppression (drift rate for stimulus

@ Springer
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Fig. 2 Predicted versus simulated data for each model and condition (N trials). Values along the identity line indicated correspondence between

predicted and simulated RTs and error rates

selection/categorization ji, and drift rate for response selec-
tion in Phase 2 ,,) ranges from poor to fair. Figure 3 (column
8) shows that the ratio ji,/ps was well recovered, provided N

Table 4  Chi-square goodness-of-fit statistic averaged over the 100
datasets

v

DSTP SSP DMC
N=50 10.4 11.6 12.5
N=100 152 12.1 14
N =200 16.7 15.6 20
N =500 25.1 16.6 24.5
N=1,000 39.0 19.7 29.8
N=5,000 117.8 31.2 76.9

Note. DSTP = dual-stage two-phase model; SSP = shrinking spotlight
model; DMC = diffusion model for conflict tasks

@ Springer

> 200. This ratio can be interpreted in a similar way as the
interference time for the SSP. However, it does not specify the
theoretical latency necessary to overcome interference.
Interference suppression also depends on the drift rate for
response selection in Phase 2, u,,,, which complicates the
analysis.

Contrary to SSP and DSTP models, the DMC is agnostic
regarding whether the automatic activation passively decays
or is actively suppressed (Ulrich et al., 2015). The time course
of the automatic activation is modeled by a gamma function,
and the gamma decay can be driven by spontaneous decay,
active suppression or both. Also, parameters of the gamma
function do not directly map onto automatic activation and
decay components. We therefore examined the quality of the
recovery for different statistics computed from the gamma
function parameters. These statistics offer a more direct win-
dow into activation and decay/suppression components. We
first computed the peak latency of the gamma function #,,,, =
T(a-1), corresponding to the onset latency of decay/
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Fig. 3 Parameter recovery for DSTP. Simulated values are plotted against recovered values for each parameter. Values along the identity line indicate
good recovery, which is quantified by the correlation between simulated and recovered (r)

suppression. The recovery for ¢,,,. was good even for the
lowest N values (see Figure 5, column 7). We then computed
the interference time statistic #o,,;,, defined as the 90th percen-
tile of the gamma percentage point function. This statistic
corresponds to the latency at which 90% of the gamma im-
pulse has been emitted, and quantifies the time it takes for the
interference to disappear, akin to the ratio sd,/r; for the SSP.
Figure 5 (column 8) shows that the recovery of #o,, is good
provided N>200. The good recovery of #9,,;, and ,,,, statistics
has an implicit advantage allowing the estimation of the
decay/suppression strength, defined as #9¢,, - #0x-

Ulrich et al. (2015) fixed the shape parameter «v of the
gamma at 2. This constraint simplifies parameter estimation,
and might improve the quality of the recovery for the other
model parameters. To test this hypothesis, we simulated data
from the 100 DMC parameter sets previously used, but fixed
«a = 2. Correlations between simulated versus recovered pa-
rameters for this constrained DMC model are shown in the
online appendix. Fixing the shape parameter substantially

improved the recovery for the peak amplitude () and charac-
teristic time parameterr of the gamma function. Notice, how-
ever, that 7 now corresponds to the peak latency of the gamma
[peak latency = 7(2—1) = 7]. For each number of simulated
trials &V, the quality of the recovery for the peak latency of the
gamma for the constrained DMC model (» = .71-.93) was
worse than the unconstrained model (r = .86—.97; see
Figure 5, column 7).? The recovery for the other model pa-
rameters (decision separation a, drift rate for the controlled
process [, and nondecision time 7er), was virtually similar
between the two models. Consequently, researchers should fix
the shape parameter o of the gamma at 2 when they are mainly
interested in quantifying the peak amplitude of the automatic
activation.

2 Correlations between original versus recovered interference timestg,, for the
constrained DMC model are similar to those reported for the characteristic time
parameter 7. This is because #gy,;, is determined by 7and the shape parameter of
the gamma (fixed at 2). The quality of the recovery for t9,,, was virtually
similar for constrained (r = .76-.94) and unconstrained models (r = .79-.91).
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Fig.4 Parameter recovery for SSP. Simulated values are plotted against recovered values for each parameter. Values along the identity line indicate good
recovery, which is quantified by the correlation between simulated and recovered (r)

Assessing mimicry among models

The above analysis focused on determining the amount of
confidence we can have for recovered parameters for each of
the models. However this does not address the issue of how to
select which model to use in the first place. Standard model
selection tools can be used theoretically, but there is still con-
cern about model mimicry in which two or more of the models
fit the data equally well. In the case of the flanker task, White
etal., (2010) and Hiibner et al. (2014) found substantial mim-
icry between the two models, though their fits suggest some
differences between model predictions (see also Servant et al.,
2014). Thus, it is unclear the extent to which model mimicry is
a problem for these conflict DDMs. To evaluate model mim-
icry, we fit the SSP to data simulated from the DSTP (referred
to as SSPpgrp) for the N = 5,000 trials condition and vice
versa (DSTPggp). These cross-fits produced chi-squares con-
siderably higher than those obtained when fitting the models
to their own data (see Supplementary Table S1). This result

@ Springer

shows that the SSP and DMC can be distinguished, because
they produce distinct behavioral patterns. Predictions of each
model are plotted in Supplementary Fig. S2 (columns 1 and
2). SSP predicts slower (faster) errors than DSTP for the com-
patible (incompatible) condition. DSTP predicts faster .9 RT
quantiles than SSP due to its second phase of response selec-
tion (typically associated with a very high drift rate; see i,
values in Table 1). For thoroughness, we examined the corre-
lation between interference measures of the SSP (s,,/r;) and
DSTP (ps/itrs2). This correlation was positive and high for
SSPDSTP(V = 63,]? < 001) and DSTPSS]) (7" = 57,p < 001),
showing that the models agree to a large extent on the amount
of interference in the data.

The DMC was explicitly developed as a general model for
all conflict tasks (Simon, flanker, and Stroop). In particular,
the DMC is the only model able to produce a decrease of
interference on RTs as RT increases, as commonly observed
in the Simon task (but not in flanker and Stroop tasks; see
Introduction). To evaluate whether the DMC produces
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Fig. 5 Parameter recovery for DMC. Simulated values are plotted against recovered values for each parameter. Values along the identity line indicate
good recovery, which is quantified by the correlation between simulated and recovered (r)

behavioral signatures and estimates of interference different
than SSP and DSTP models in the flanker task, we fit the
DMC to data generated by SSP (DMCgsp) and DSTP
(DMCpgrp). Once more, chi-squares from cross-fits were sub-
stantially larger than chi-squares obtained when fitting the
models to their own data (see Supplementary Table S1). The
DMC predicts slower errors than SSP and DSTP models, par-
ticularly for the compatible condition. The automatic activa-
tion favors the correct response in compatible trials, reducing
the probability of errors in the early period of the decision
process. The shape of RT distributions for correct responses
predicted by DMC and DSTP models are also different. In
particular, the DMC predicts slower .9 RT quantiles for correct
responses than the DSTP. Interestingly, the estimated amount
of interference predicted by the DMC (ty,,) diverged from
estimates of the other models, particularly SSP (DMCggp:
=.16, p = .11; DMCpgrp: r = .38, p < .001).

To summarize, SSP and DSTP models appear to converge
on the estimated amount of interference conveyed by Flanker

task behavioral data, despite distinct behavioral predictions.
The DMC model is conceptually more general and is able to
capture data from different conflict tasks. The DMC generates
measures of interference that diverge from SSP and DSTP
models in the flanker task. These findings motivate a model
comparison experiment, beyond the scope of the present
work. Our parameter recovery study tells us how much faith
we can put in particular parameter values, which in cases of
poor recovery is not much. Model comparison tells us how
much faith we can put in one model vs. another, and appears
as a complementary step in exploring and evaluating the
models.

Discussion
There is great interest in comparing performance in conflict

tasks across individuals or groups. The common approach
of using RT or accuracy values is limited by problems of

@ Springer



298

Psychon Bull Rev (2018) 25:286-301

reverse inference, whereby multiple decision components
can lead to differences in performance. This reverse infer-
ence problem can be circumvented, in theory, by using
conflict DDMs to decompose behavioral data into distinct
decision processes and make inferences on the resulting
estimated parameters. However, a DDM-based analysis is
only meaningful if the estimated parameters reflect true
differences in decision processing. Consequently, the pres-
ent study assessed the ability of conflict DDMs to accurate-
ly recover parameters reflecting processing in conflict
tasks. Using a parameter-recovery analysis, we assessed
model performance for the shrinking spotlight model, the
dual-stage two phase model, and the diffusion model for
conflict tasks for standard compatible/incompatible condi-
tions across a broad and plausible range of parameter
values. The models generally showed accurate recovery
of the basic components of a standard DDM (boundary
separation and nondecision time), but the results for the
conflict-specific parameters of the models were more nu-
anced. Overall, each model showed limitations in recover-
ing the conflict parameters that drive the time-varying de-
cision evidence in conflict tasks, but parameter recovery
could be improved by calculating derived measures to
quantify interference and cognitive control.

There are two primary questions for selecting which model
to use to make inferences from data: Is this model appropriate
for the task (i.e., does the model fit the data) and can we trust
the recovered parameter values? Task appropriateness is based
by the scopes of the models and extant empirical validation:
the SSP is specific to spatial attention and should be used only
for the flanker task, the DSTP more broadly accounts for
selective attention and can be used for flanker or Stroop task,
and the DMC provides the most general account of conflict
processing and can be used for flanker, Stroop, or Simon
tasks. In the cases of flanker and Stroop data, where more than
one model accounts for the data, the standard recommendation
would be to use model selection techniques to select the most
appropriate model based on data fit (and model flexibility).
However, model selection tools that account for both fit and
flexibility, like the Bayesian information criterion (BIC), do
not account for the validity of parameter recovery, which is
particularly important for studying individual differences. The
simulation-recovery study showed that although each of the
models provided good fits to their own data, they differed
significantly in the quality of parameter recovery. Whereas
SSP and DMC showed strong parameter recovery when the
derived measures were used, DSTP did not. Thus, even if
DSTP provided a better fit than DMC or SSP to a dataset,
the latter models should be preferred for studying individual
differences so long as they show good fits to the data.
Accordingly, we recommend using model selection for choos-
ing between SSP and DMC for flanker data, and using DMC
for Stroop or Simon data. Still, the issue of model selection
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with these models deserves in depth consideration and re-
mains an important future direction.

The present work focuses on determining the validity of
recovered parameters when a model is chosen to estimate
parameter values for the decision process and conflict res-
olution. Although the focus was not on model selection per
se, the results demonstrate an important consideration for
model selection: model performance must be assessed by
more than just a good fit to the data (Roberts & Pashler,
2000). In many cases, the models provided good fits to the
simulated data (see Fig. 2) even though the recovered pa-
rameters were not accurate. Thus, it is critical to demon-
strate not only that a model can account for the behavioral
data but that the estimated parameters provide accurate
measures of the underlying processes. Doing so for the
conflict DDMs in this study revealed the necessity of cal-
culating derived measures of interference and cognitive
control and establishes practical guidelines for employing
these models to analyze behavioral data. Below we sum-
marize the primary findings and recommendations for
employing these models to draw inferences from conflict
data.

DSTP

The dual-stage two-phase model showed limitations in recov-
ery for the parameters governing the time-varying drift rate in
conflict tasks. The raw values of these parameters were not
recovered well from the simulated data, limiting the inferences
that can be obtained from fitting the DSTP to data. To over-
come this limitation, we calculated a parameter ratio (p//tss)
to index the amount of flanker interference relative to the
speed of stimulus selection. This ratio can be interpreted as
the amount of interference from incompatible stimuli. While
the new ratio was better recovered than the raw parameter
values, the correlations between simulated and recovered pa-
rameters were still low compared to the SSP and DMC. These
results have consequences for null hypothesis testing. The
DSTP should generally only be used in cases of high statistical
power to detect differences among conditions or groups of
participants, and thus one should be prudent when drawing
inferences from DSTP fits.

The performance of the DSTP could be improved by using
more complex factorial designs, in which variables that should
affect one property of the model are manipulated independent-
ly of variables that should affect another property of the model
(Hiibner et al., 2010; Servant et al., 2014;White, et al. (2011)).
Another approach to improve parameter estimation for the
DSTP is to use a jackknife procedure (Dambacher &
Hiibner, 2013; Ulrich et al., 2015) when comparing group
performance. However this approach sacrifices the estimation
of individual participant parameters and thus forgoes fine-
grained analysis of individual differences.
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SSp

The shrinking spotlight model includes two parameters to
govern interference in conflict tasks, the width of the atten-
tional spotlight (sd,,) and the shrinking rate (7). These param-
eters were not accurately recovered in their raw form because
they can trade-off with each other. That is, a wide spotlight
with a fast shrinking rate can produce similar interference as a
narrow spotlight with a slow shrinking rate. Fortunately, this
trade-off can be accounted for by taking the ratio of these two
parameters (sd,/r;), which conceptually provides an index of
the duration of interference that occurs on incompatible trials.
This interference ratio was accurately recovered in the simu-
lation study, suggesting it can be used as a valid measure of
interference. It is important to note that this interference ratio
is a composite measure: short interference can either reflect
weak automatic activation, strong suppression, or both. Thus,
the SSP cannot differentiate the separate contribution of acti-
vation and suppression, but rather their relative values.’
Overall, the parameters of the SSP showed strong recovery
from the simulations, suggesting that the model can be used to
analyze data with as few as 50 observations per condition per
subject. Thus researchers can confidently employ the SSP to
analyze data, but they should use the interference ratio (sda/
rd) rather than the raw parameters for spotlight width and
shrinking rate. This ratio can be calculated post hoc after
fitting the model, making analysis with the SSP fairly straight-
forward. Because the model was designed to account for the
flanker task, we recommend that it only be used for that task
until/unless it is shown to adequately account for data from
other conflict tasks.

DMC

The diffusion model for conflict tasks showed strong recovery
for the standard parameters of the DDM framework for
boundary separation (a), nondecision time (7er), and drift rate
for controlled processing (), but not for the parameters
governing the gamma distribution for automatic activation
(¢, o, and T). However, the derived measures of interfer-
ence/suppression, t,,,, and tg;, showed good recovery so
long as the number of trials per subject was 200 or larger.
These derived measures allow to selectively quantify the onset
latency (7,,.) and strength (299, — t,.4.) Of suppression/decay
of the automatic activation. This is a major advantage over
SSP and DSTP models, as suppression efficiency has been
the focus of many theoretical (Burle, Possamai, Vidal,
Bonnet, & Hasbroucq, 2002; Forstmann et al., 2008;
Ridderinkhof, 2002) and clinical studies (Ridderinkhof,
Scheres, Oosterlaan, & Sergeant, 2005; van Wouwe et al.,

3 The same rationale holds for the ratio fuy/phss Of the DSTP.

2016; Wylie et al., 2012; Wylie, Ridderinkhof, Bashore, &
van den Wildenberg, 2010; Wylie et al., 2009).

Overall, for DMC these results suggest that although the
specific parameters for the gamma distribution of automatic
activation are not well recovered, the model can be applied to
estimate the derived measures of interference/suppression for
designs with a larger number of observations. The DMC has
been shown to account for data from a wider range of conflict
tasks including the Simon and the flanker, (Ulrich et al., 2015),
and thus can be more broadly applied than the SSP or DSTP.

Future directions

While the parameter recovery analysis in this study was com-
prehensive, there remain potential avenues to improve param-
eter estimation for future use of conflict DDMs. One would be
to implement hierarchical Bayesian versions of the models,
which in theory can improve parameter estimation (especially
with low numbers of trials). However there are three potential
limitations to this approach. First, improvements in parameter
estimation will be dependent on the use of prior information to
restrict the parameter space, and there is currently no empirical
information to support the selection of such these priors.
Second, Bayesian hierarchical models require a likelihood
function for RT and accuracy data. However, the likelihood
function for models with time-varying drift rates, like the SSP
and DMC, is mathematically intractable (Ratcliff, 1980; Ulrich
et al., 2015; White, et al. (2011)). One way to circumvent this
problem is to use likelihood-free methods such as approximate
Bayesian computation (Turner & Van Zandt, 2014) or proba-
bility density approximation (Turner & Sederberg, 2014).
Third, these methods are complex and computationally inten-
sive, which can restrict practical usage. Although the use of
cluster computing can mitigate this problem, such resources
are not available for many researchers who wish to use these
models to analyze their data.

It is also the case that parameter recovery can be improved
with more complex factorial experimental design. The present
study focused on parameter validity in the most basic case for
conflict tasks: one compatible condition and one incompatible
condition. However, the addition of other conditions that only
affect certain parameters can improve parameter estimation. For
example, multiple stimulus conditions that are intermixed are
generally assumed to affect drift rate but not boundary separa-
tion or response bias, based on the idea that the latter compo-
nents are not adjusted on a trial-wise basis dependent on the
type of stimulus being shown (see Ratcliff & McKoon, 2008).
In such cases the models can be constrained to fit all of the
conditions simultaneously with only the parameters governing
the drift rate varying across condition while the other parame-
ters are held constant (for a recent example with the DMC, see
Servant et al., 2016). This places stronger constraints on the
parameter estimation and can improve model performance.

@ Springer
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Conclusion

The results of the simulation-recovery analysis in the present
study suggest that among the newly developed diffusion
models for conflict tasks, the shrinking spotlight model and
diffusion model for conflict tasks can be used confidently to
estimate parameters from behavioral data, but only if derived
measures are used to quantify interference/suppression.
Fortunately, these derived measures provide conceptually use-
ful indices of the amount of interference (and conversely sup-
pression or cognitive control) for participants in conflict tasks.
Overall, this study demonstrates the importance of thoroughly
evaluating models like the conflict DDMs to ensure they pro-
vide valid and meaningful parameter estimates when fitted to
data.
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