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The ability to inhibit planned or ongoing actions is a corner-
stone of flexible human behavior (Verbruggen & Logan, 
2008). The stop-signal paradigm (Fig. 1a) is currently one of 
the most popular tasks for examining response inhibition in 
the laboratory. The last decade has witnessed an exponential 
rise in stop-signal studies in various research domains (see 
Fig. S1 in the Supplemental Material available online). The 
paradigm is popular because it allows researchers to estimate 
the covert latency of the stop process: the stop-signal reaction 
time (SSRT). SSRT has been used to explore the cognitive and 
neural mechanisms of response inhibition, the development 
and decline of inhibitory capacities across the life span, and 
correlations between individual differences in stopping  
and behaviors such as substance abuse, pathological gambling, 
risk taking, and more generally, control of impulses and  
urges (Chambers, Garavan, & Bellgrove, 2009; Logan, 1994; 
Verbruggen & Logan, 2008).

In the present study, we used simulations to test the reli-
ability and accuracy of SSRT estimates. Previous simulations 
of Band, van der Molen, and Logan (2003) showed that com-
monly used SSRT-estimation methods were not influenced 
much by variability in go reaction time (RT) or in SSRT, or by 
dependency between the go and stop processes. However, we 

will show that estimates are strongly biased by positive skew 
and by gradual slowing of RTs. Because skew and slowing are 
important characteristics of RT distributions in most stop- 
signal experiments, our simulations suggest that some of the 
previously reported differences in stopping may be spurious.

SSRT is estimated according to the independent-race model 
(Logan, 1994; Logan & Cowan, 1984; Verbruggen & Logan, 
2009a): Performance in the stop task can be modeled as a race 
between a go process, which is triggered by the presentation of 
the go stimulus, and a stop process, which is triggered by the 
presentation of a stop signal (Fig. 1b). The stop signal occurs 
after a variable interval, the stop-signal delay (SSD). If the go 
process finishes before the stop process (i.e., when RT < 
(SSRT + SSD)), then response inhibition is unsuccessful and a 
response is executed; if the stop process finishes before the go 
process (i.e., when RT > (SSRT + SSD)), then the response is 
correctly withheld. The race model provides two common 
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Abstract

The stop-signal paradigm is a popular method for examining response inhibition and impulse control in psychology, cognitive 
neuroscience, and clinical domains because it allows the estimation of the covert latency of the stop process: the stop-signal 
reaction time (SSRT). In three sets of simulations, we examined to what extent SSRTs that were estimated with the popular 
mean and integration methods were influenced by the skew of the reaction time distribution and the gradual slowing of the 
response latencies. We found that the mean method consistently overestimated SSRT. The integration method tended to 
underestimate SSRT when response latencies gradually increased. This underestimation bias was absent when SSRTs were 
estimated with the integration method for smaller blocks of trials. Thus, skewing and response slowing can lead to spurious 
inhibitory differences. We recommend that the mean method of estimating SSRT be abandoned in favor of the integration 
method.
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methods for estimating SSRT: the integration method and the 
mean method (Logan & Cowan, 1984). In the integration 
method, the point at which the stop process finishes is esti-
mated by integrating the RT distribution and finding the point 
at which the integral equals the probability of responding, 
p(respond|signal), for a specific delay. SSRT is then calculated 
by subtracting SSD from the finishing time. In the mean 
method, the mean of the inhibition function (a plot of the prob-
ability of responding given a stop signal against SSD; see 
Logan & Cowan, 1984; Verbruggen & Logan, 2009a) is sub-
tracted from the mean of the RT distribution.

In recent years, the majority of stop-signal studies have used 
a dynamic tracking procedure to determine an SSD at which 
subjects inhibit their responses 50% of the time. At the begin-
ning of the experiment, SSD is set to a specific value (e.g., 250 
ms) and is then constantly adjusted after stop-signal trials 
depending on the outcome of the race: When inhibition is suc-
cessful, SSD increases (e.g., by 50 ms); when inhibition is 
unsuccessful, SSD decreases (e.g., by 50 ms). This one-up/ 
one-down tracking procedure typically results in a p(respond| 
signal) of approximately .50, which means that the race 
between the stop process and the go process is tied. Then SSRT 

is usually estimated with the mean method or the integration 
method (see Fig. S1 in the Supplemental Material).1 The mean 
method uses the mean of the inhibition function, which corre-
sponds to the average SSD obtained with the tracking proce-
dure when p(respond|signal) = .50. In other words, the mean 
method assumes that the mean RT equals SSRT plus the mean 
SSD, so SSRT can be estimated easily by subtracting the mean 
SSD from the mean RT (e.g., Logan & Cowan, 1984; Logan, 
Schachar, & Tannock, 1997). The integration method assumes 
that the finishing time of the stop process corresponds to the 
nth RT, with n equal to the number of RTs in the RT distribution 
multiplied by the overall p(respond|signal) (Logan, 1981); 
SSRT can then be estimated by subtracting the mean SSD from 
the nth RT (e.g., Ridderinkhof, Band, & Logan, 1999; Verbrug-
gen, Liefooghe, & Vandierendonck, 2004).

Simulations and reliability tests2 suggest that when the 
tracking procedure is used, the mean and integration estimates 
are both reliable (Band et al., 2003; Congdon et al., 2012; 
Logan et al., 1997; Williams, Ponesse, Schachar, Logan, & 
Tannock, 1999). However, a recent empirical study reported 
numerical differences between the two (Boehler, Appelbaum, 
Krebs, Hopf, & Woldorff, 2012). We propose that such  
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Fig. 1.  Experimental paradigm. In the stop-signal task (a), participants perform a go task (e.g., responding to the 
shape of a go stimulus). On a minority of the trials, the go stimulus is followed by a stop signal (e.g., the outline of 
the shape turning bold) after a variable stop-signal delay (SSD); this stop signal instructs the subject to withhold 
the planned response. FIX = presentation duration of the fixation sign; MAXRT = response deadline. A graphic 
representation of the assumptions of the independent-horse-race model of Logan and Cowan (1984; b) indicates 
how the probability of responding, p(respond|signal), depends on the distribution of go reaction time, SSD, and 
stop-signal reaction time (SSRT). In this example, p(respond|signal) = .50. The dashed line corresponds to the nth 
percentile, with n equal to p(respond|signal) multiplied by 100. When the distribution is skewed to the right, as 
in (c), there is a substantial difference between the mean and the nth RT; this may influence the SSRT estimations.
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discrepancies are mainly due to two factors, namely, the skew-
ness of the RT distribution and the degree of proactive response 
slowing in anticipation of stop signals. Indeed, the simulations 
of Band et al. (2003), and the comparison of the mean and 
integration methods by Boehler et al. (2012), suggest that 
skew and slowing might have an effect on estimations. How-
ever, these factors have not been systematically explored in 
the simulations or reliability tests so far. There are often large 
individual or group differences in the shape of the RT distribu-
tion and the degree of response slowing, so it is important  
to know the extent to which these differences influence SSRT 
estimates.

In our first set of simulations, we examined the effect of 
positively skewed RT distributions on SSRT estimates. It is 
well known that the mean is strongly influenced by extreme 
scores in the tails of the distribution; the median is less affected 
by the tails. In the stop-signal task, the median corresponds to 
the nth RT when p(respond|signal) is exactly .50. Because RT 
distributions are usually positively skewed (Ratcliff, 1993), 
the right tail of the distribution might explain discrepancies 
between the mean and integration estimates. As Figure 1c 
shows, the mean method would overestimate the finishing 
time of the stop process (and, therefore, the SSRT) when the 
RT distribution is skewed, whereas the integration method 
might provide a more accurate estimate. We tested this in the 
first set of simulations.

In a second and third set of simulations, we explored the 
effect of response slowing on SSRT estimates. Recent studies 
have shown that subjects slow responses either proactively 
when they expect that stop signals might occur or reactively 
when they fail to inhibit their responses (e.g., Aron, 2011;  
Bissett & Logan, 2011; Leotti & Wager, 2010; Verbruggen & 
Logan, 2009b; Verbruggen, Logan, Liefooghe, & Vandieren-
donck, 2008; Zandbelt, Bloemendaal, Neggers, Kahn, & Vink, 
2012). Indeed, subjects sometimes slow their RTs over the 
course of the experiment to try to beat the tracking algorithm 
(see e.g., Leotti & Wager, 2010, for some extreme examples). 
These shifts in the RT distribution could result in overesti-
mates of SSRT in the mean method because slowing would 
primarily influence the right tail of the distribution; however, 
in the integration method, these shifts could result in underes-
timates in SSRT because the tracking is a step behind when 
subjects continuously slow down. We tested the effect of slow-
ing in the second and third sets of simulations.

Method
Race-model simulations

In this study, performance in the stop-signal task was simu-
lated according to the independent-race model (Logan & 
Cowan, 1984): On stop-signal trials, a response was deemed to 
be withheld (signal-inhibit trial) when the RT was larger than 
the sum of the SSRT and the SSD; a response was deemed to 
be erroneously executed (signal-respond trial) when RT was 
smaller than the sum of the SSRT and SSD.

All simulations were done using R (R Development Core 
Team, 2008). RTs were sampled from an ex-Gaussian distribu-
tion using the rexGaus function (http://gamlss.org). The ex-
Gaussian distribution is often used by psychologists to describe 
RT data (Ratcliff & Murdock, 1976); it has a positively skewed 
unimodal shape and results from a convolution of a normal 
(Gaussian) distribution and an exponential distribution. It is 
characterized by three parameters: µ (mean of the Gaussian 
component), σ (standard deviation of the Gaussian compo-
nent), and τ (both the mean and the standard deviation of the 
exponential component; Fig. S2 in the Supplemental Material 
shows how changes in these three parameters influence the 
distribution). Sigma approximately represents the rise in the 
left tail of the ex-Gaussian distribution, and τ approximately 
represents the fall in the right tail of the ex-Gaussian distribu-
tion, whose mean is equal to the sum of µ plus τ and whose 
variance is equal to the sum of τ2 plus σ2 (Ratcliff, 1979). 
Band et al. (2003) also used an ex-Gaussian distribution to 
model RTs in their simulations.

In the first set of simulations, σ for the RTs in the go task 
(RT σ) was 50, 100, or 150, and τ for the RTs in the go  
task (RT τ) was 50, 150, 250 (see, e.g., Schmiedek, Oberauer, 
Wilhelm, Süss, & Wittmann, 2007, for a series of choice-RT 
tasks with τs in this range). Empirically, σ is usually not more 
than one fourth of τ (Ratcliff, 1993); however, we included a 
wider range of σ because variability is often increased in clini-
cal populations (e.g., Klein, Wendling, Huettner, Ruder, & 
Peper, 2006; Leth-Steensen, King Elbaz, & Douglas, 2000). 
For each combination of RT σ and RT τ, we simulated the data 
of 100 subjects. Mu was different for each subject, µ(subject); 
it was sampled from a normal distribution with a mean of 400 
(i.e., the population mean; SD = 25), with the restriction that it 
was larger than 300.

SSRTs were also sampled from an ex-Gaussian distribu-
tion. For all subjects, both SSRT σ and SSRT τ were 10. 
Mu(subject) was derived from a normal distribution with a 
mean of 200 (population mean; SD = 10), with the restriction 
that µ(subject) was larger than 150. Note that we also ran sim-
ulations in which SSRT σ and SSRT τ were varied; the results 
are reported in the Supplemental Material (Table S7). SSRT σ 
and SSRT τ did not influence the estimates much and did not 
interact with the effects of RT τ and response slowing. There-
fore, we used only one value for SSRT σ and SSRT τ in the 
main simulations reported here.

For each simulated subject, there were four blocks of 60 
trials; signals randomly occurred on 25% of the trials, which 
resulted in 15 stop-signal trials per block. The delay between 
the start of the go process and the start of the stop process 
(SSD) was initially set at 150 plus RT τ (e.g., when RT τ was 
250, the initial SSD was 400) and subsequently adjusted: After 
a signal-inhibit trial, SSD increased by 50; after a signal-
respond trial, SSD decreased by 50. The start value was cho-
sen in such a way that the race between go and stop would be 
close, but with a small initial head start for the stop process 
(the finishing time of the go process had a mean RT of 400 
plus RT τ; the finishing time of the stop process was equal to 
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SSD + mean SSRT = 150 + RT τ + 200 + SSRT τ). Because µ 
was not manipulated across conditions, we only used τ to 
determine start SSD.

In the second set of simulations, we examined the effect of 
gradual slowing of RTs. RTs were again derived from an ex-
Gaussian distribution, but RT µ increased linearly over trials. 
The start value of RT µ was again derived from a normal dis-
tribution with µ equal to 400 (SD = 25). The slope of the 
increase depended on a slowing factor, which could be 1, 1.5, 
or 2.5; these values were roughly based on the degree of  
slowing for individual subjects in one of our previous studies 
(Verbruggen & Logan, 2009b). The slope of the increase  
was calculated as follows: (y2 − y1)/(x2 − x1), with y2 = RT 
µ(start) × slowing factor, and y1 = RT µ(start), x2 = 240 (the 
trial number of the last trial), and  x1 = 1 (trial number of the 
first trial). When the slowing factor was 1, the slope was 0 
(i.e., y2 = y1, so no slowing). When the slowing factor was 1.5 
or 2.5, the slope was positive, and RT µ increased. For exam-
ple, with only six trials and the slowing factor equal to 1.5, RT 
µs would be µ(start) on the first trial, µ(start) × 1.1 on the sec-
ond trial, µ(start) × 1.2 on the third trial, µ(start) × 1.3 on the 
fourth trial, µ(start) × 1.4 on the fifth trial, and µ(start) × 1.5 on 
the sixth trial. In this second set of simulations, RT σ was 50 
or 150, and RT τ was 50 or 250.

Finally, in the third set of simulations, the slowing factor 
was different for each subject to allow for individual differ-
ences in slowing. For each simulated subject, the slowing fac-
tor was derived from a uniform distribution with a minimum 
of 1 and a maximum of 3.

Estimation and analyses

For the first set of simulations, we estimated SSRT over all 
blocks using the mean method (SSRT = mean RT – mean 
SSD) and the integration method (SSRT = nth RT – mean 
SSD). For the second and third set, we also estimated SSRT 
for each block separately using the integration method and 
then took the average of these four block estimates.3 Trials 
with an RT higher than 2,000 were considered to be missed 
responses (in real experiments, there is always a response 
deadline around this value). These missed trials were excluded 
when we estimated SSRT using the mean method; for the inte-
gration methods, RT for missed responses was set to 2,000.4

For each estimation method, we calculated the difference 
between the estimated SSRT and the actual SSRT; positive 
values indicated that SSRT was overestimated, whereas nega-
tive values indicated that SSRT was underestimated. Table 1 
reports the mean difference scores, confidence intervals, and 
results of t tests that explored whether the SSRT difference 
was reliably different from zero. Using mixed analyses of vari-
ance (ANOVAs; see Tables S2, S4, and S6 in the Supplemen-
tal Material for overviews), we then tested whether the 
difference scores were influenced by estimation method, RT 
σ, RT τ, and slowing (second set of simulations).

Results and Discussion
In the first set of simulations, the tracking procedure worked 
well and p(respond|signal) was close to .50 for all RT σ and RT τ 

Table 1.  Results of Analyses of the Difference Scores in the Three Simulations

Simulation and method Mean difference 95% CI  One-sample t        p

Simulation 1
  Mean method 23.46 [21.15, 25.78] t(899) = 19.92 < .001
  Integration method −6.16 [−8.35, −3.97] t(899) = 5.53 < .001
Simulation 2: slowing factor = 1
  Mean method 25.89 [22.09, 29.69] t(399) = 13.39 < .001
  Integration method −4.73 [−8.19, −1.28] t(399) = 2.70 .01
  Integration method (blocked) −3.48 [−6.92, −0.04] t(399) = 1.99 .05
Simulation 2: slowing factor = 1.5
  Mean method 39.67 [35.47, 43.88] t(399) = 18.55 < .001
  Integration method −1.13 [−4.62, 2.36] t(399) = 0.64 .52
  Integration method (blocked) −0.62 [−4.15, 2.91] t(399) = 0.35 .73
Simulation 2: slowing factor = 2.5
  Mean method 62.67 [58.27, 67.07] t(399) = 27.99 < .001
  Integration method −14.10 [−18.38, −9.82] t(399) = 6.48 < .001
  Integration method (blocked) −1.78 [−5.38, 1.81] t(399) = 0.97 .33
Simulation 3
  Mean method 51.07 [46.81, 55.33] t(399) = 23.55 < .001
  Integration method −6.59 [−10.37, −2.80] t(399) = 3.42 < .001
  Integration method (blocked) 0.84 [−2.52, 4.19] t(399) = 0.49 .62

Note: Difference scores were calculated using the difference between the estimated stop-signal reaction time 
(SSRT) and actual SSRT; positive values indicate that SSRT was overestimated, whereas negative values indicate 
that SSRT was underestimated. One-sample t tests were performed to examine whether the scores were signifi-
cantly different from zero. CI = confidence interval.
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combinations (see Table S1 in the Supplemental Material). 
When we collapsed across all values of RT σ and RT τ, we 
found that the mean method overestimated SSRT; by contrast, 
the integration method tended to slightly underestimate SSRT.

We used box plots of difference scores to examine the accu-
racy of SSRT estimates and to explore the estimation bias: a 
leftward shift of a box indicated underestimation; a rightward 
shift indicated overestimation. The plots (Fig. 2) demonstrated 
that when RT σ and RT τ were small, the difference between 
the estimated and actual SSRTs was small for most subjects. 
An increase in RT σ led to more noisy estimates but did not 

induce a systematic bias (i.e., the box widened but was still 
centered around zero). Changes in RT τ, which influenced the 
right tail (positive skew) of the RT distribution, had a more 
pronounced effect on SSRT estimations. A comparison of the 
bottom- and top-row box plots shows that when RT τ increased, 
estimates became noisier and, more important, became biased. 
For the mean method, the rightward shift of the top-row boxes 
indicates that SSRT was overestimated when RT τ increased. 
The integration method had a small tendency to underestimate 
SSRT when RT τ increased, but this effect was less pro-
nounced. Thus, the integration method seemed more robust 
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RT σ: 50

Integration

Mean

–200 –100 0 100 200
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RT σ: 100
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Fig. 2.  Box plots showing the difference between the estimated stop latency and the true stop latency in the first set of 
simulations. For each combination of reaction time (RT) σ and RT τ, the difference is shown for estimates based on the mean 
model and estimates based on the integration model. Negative values indicate that the estimated value is an underestimation 
of the true stop-signal reaction time (SSRT); positive values indicate that the estimated SSRT is longer than the actual stop 
latency. In each box, the solid lines show the medians, and the left and right edges mark the lowest and highest quartiles, 
respectively. The dashed lines with the whiskers at their respective end points capture the location of extreme values. 
Outliers exceeding the interquartile distance (from one end of the box to the other) by more than 1.5 are represented by 
circles.
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and less biased than did the mean method. These conclusions 
are supported by significant main effects of estimation method 
and RT τ, and by an interaction between estimation method 
and RT τ (see Table S2 in the Supplemental Material).

The overestimation bias for large RT τs is problematic when 
SSRTs of different groups or conditions are compared. Often, 
RT distributions differ between groups or conditions. For 
example, a recent study showed that RT τ was approximately 
251 ms for children with attention-deficit/hyperactivity disor-
der (ADHD) and 162 ms for children without ADHD (Epstein 
et al., 2011). Such RT τ group differences could influence the 
SSRT estimates. We further tested this by randomly selecting 
20 subjects in the condition in which RT σ was equal to 100 
and RT τ was equal to150 and 20 subjects in the condition in 
which RT σ was equal to 100 and RT τ was equal to 250. As 
expected, there was no difference between the true stop laten-
cies in both conditions (208 vs. 206, respectively), F(1, 38) = 
0.11, p = .750. However, there was a significant 31-ms differ-
ence between the estimated SSRTs (RT τ = 150: 229 ms,  
RT τ = 250: 260 ms), F(1, 38) = 6.60, p = .014. Thus, when 
there are differences in RT τ, the mean method may lead to 
incorrect conclusions about group differences in SSRTs. Note 
that there was no difference between the SSRTs estimated 
using the integration method (RT τ = 150: 200 vs. RT τ = 250: 
204), F(1, 38) = 0.07, p = .798.

In the second set of simulations, we tested how gradual 
slowing of RTs over trials influenced the SSRT estimates. 
Here, we used two variants of the integration method: (a) the 
variant that we used in the first set of simulations and that uses 
all trials to obtain a single SSRT estimate (henceforth, the 
experiment-wide integration method) and (b) a block-based 
integration method that estimated SSRT for each block sepa-
rately (there were 60 trials per block, 15 of which were signal 
trials) and then took the average of these four estimates.

The box plots in Figure 3 show that the mean method over-
estimates SSRT when RT τ increases or when mean RT gradu-
ally increases over trials (see also Table 1). By contrast, the 
experiment-wide integration method tended to underestimate 
SSRT, especially when the slowing factor increased (see Fig. 3 
and Table 1). The block-based integration method did not 
show such a consistent bias. These conclusions were sup-
ported by the ANOVAs reported in Table S4 of the Supple-
mental Material.

We found that the mean method was strongly influenced by 
response slowing. One possible explanation for this finding is 
that the mean method assumes that the probability of respond-
ing approximates .50. However, we found that when the slow-
ing factor increased, p(respond|signal) tended to decrease: 
When the slowing factor was large, the tracking procedure 
could not keep up with the changes in RT, so p(respond|signal) 
would be lower than .50 (see Table S3 in the Supplemental 
Material). Therefore, we reestimated SSRT using only those 
simulated subjects for which .40 < p(respond|signal) < .60; 
these values are based on the criterion discussed in Verbrug-
gen, Logan, and Stevens (2008). We found that the RT τ and 
slowing biases were still present, even when only the central 

estimates were included (see Figs. S3 and S4 in the Supple-
mental Material).

The second set of simulations demonstrated that the mean 
method and experiment-wide integration method were influ-
enced by response slowing. In a third set of simulations, we 
used a random slowing factor for each simulated subject to 
explore the correlation between slowing and the degree of 
over- or underestimation. Figure 4 shows that when RT τ was 
low and the experiment-wide integration method was used, the 
estimated SSRT correlated negatively with the degree of slow-
ing.5,6 Researchers have argued that such negative correlations 
could be due to proactive suppression of motor output  
or changes in task priorities (e.g., Jahfari, Stinear, Claffey, 
Verbruggen, & Aron, 2010; Leotti & Wager, 2010). Our simu-
lations suggest that this negative correlation could be due to a 
bias in SSRT estimation. This bias was not observed when 
SSRT was estimated for each block separately (Fig. 4). As 
expected based on the previous sets of simulations, we found 
a positive correlation between response slowing and degree of 
overestimation for the mean method.

Conclusions and Practical Guidelines
In the present study, we explored to what extent the skew of 
the RT distribution and gradual slowing of response latencies 
influences the mean and integration SSRT estimates. The 
mean method is often used because it is very easy: SSRT can 
be estimated simply by subtracting the mean SSD from the 
mean RT. However, our simulations show that this approach 
overestimates SSRT when the RT distribution is skewed to the 
right (i.e., when RT τ is large) or when RTs increase gradually 
over the course of the experiment. We demonstrated that indi-
vidual or group differences in RT skew or response slowing 
could result in spurious inhibitory differences. Unfortunately, 
such RT differences may occur frequently. For example, stud-
ies have shown that SSRT is longer for children with ADHD 
than for children without ADHD (Lijffijt, Kenemans, Ver-
baten, & van Engeland, 2005; Oosterlaan & Sergeant, 1998; 
Schachar & Logan, 1990). However, a recent study estimated 
that τ was much higher in children with ADHD than in chil-
dren without ADHD (Epstein et al., 2011). Thus, the mean 
method will overestimate SSRT differences between ADHD 
children and children without ADHD and possibly produce 
spurious differences. Thus, we argue that the mean method 
should be abandoned because it is overly susceptible to the 
shape of the RT distribution.

The integration method fared better in the first set of simu-
lations: There was a trend to underestimate SSRT slightly 
(approximately 4 ms), but there were no obvious group differ-
ences caused by changes in the shape of the RT distribution. 
This is consistent with a recent reliability analysis that used 
split-half reliability measures (Congdon et al., 2012). How-
ever, the second and third set of simulations showed that the 
small underestimation bias for the integration method became 
more pronounced when there is gradual slowing of RTs across 
blocks. This underestimation bias may explain the previously 
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observed negative correlations between SSRT and response 
slowing (e.g., Jahfari et al., 2010; Leotti & Wager, 2010). 
Thus, we have demonstrated that the experiment-wide integra-
tion method results in reliable and unbiased estimates unless 
subjects slow their RT gradually.

The gradual slowing of RTs may be reduced by clear 
advance instructions (e.g., by stressing speed in the go task 
and explaining the staircase-tracking procedure) and by pro-
viding feedback after every trial (e.g., Ridderinkhof et al., 
1999; Verbruggen et al., 2004) or after every block (e.g.,  

Integration

Integration
Blocked

Mean

RT Slow: 1.0
RT τ: 50

–200 –100 0 100 200

RT Slow: 1.0
RT τ: 250

–200 –100 0 100 200

RT Slow: 1.5
RT τ: 250

–200 –100 0 100 200

Integration

Integration
Blocked

Mean

RT Slow: 1.5
RT τ: 50

–200 –100 0 100 200

Integration

Integration
Blocked

Mean

RT Slow: 2.5
RT τ: 50

–200 –100 0 100 200

RT Slow: 2.5
RT τ: 250

–200 –100 0 100 200

Fig. 3.  Box plots showing the difference between the estimated stop latency and the true stop latency in the 
second set of simulations. For each combination of reaction time (RT) τ and response slowing, estimates are shown 
for estimates based on the mean, integration blocked, and integration models. Negative values indicate that the 
estimated value is an underestimation of the true stop-signal reaction time (SSRT); positive values indicate that 
the estimated SSRT is longer than the actual stop latency. In each box, the solid lines show the medians, and the 
left and right edges mark the lowest and highest quartiles, respectively. The dashed lines with the whiskers at their 
respective end points capture the location of extreme values. Outliers exceeding the interquartile distance (from 
one end of the box to the other) by more than 1.5 are represented by circles.
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Fig. 4.  Scatter plots (with best-fitting regression lines) illustrating the correlation between the estimated 
stop-signal reaction time (SSRT) and the slowing factor. The graphs on the left illustrate correlations 
when reaction time (RT) τ was equal to 50 for estimates derived using the mean, integration blocked, and 
integration models. The graphs on the right illustrate correlations when RT τ was equal to 250 for estimates 
derived using the mean, integration blocked, and integration models.
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Verbruggen, Logan, & Stevens, 2008). Thus, we argue that in 
standard stop tasks, researchers should provide clear instruc-
tions and implement feedback procedures to discourage exces-
sive strategic slowing.

Even when feedback is provided, slowing may still be 
observed in certain subjects (e.g., Verbruggen et al., 2004;  
Verbruggen, Logan, et al., 2008). Researchers can exclude 
those subjects who slow their responses substantially; our sim-
ulations suggest that the underestimation bias appeared when 
the mean of the normal part of the distribution doubled.7 How-
ever, this may result in the exclusion of a large number of sub-
jects in some experiments, which could induce an exclusion 
bias. Also, researchers may be specifically interested in the 
correlation between slowing and SSRT. Recently, several 
authors have argued that strategy adjustments may be an 
important aspect of successful stop performance and, more 
generally, impulse control in everyday life (e.g., Aron, 2011; 
Bissett & Logan, 2011; Leotti & Wager, 2010; Verbruggen & 
Logan, 2009b). Feedback about slowing may not be provided 
when such strategic adjustments are examined. Furthermore, 
excluding subjects who slow substantially is not appropriate in 
such studies. The second and third set of simulations show that 
a block-based version of the integration method is less suscep-
tible to bias from response slowing. When SSRT was esti-
mated for each block separately (number of no-signal trials per 
block = 45; number of signal trials per block = 15) and then 
averaged, we obtained a reliable and unbiased SSRT even 
when there was substantial response slowing. Additional anal-
yses (Figs. S5–S6 in the Supplemental Material) suggest that 
approximately 40 to 80 trials are required per block (25% of 
which are signal trials). If there are fewer trials, the estimates 
become too noisy; if there are more trials, the underestimation 
bias starts to emerge. We recommend that there are at least 50 
signals in total. Thus, we feel that researchers should estimate 
SSRT for each block separately when strategic slowing is 
observed and subjects cannot be excluded.

It should be noted that slowing could be interpreted as a 
violation of the context independence and the stochastic inde-
pendence assumptions of the race model (Logan & Cowan, 
1984). Context independence (also referred to as signal inde-
pendence) refers to the assumption that the RT distribution is 
the same for no-signal trials and stop-signal trials. Stochastic 
independence refers to the assumption that trial-by-trial vari-
ability in RT is unrelated to trial-by-trial variability in SSRT. 
Gradual slowing of RT does not necessarily violate these 
assumptions: Because subjects cannot predict whether a stop 
signal will occur in the standard version of a stop task, they are 
expected to slow down on all trials (including no-signal trials). 
In other words, the assumptions of the race model hold as long 
as slowing occurs to a similar degree on both signal and no-
signal trials. Note also that the race model does not make 
assumptions about the shape of the finishing-time distribu-
tions. Thus, skew should not influence the SSRT estimations. 
The results of the first set of simulations demonstrated that this 
was the case for the integration method.

To conclude, our results demonstrate that the central SSRT 
estimates, which were previously thought to be most reliable, 
are strongly influenced by the right tail of the RT distribution 
and gradual slowing of RTs. Therefore, we recommend  
that researchers abandon the mean method to estimate SSRT 
and instead use the experiment-wide or block-based integra-
tion method to reliably estimate the latency of response 
inhibition.
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Notes

1.  In some studies, SSRT has been estimated by subtracting the 
mean SSD from the median RT. This median method is a variant of 
the integration method that assumes that p(respond|signal) is always 
exactly .50. This is rarely the case. Thus, the median method is usu-
ally a less accurate version of the integration method; therefore, it is 
not further considered in the main analyses. We report the results for 
the median method in Table S8 in the Supplemental Material. The 
table shows that when “subjects” did not slow and p(respond|signal) 
was close to .50, the results were very similar to the results for the 
integration method (as expected). However, when slowing was 
implemented, SSRT was overestimated because p(respond|signal) 
was often lower than .50 (see Tables S3–S5). The overestimation bias 
was less pronounced than the bias observed for the mean method 
because the median is less influenced by the tail of the distribution 
than the mean is.
2.  Reliability tests typically use the split-half method: The data set is 
split in two, and SSRTs for both subsets are compared.
3.  Because there was an equal number of signal trials in each block, 
a block-based variant of the mean method resulted in the exact same 
estimate as the estimate obtained using the experiment-based mean 
method.
4.  As discussed later, the mean method tended to overestimate 
SSRT. This overestimation would have been even more pronounced 
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if missed responses were not excluded or if missed RT was set to 
2,000.
5.  We obtained very similar results when we implemented slowing 
differently. On each trial, we obtained an RT from a single ex-Gauss-
ian distribution with constant parameters, µ(subject), σ, τ. This RT 
was then multiplied by the slowing factor. For example, if the slow-
ing factor would have been 1.5 and there were three trials, the RTs 
would be RT(sampled) on the first trial, RT(sampled) × 1.25 on the 
second trial, and RT(sampled) × 1.5 on the third trial. The negative 
correlations and underestimation bias were still present for the stan-
dard integration method (if anything, the effects were more pro-
nounced) but not for the block-based method.
6.  For the mean method, the overall correlation was 0.26, t(398) = 
5.48, p < .001, which suggests that the mean method will overesti-
mate SSRT when subjects slow down. For the experiment-wide 
integration method, the overall correlation was −0.19, t(398) = −3.83, 
p < .001; this suggests that the experiment-based integration method 
will underestimate SSRT when subjects slow down. Finally, for the 
block-based integration method, the overall correlation was 0.02, 
t(398) = 0.34, p = .74, which suggests that the estimates are not influ-
enced by slowing. We obtained very similar correlations between the 
degree of slowing and the difference between SSRT(estimated) and 
SSRT(true): For the mean method, the overall correlation was 0.29, 
t(398) = 5.98, p < .001; for the integration method, the overall cor-
relation was −0.21, t(398) = −4.36, p < .001; finally, for the block-
based integration, the overall correlation was 0.02, t(398) = 0.45, p = 
.66. This confirms that the observed correlations between slowing 
and SSRT were due to an estimation bias.
7.  When RT τ is small, the mean of the normal part of the distribu-
tion will not differ much from the global average.
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